Systemic and CNS manifestations of inherited cerebrovascular malformations

Blaine L Hart, Marc C Mabray, Leslie Morrison, Kevin J Whitehead, Helen Kim, Blaine L Hart, Marc C Mabray, Leslie Morrison, Kevin J Whitehead, Helen Kim

Abstract

Cerebrovascular malformations occur in both sporadic and inherited patterns. This paper reviews imaging and clinical features of cerebrovascular malformations with a genetic basis. Genetic diseases such as familial cerebral cavernous malformations and hereditary hemorrhagic telangiectasia often have manifestations in bone, skin, eyes, and visceral organs, which should be recognized. Genetic and molecular mechanisms underlying the inherited disorders are becoming better understood, and treatments are likely to follow. An interaction between the intestinal microbiome and formation of cerebral cavernous malformations has emerged, with possible treatment implications. Two-hit mechanisms are involved in these disorders, and additional triggering mechanisms are part of the development of malformations. Hereditary hemorrhagic telangiectasia encompasses a variety of vascular malformations, with widely varying risks, and a more recently recognized association with cortical malformations. Somatic mutations are implicated in the genesis of some sporadic malformations, which means that discoveries related to inherited disorders may aid treatment of sporadic cases. This paper summarizes the current state of knowledge of these conditions, salient features regarding mechanisms of development, and treatment prospects.

Keywords: Arteriovenous malformation; Capillary malformation-arteriovenous malformation; Cerebral cavernous malformation; Cerebrovascular malformations; Neurocutaneous syndrome.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figures

Fig. 1—
Fig. 1—
Familial cerebral cavernous malformations (CCMs). 63-year-old woman with hemiplegia and gait difficulties. Axial MRI, FSE T2 (A), T2 GR (B), and SWI (C), show numerous CCMs, ranging from a large, reticulated type right occipital CCM to multiple small, mixed-signal-intensity CCMs to a large number of smaller lesions, including one in the splenium of the corpus callosum, with progressively more seen on GR and SWI.
Fig. 2--
Fig. 2--
Sporadic cerebral cavernous malformation and developmental venous anomaly. 65-year-old man with acute mental status change. A. Nonenhanced CT revealed irregular left frontal lobe calcification. B. MRI, axial TSE T2 performed soon after showed no acute hemorrhage but typical reticulated appearance of CCM with hemosiderin rim. C. MRI, coronal post gadolinium T1 shows that the CCM (arrow) lies at the inferior margin of a DVA with superficially draining collector vein.
Fig. 3—
Fig. 3—
Spinal cord cavernous malformations. 17-year-old male with left shoulder and arm pain. Sagittal T1 (A) and TSE T2 (B) MRI shows complex region of hemorrhage including fluid-fluid layer, swelling, and edema, originally suspected to be neoplasm. Brain MRI showed several small cavernous malformations. Spinal cord cavernous malformation was resected, with good outcome. CCM1 mutation confirmed after initial presentation. Compare with cavernous malformation without acute hemorrhage in the ventral spinal cord (arrow) at C7 in a 58 year-old-woman with right upper extremity weakness and numbness (C, sagittal T2). Brain MRI revealed multiple cavernous malformations.
Fig. 4—
Fig. 4—
Skin vascular malformation in familial CCM. 29-year-old woman with familial cerebral cavernous malformations and lobulated vascular lesion in dorsal soft tissues of right hand had MRI. Coronal T1 (A) and T2 STIR (B), demonstrate lobulated lesion in the soft tissue. Multiple CCMs were present on brain MRI and there was a family history of CCMs.
Fig. 5--
Fig. 5--
Adrenal calcifications in familial cerebral cavernous malformations. 59-year-old man with documented CCM1 mutation, multiple brain CCMs, and unrelated cirrhosis. CT abdomen without intravenous contrast administration. There were 2 right (not pictured on this slice) and 5 left adrenal calcifications, incidental findings. A vertebral vascular malformation is visible in the right side of the T12 vertebral body (see below regarding osseous vascular malformations).
