Relationship between Perme ICU Mobility Score and length of stay in patients after cardiac surgery

Ricardo Kenji Nawa, Tamires Daros Dos Santos, Amanda Albiero Real, Silvana Corrêa Matheus, Mauricio Tatsch Ximenes, Dannuey Machado Cardoso, Isabella Martins de Albuquerque, Ricardo Kenji Nawa, Tamires Daros Dos Santos, Amanda Albiero Real, Silvana Corrêa Matheus, Mauricio Tatsch Ximenes, Dannuey Machado Cardoso, Isabella Martins de Albuquerque

Abstract

Background: Patients undergoing cardiac surgery can experience functional impairment.

Objective: Assess the influence of Perme Score on the intensive care unit (ICU) length of stay in patients after cardiac surgery. As a secondary objective, investigate if preoperative variables can predict the patient's mobility status after surgery.

Methods: A prospective observational study was conducted in ICU in a university hospital. The mobility status (Perme Score) was collected from the first postoperative day until ICU discharge. The preoperative assessment of respiratory muscle strength, pulmonary function, and handgrip strength were collected.

Results: A total of 44 patients, mean age of 62.3 years, 28 men were included in the study. A high Perme Score on the second postoperative day among patients who underwent Coronary artery bypass grafting and the third postoperative day on three types of intervention (Coronary artery bypass grafting, valve replacement, or both simultaneously) was associated with shorter ICU length of stay). The preoperative pulmonary function was one of the main independent predictors of mobility status on the first three days of ICU stay, in addition to left ventricular ejection fraction and cardiopulmonary bypass time on the first day, age, and left ventricular ejection fraction on the second day and maximum expiratory pressure on third day.

Conclusion: An increase in mobility status (Perme Score), mainly on the third postoperative day, reduced the ICU stay, mainly influenced by preoperative pulmonary function.

Keywords: Rehabilitation; cardiac rehabilitation; muscle strength; physical function performance.

Conflict of interest statement

Conflict of interest: authors declare that they have no conflict of interest

Copyright © 2022 Colombia Medica.

Figures

Figure 1. Flowchart of the study.
Figure 1. Flowchart of the study.
Figure 2. Boxes represent median and interquartile…
Figure 2. Boxes represent median and interquartile range and the open circles represent outliers. Definition of abbreviations: D1 = first postoperative day; D2 = second postoperative day; D3 = third postoperative day; ICU = intensive care unit; Perme Score = Perme intensive care unit mobility score. *Comparison between times (days of ICU stay). **Comparison between CABG and CABG + valve replacement.
Figure 3. Association between the Perme Score…
Figure 3. Association between the Perme Score and the first three days of ICU stay, according to the surgical procedure performed. Definition of abbreviations: Day 1 = first postoperative day; Day 2 = second postoperative day; Day 3 = third postoperative day; ICU = intensive care unit. *Perme ICU mobility scores range from 0 to 32, with higher scores indicating better mobility level.
Figura 1. Diagrama de flujo del estudio.
Figura 1. Diagrama de flujo del estudio.
Figura 2. Los recuadros representan la mediana…
Figura 2. Los recuadros representan la mediana y el rango intercuartílico y los círculos abiertos representan valores atípicos. Definición de abreviaturas: D1: primer día postoperatorio; D2: segundo día postoperatorio; D3: tercer día postoperatorio; UCI: unidad de cuidados intensivos; Puntuación de Perme: puntuación de movilidad de la unidad de cuidados intensivos de Perme. *Comparación entre tiempos (días de estancia en UCI). **Comparación entre CABG y CABG + reemplazo de válvula.