Fig. 6.
Fig. 6.
MRI-atypical vertebral osseous vascular malformations in FCCM. 50-year-old woman with documented CCM1 mutation and numerous cavernous malformations in the brain, MRI cervical spine done for unsteadiness. MRI, sagittal T1 (A), sagittal TSE T2 (B) and axial TSE T2 (C) of the cervical spine shows low T1/high T2 lesions in C5 and T1, stippled appearance on axial T2 through the C5 lesion. They remained stable for years.
Fig. 7—
Fig. 7—
Cerebral AVMs in HHT. 10-year-old girl with hereditary hemorrhagic telangiectasia. A. Axial source image from MRA shows right occipital and left temporal lobe small AVMs, as well as resection site of previous posterior right temporal AVM. B. At age 17, acute left temporal hemorrhage is visible on nonenhanced CT. C. Angiogram, lateral view of left ICA injection shows anterior left temporal AVM with enlarged feeding arteries, tangle of vessels, and early shunting into venous system.
Fig. 8—
Fig. 8—
Pial AVF in HHT. 9-year-old boy with HHT, screening MRI of brain performed. A. MRI axial TSE T2 shows left parietal malformation. B. Angiogram, AP view LICA injection, shows left parietal enlarged arteries and veins with a venous varix but no discernable nidus, consistent with pial arteriovenous fistula.
Fig. 9—
Fig. 9—
Capillary vascular malformation in hereditary hemorrhagic telangiectasia. 24-year-old woman with hereditary hemorrhagic telangiectasia. A. Contrast-enhanced axial T1 MRI of a 24 year old woman shows focus of enhancement <1 cm in the medial right thalamus. Subsequent angiogram, right vertebral injection, lateral view (B) and AP view (C), shows a blush without enlarged feeding or draining vessels (arrows). Location in the thalamus is unusual; subcortical location is much more common.
Fig. 10—
Fig. 10—
Spinal arteriovenous fistula in HHT. 8-year-old boy with hereditary hemorrhagic telangiectasia had spinal vascular malformation detected incidentally, when partially visualized on MRI brain. A. MRI, sagittal TSE T2 shows numerous dilated, tortuous vessels seen in the thoracic spine. B. AP view of spinal angiogram, injection at T7, shows tortuous vessels of spinal arteriovenous fistula. Treated with embolization.
Fig. 11—
Fig. 11—
Lung AVMs in HHT. 45-year-old woman with hypoxia and family history of hereditary hemorrhagic telangiectasia. Basilar lung AVMs demonstrated on both CT (A, coronal reformat) and pulmonary angiography (B). These and others not illustrated were embolized.
Fig. 12—
Fig. 12—
Capillary telangiectasia. 31-year-old woman with hemianopsia, incidental finding of capillary telangiectasia. Left pontine capillary telangiectasia (black arrow) visible on MRI TSE T2 (A), SWI (B), and post gadolinium T1 (C). Slightly increased T2 signal intensity (A) and draining vein (white arrow) are not uncommon.

References

    1. Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 2017;545:305–10. 10.1038/nature22075.
    1. Palagallo GJ, McWilliams SR, Sekarski LA, Sharma A, Goyal MS, White AJ. The prevalence of malformations of cortical development in a pediatric hereditary hemorrhagic telangiectasia population. AJNR Am J Neuroradiol 2017;38:383–6. 10.3174/ajnr.A4980.
    1. Al-Holou WN, O’Lynnger TM, Pandey AS, Gemmete JJ, Thompson BG, Muraszko KM, et al. Natural history and imaging prevalence of cavernous malformations in children and young adults. J Neurosurg Pediatr 2012;9:198–205. 10.3171/2011.11.PEDS11390.
    1. Morris Z, Whiteley WN, Longstreth WT, Weber F, Lee Y-C, Tsushima Y, et al. Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2009;339:b3016. 10.1136/bmj.b3016.
    1. Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, et al. Familial cerebral cavernous malformations. Stroke 2019;50:1294–301. 10.1161/STROKEAHA.118.022314.
    1. Moore SA, Brown RD, Christianson TJH, Flemming KD. Long-term natural history of incidentally discovered cavernous malformations in a single-center cohort. J Neurosurg 2014;120:1188–92. 10.3171/2014.1.JNS131619.
    1. Gunel M, Awad IA, Finberg K, Anson JA, Steinberg GK, Batjer HH, et al. A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med 1996;334:946–51. 10.1056/NEJM199604113341503.
    1. Liquori CL, Berg MJ, Squitieri F, Leedom TP, Ptacek L, Johnson EW, et al. Deletions in CCM2 are a common cause of cerebral cavernous malformations. Am J Hum Genet 2007;80:69–75. 10.1086/510439.
    1. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, et al. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 1994;80:422–32. 10.3171/jns.1994.80.3.0422.
    1. de Souza JM, Domingues RC, Cruz LCH, Domingues FS, Iasbeck T, Gasparetto EL. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 2008;29:154–8. 10.3174/ajnr.A0748.
    1. Al-Shahi Salman R, Berg MJ, Morrison L, Awad IA. Hemorrhage from cavernous malformations of the brain: definition and reporting standards. Stroke 2008;39:3222–30. 10.1161/STROKEAHA.108.515544.
    1. Petersen TA, Morrison LA, Schrader RM, Hart BL. Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. AJNR Am J Neuroradiol 2010;31:377–82. 10.3174/ajnr.A1822.
    1. Dammann P, Wrede K, Zhu Y, Matsushige T, Maderwald S, Umutlu L, et al. Correlation of the venous angioarchitecture of multiple cerebral cavernous malformations with familial or sporadic disease: a susceptibility-weighted imaging study with 7-Tesla MRI. J Neurosurg 2017;126:570–7. 10.3171/2016.2.JNS152322.
    1. Brinjikji W, El-Masri AE-R, Wald JT, Flemming KD, Lanzino G. Prevalence of cerebral cavernous malformations associated with developmental venous anomalies increases with age. Childs Nerv Syst 2017;33:1539–43. 10.1007/s00381-017-3484-0.
    1. Wurm G, Schnizer M, Fellner FA. Cerebral cavernous malformations associated with venous anomalies: surgical considerations. Neurosurgery 2005;57:42–58; discussion 42–58. 10.1227/01.neu.0000163482.15158.5a.
    1. Dillon WP. Cryptic vascular malformations: controversies in terminology, diagnosis, pathophysiology, and treatment. AJNR Am J Neuroradiol 1997;18:1839–46.
    1. Hong YJ, Chung T-S, Suh SH, Park CH, Tomar G, Seo KD, et al. The angioarchitectural factors of the cerebral developmental venous anomaly; can they be the causes of concurrent sporadic cavernous malformation? Neuroradiology 2010;52:883–91. 10.1007/s00234-009-0640-6.
    1. Choquet H, Pawlikowska L, Nelson J, McCulloch CE, Akers A, Baca B, et al. Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Cerebrovasc Dis 2014;38:433–40. 10.1159/000369200.
    1. Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 2016;81:254–70. 10.1016/j.biocel.2016.09.011.
    1. Perrini P, Lanzino G. The association of venous developmental anomalies and cavernous malformations: pathophysiological, diagnostic, and surgical considerations. Neurosurg Focus 2006;21:e5. 10.3171/foc.2006.21.1.6.
    1. Heckl S, Aschoff A, Kunze S. Radiation-induced cavernous hemangiomas of the brain: a late effect predominantly in children. Cancer 2002;94:3285–91. 10.1002/cncr.10596.
    1. Cutsforth-Gregory JK, Lanzino G, Link MJ, Brown RD, Flemming KD. Characterization of radiation-induced cavernous malformations and comparison with a nonradiation cavernous malformation cohort. J Neurosurg 2015;122:1214–22. 10.3171/2015.1.JNS141452.
    1. Akers A, Al-Shahi Salman R, A. Awad I, Dahlem K, Flemming K, Hart B, et al. Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel. Neurosurgery 2017;80:665–80. 10.1093/neuros/nyx091.
    1. Badhiwala JH, Farrokhyar F, Alhazzani W, Yarascavitch B, Aref M, Algird A, et al. Surgical outcomes and natural history of intramedullary spinal cord cavernous malformations: a single-center series and meta-analysis of individual patient data: Clinic article. J Neurosurg Spine 2014;21:662–76. 10.3171/2014.6.SPINE13949.
    1. Goyal A, Rinaldo L, Alkhataybeh R, Kerezoudis P, Alvi MA, Flemming KD, et al. Clinical presentation, natural history and outcomes of intramedullary spinal cord cavernous malformations. J Neurol Neurosurg Psychiatry 2019;90:695–703. 10.1136/jnnp-2018-319553.
    1. Mabray MC, Starcevich J, Hallstrom J, Robinson M, Bartlett M, Nelson J, et al. High prevalence of spinal cord cavernous malformations in the familial cerebral cavernous malformations type 1 cohort. Am J Neuroradiol 2020;41:1126–30. 10.3174/ajnr.A6584.
    1. Cecchi PC, Rizzo P, Faccioli F, Bontempini L, Schwarz A, Bricolo A. Intraneural cavernous malformation of the cauda equina. J Clin Neurosci Off J Neurosurg Soc Australas 2007;14:984–6. 10.1016/j.jocn.2006.06.015.
    1. Labauge P, Krivosic V, Denier C, Tournier-Lasserve E, Gaudric A. Frequency of retinal cavernomas in 60 patients with familial cerebral cavernomas: a clinical and genetic study. Arch Ophthalmol Chic Ill 1960 2006;124:885–6. 10.1001/archopht.124.6.885.
    1. Sirvente J, Enjolras O, Wassef M, Tournier-Lasserve E, Labauge P. Frequency and phenotypes of cutaneous vascular malformations in a consecutive series of 417 patients with familial cerebral cavernous malformations. J Eur Acad Dermatol Venereol 2009;23:1066–72. 10.1111/j.1468-3083.2009.03263.x.
    1. Manole AK, Forrester VJ, Zlotoff BJ, Hart BL, Morrison LA. Cutaneous findings of familial cerebral cavernous malformation syndrome due to the common Hispanic mutation. Am J Med Genet A 2020;182:1066–72. 10.1002/ajmg.a.61519.
    1. Strickland CD, Eberhardt SC, Bartlett MR, Nelson J, Kim H, Morrison LA, et al. Familial cerebral cavernous malformations are associated with adrenal calcifications on CT scans: an imaging biomarker for a hereditary cerebrovascular condition. Radiology 2017:161127. 10.1148/radiol.2017161127.
    1. Toldo I, Drigo P, Mammi I, Marini V, Carollo C. Vertebral and spinal cavernous angiomas associated with familial cerebral cavernous malformation. Surg Neurol 2009;71:167–71. 10.1016/j.surneu.2007.07.067.
    1. Tandberg SR, Bocklage T, Bartlett MR, Morrison LA, Nelson J, Hart BL. Vertebral intraosseous vascular malformations in a familial cerebral cavernous malformation population: prevalence, histologic heatures, and associations with CNS disease. Am J Roentgenol 2020;214:428–36. 10.2214/AJR.19.21492.
    1. Drigo P, Mammi I, Battistella PA, Ricchieri G, Carollo C. Familial cerebral, hepatic, and retinal cavernous angiomas: a new syndrome. Childs Nerv Syst 1994;10:205–9.
    1. Davenport WJ, Siegel AM, Dichgans J, Drigo P, Mammi I, Pereda P, et al. CCM1 gene mutations in families segregating cerebral cavernous malformations. Neurology 2001;56:540–3.
    1. Morrison L, Akers A. Cerebral cavernous malformation, familial. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, et al., editors. GeneReviews®, Seattle (WA): University of Washington, Seattle; 2016.
    1. Riant F, Bergametti F, Fournier H-D, Chapon F, Michalak-Provost S, Cecillon M, et al. CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol 2013;4:165–72. 10.1159/000350042.
    1. Sahoo T, Johnson EW, Thomas JW, Kuehl PM, Jones TL, Dokken CG, et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 1999;8:2325–33. 10.1093/hmg/8.12.2325.
    1. Gault J, Shenkar R, Recksiek P, Awad IA. Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke J Cereb Circ 2005;36:872–4. 10.1161/01.STR.0000157586.20479.fd.
    1. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 2009;18:919–30. 10.1093/hmg/ddn430.
    1. Detter MR, Snellings DA, Marchuk DA. Cerebral cavernous malformations develop through clonal expansion of mutant endothelial cells. Circ Res 2018;123:1143–51. 10.1161/CIRCRESAHA.118.313970.
    1. Malinverno M, Maderna C, Abu Taha A, Corada M, Orsenigo F, Valentino M, et al. Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat Commun 2019;10:2761. 10.1038/s41467-019-10707-x.
    1. McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S, et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 2014;23:4357–70. 10.1093/hmg/ddu153.
    1. Wei S, Li Y, Polster SP, Weber CR, Awad IA, Shen L. Cerebral cavernous malformation proteins in barrier maintenance and regulation. Int J Mol Sci 2020;21:675. 10.3390/ijms21020675.
    1. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 2009;15:177–84. 10.1038/nm.1911.
    1. Shenkar R, Peiper A, Pardo H, Moore T, Lightle R, Girard R, et al. Rho kinase inhibition blunts lesion development and hemorrhage in murine models of aggressive Pdcd10/Ccm3 disease. Stroke 2019;50:738–44. 10.1161/STROKEAHA.118.024058.
    1. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 2013;498:492–6. 10.1038/nature12207.
    1. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 2016;8:6–24. 10.15252/emmm.201505433.
    1. Girard R, Khanna O, Shenkar R, Zhang L, Wu M, Jesselson M, et al. Peripheral plasma vitamin D and non-HDL cholesterol reflect the severity of cerebral cavernous malformation disease. Biomark Med 2016;10:255–64. 10.2217/bmm.15.118.
    1. Flemming KD, Kumar S, Brown RD, Singh RJ, Whitehead K, McCreath L, et al. Cavernous malformation hemorrhagic presentation at diagnosis associated with low 25-hydroxy-vitamin D level. Cerebrovasc Dis 2020;49:216–22. 10.1159/000507789.
    1. Tang AT, Sullivan KR, Hong CC, Goddard LM, Mahadevan A, Ren A, et al. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci Transl Med 2019;11. 10.1126/scitranslmed.aaw3521.
    1. Hart BL, Taheri S, Rosenberg GA, Morrison LA. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations. Transl Stroke Res 2013;4:500–6. 10.1007/s12975-013-0285-y.
    1. Mikati AG, Tan H, Shenkar R, Li L, Zhang L, Guo X, et al. Dynamic permeability and quantitative susceptibility: related imaging biomarkers in cerebral cavernous malformations. Stroke 2014;45:598–601. 10.1161/STROKEAHA.113.003548.
    1. Zou X, Hart BL, Mabray M, Bartlett MR, Bian W, Nelson J, et al. Automated algorithm for counting microbleeds in patients with familial cerebral cavernous malformations. Neuroradiology 2017;59:685–90. 10.1007/s00234-017-1845-8.
    1. Girard R, Zeineddine HA, Koskimäki J, Fam MD, Cao Y, Shi C, et al. Plasma biomarkers of inflammation and angiogenesis predict cerebral cavernous malformation symptomatic hemorrhage or lesional growth. Circ Res 2018;122:1716–21. 10.1161/CIRCRESAHA.118.312680.
    1. Poorthuis MHF, Rinkel LA, Lammy S, Al-Shahi Salman R. Stereotactic radiosurgery for cerebral cavernous malformations: A systematic review. Neurology 2019;93:e1971–9. 10.1212/WNL.0000000000008521.
    1. Golden M, Saeidi S, Liem B, Marchand E, Morrison L, Hart B. Sensitivity of patients with familial cerebral cavernous malformations to therapeutic radiation. J Med Imaging Radiat Oncol 2015;59:134–6. 10.1111/1754-9485.12269.
    1. Awad IA, Polster SP. Cavernous angiomas: deconstructing a neurosurgical disease. J Neurosurg 2019;131:1–13. 10.3171/2019.3.JNS181724.
    1. Zuurbier SM, Hickman CR, Tolias CS, Rinkel LA, Leyrer R, Flemming KD, et al. Long-term antithrombotic therapy and risk of intracranial haemorrhage from cerebral cavernous malformations: a population-based cohort study, systematic review, and meta-analysis. Lancet Neurol 2019;18:935–41. 10.1016/S1474-4422(19)30231-5.
    1. San Millán Ruíz D, Delavelle J, Yilmaz H, Gailloud P, Piovan E, Bertramello A, et al. Parenchymal abnormalities associated with developmental venous anomalies. Neuroradiology 2007;49:987–95. 10.1007/s00234-007-0279-0.
    1. Pereira VM, Geibprasert S, Krings T, Aurboonyawat T, Ozanne A, Toulgoat F, et al. Pathomechanisms of symptomatic developmental venous anomalies. Stroke 2008;39:3201–15. 10.1161/STROKEAHA.108.521799.
    1. Silva AHD, Wijesinghe H, Lo WB, Walsh AR, Rodrigues D, Solanki GA. Paediatric developmental venous anomalies (DVAs): how often do they bleed and where? Childs Nerv Syst 2020;36:1435–43. 10.1007/s00381-019-04460-1.
    1. Linscott LL, Leach JL, Zhang B, Jones BV. Brain parenchymal signal abnormalities associated with developmental venous anomalies in children and young adults. Am J Neuroradiol 2014;35:1600–7. 10.3174/ajnr.A3960.
    1. Jung HN, Kim ST, Cha J, Kim HJ, Byun HS, Jeon P, et al. Diffusion and perfusion MRI findings of the signal-intensity abnormalities of brain associated with developmental venous anomaly. Am J Neuroradiol 2014;35:1539–42. 10.3174/ajnr.A3900.
    1. Sharma A, Zipfel GJ, Hildebolt C, Derdeyn CP. Hemodynamic effects of developmental venous anomalies with and without cavernous malfomations. Am J Neuroradiol 2013;34:1746–51. 10.3174/ajnr.A3516.
    1. Lazor JW, Schmitt JE, Loevner LA, Nabavizadeh SA. Metabolic changes of brain developmental venous anomalies on 18F-FDG-PET. Acad Radiol 2019;26:443–9. 10.1016/j.acra.2018.05.021.
    1. Soblet J, Kangas J, Nätynki M, Mendola A, Helaers R, Uebelhoer M, et al. Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J Invest Dermatol 2017;137:207–16. 10.1016/j.jid.2016.07.034.
    1. Krings T, Kim H, Power S, Nelson J, Faughnan ME, Young WL, et al. Neurovascular manifestations in hereditary hemorrhagic telangiectasia: imaging features and genotype-phenotype correlations. Am J Neuroradiol 2015;36:863–70. 10.3174/ajnr.A4210.
    1. Brinjikji W, Iyer VN, Yamaki V, Lanzino G, Cloft HJ, Thielen KR, et al. Neurovascular manifestations of hereditary hemorrhagic telangiectasia: a consecutive series of 376 patients during 15 years. Am J Neuroradiol 2016;37:1479–86. 10.3174/ajnr.A4762.
    1. Crawford PM, West CR, Chadwick DW, Shaw MD. Arteriovenous malformations of the brain: natural history in unoperated patients. J Neurol Neurosurg Psychiatry 1986;49:1–10. 10.1136/jnnp.49.1.1.
    1. Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg 1990;73:387–91. 10.3171/jns.1990.73.3.0387.
    1. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986;65:476–83. 10.3171/jns.1986.65.4.0476.
    1. Kim H, Abla AA, Nelson J, McCulloch CE, Bervini D, Morgan MK, et al. Validation of the supplemented Spetzler-Martin grading system for brain arteriovenous malformations in a multicenter cohort of 1009 surgical patients. Neurosurgery 2015;76:25–31; discussion 31–32; quiz 32–3. 10.1227/NEU.0000000000000556.
    1. Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 2000;91:66–7. 10.1002/(sici)1096-8628(20000306)91:1&lt;66::aid-ajmg12&gt;;2-p.
    1. Fulbright RK, Chaloupka JC, Putman CM, Sze GK, Merriam MM, Lee GK, et al. MR of hereditary hemorrhagic telangiectasia: prevalence and spectrum of cerebrovascular malformations. AJNR Am J Neuroradiol 1998;19:477–84.
    1. Beslow LA, Breimann J, Licht DJ, Waldman J, Fallacaro S, Pyeritz RE, et al. Cerebrovascular Malformations in a Pediatric Hereditary Hemorrhagic Telangiectasia Cohort. Pediatr Neurol 2020;110:49–54. 10.1016/j.pediatrneurol.2020.05.008.
    1. Willemse RB, Mager JJ, Westermann CJ, Overtoom TT, Mauser H, Wolbers JG. Bleeding risk of cerebrovascular malformations in hereditary hemorrhagic telangiectasia. J Neurosurg 2000;92:779–84. 10.3171/jns.2000.92.5.0779.
    1. Yang W, Liu A, Hung AL, Braileanu M, Wang JY, Caplan JM, et al. Lower risk of intracranial arteriovenous malformation hemorrhage in patients with hereditary hemorrhagic telangiectasia. Neurosurgery 2016;78:684–93. 10.1227/NEU.0000000000001103.
    1. Vella M, Alexander MD, Mabray MC, Cooke DL, Amans MR, Glastonbury CM, et al. Comparison of MRI, MRA, and DSA for detection of cerebral arteriovenous malformations in hereditary hemorrhagic telangiectasia. Am J Neuroradiol 2020;41:969–75. 10.3174/ajnr.A6549.
    1. Brinjikji W, Iyer VN, Lanzino G, Thielen KR, Wood CP. Natural history of brain capillary vascular malformations in hereditary hemorrhagic telangiectasia patients. J Neurointerventional Surg 2017;9:26–8. 10.1136/neurintsurg-2015-012252.
    1. Klostranec JM, Chen L, Mathur S, McDonald J, Faughnan ME, Ratjen F, et al. A theory for polymicrogyria and brain arteriovenous malformations in HHT. Neurology 2019;92:34–42. 10.1212/WNL.0000000000006686.
    1. Brinjikji W, Nasr DM, Cloft HJ, Iyer VN, Lanzino G. Spinal arteriovenous fistulae in patients with hereditary hemorrhagic telangiectasia: A case report and systematic review of the literature. Interv Neuroradiol J Peritherapeutic Neuroradiol Surg Proced Relat Neurosci 2016;22:354–61. 10.1177/1591019915623560.
    1. Plauchu H, de Chadarévian JP, Bideau A, Robert JM. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet 1989;32:291–7. 10.1002/ajmg.1320320302.
    1. Faughnan ME, Mager JJ, Hetts SW, Palda VA, Lang-Robertson K, Buscarini E, et al. Second International Guidelines for the Diagnosis and Management of Hereditary Hemorrhagic Telangiectasia. Ann Intern Med 2020:M20–1443. 10.7326/M20-1443.
    1. Cottin V, Plauchu H, Bayle J-Y, Barthelet M, Revel D, Cordier J-F. Pulmonary arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia. Am J Respir Crit Care Med 2004;169:994–1000. 10.1164/rccm.200310-1441OC.
    1. Velthuis S, Buscarini E, Gossage JR, Snijder RJ, Mager JJ, Post MC. Clinical implications of pulmonary shunting on saline contrast echocardiography. J Am Soc Echocardiogr 2015;28:255–63. 10.1016/j.echo.2014.12.008.
    1. Garcia-Tsao G, Korzenik JR, Young L, Henderson KJ, Jain D, Byrd B, et al. Liver disease in patients with hereditary hemorrhagic telangiectasia. N Engl J Med 2000;343:931–6. 10.1056/NEJM200009283431305.
    1. Robert F, Desroches-Castan A, Bailly S, Dupuis-Girod S, Feige J-J. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2020;15:4. 10.1186/s13023-019-1281-4.
    1. Snellings DA, Gallione CJ, Clark DS, Vozoris NT, Faughnan ME, Marchuk DA. Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia result in bi-allelic loss of ENG or ACVRL1. Am J Hum Genet 2019;105:894–906. 10.1016/j.ajhg.2019.09.010.
    1. Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, Rezai Jahromi B, et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 2018;378:250–61. 10.1056/NEJMoa1709449.
    1. Hong T, Yan Y, Li J, Radovanovic I, Ma X, Shao YW, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain J Neurol 2019;142:23–34. 10.1093/brain/awy307.
    1. Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, et al. Capillary malformation–arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 2003;73:1240–9. 10.1086/379793.
    1. Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco M, et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation 2017;136:1037–48. 10.1161/CIRCULATIONAHA.116.026886.
    1. Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 2008;29:959–65. 10.1002/humu.20746.
    1. Vivanti A, Ozanne A, Grondin C, Saliou G, Quevarec L, Maurey H, et al. Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain J Neurol 2018;141:979–88. 10.1093/brain/awy020.
    1. Wooderchak-Donahue WL, Akay G, Whitehead K, Briggs E, Stevenson DA, O’Fallon B, et al. Phenotype of CM-AVM2 caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)? Genet Med 2019;21:2007–14. 10.1038/s41436-019-0443-z.
    1. Abdel Razek AAK, Albair GA, Samir S. Clinical value of classification of venous malformations with contrast-enhanced MR Angiography. Phlebology 2017;32:628–33. 10.1177/0268355516682861.
    1. Razek AAKA, Gaballa G, Megahed AS, Elmogy E. Time resolved imaging of contrast kinetics (TRICKS) MR angiography of arteriovenous malformations of head and neck. Eur J Radiol 2013;82:1885–91. 10.1016/j.ejrad.2013.07.007.
    1. Abdel Razek AAK. Vascular neurocutaneous disorders: neurospinal and craniofacial imaging findings. Jpn J Radiol 2014;32:519–28. 10.1007/s11604-014-0345-6.
    1. Luks VL, Kamitaki N, Vivero MP, Uller W, Rab R, Bovée JVMG, et al.. Lymphatic and Other Vascular Malformative/Overgrowth Disorders Are Caused by Somatic Mutations in PIK3CA. J Pediatr 2015;166:1048–1054.e5. 10.1016/j.jpeds.2014.12.069.
    1. Abdel Razek AAK. Imaging Findings of Klippel-Trenaunay Syndrome. J Comput Assist Tomogr 2019;43:786–92. 10.1097/RCT.0000000000000895.
    1. Larson AS, Flemming KD, Lanzino G, Brinjikji W. Brain capillary telangiectasias: from normal variants to disease. Acta Neurochir (Wien) 2020;162:1101–13. 10.1007/s00701-020-04271-3.
    1. Gross BA, Puri AS, Popp AJ, Du R. Cerebral capillary telangiectasias: a meta-analysis and review of the literature. Neurosurg Rev 2013;36:187–94. 10.1007/s10143-012-0435-9.
    1. Lee RR, Becher MW, Benson ML, Rigamonti D. Brain capillary telangiectasia: MR imaging appearance and clinicohistopathologic findings. Radiology 1997;205:797–805. 10.1148/radiology.205.3.9393538.
    1. Chaudhry US, De Bruin DE, Policeni BA. Susceptibility-weighted MR imaging: a better technique in the detection of capillary telangiectasia compared with T2* gradient-echo. AJNR Am J Neuroradiol 2014;35:2302–5. 10.3174/ajnr.A4082.

Source: PubMed

3
Sottoscrivi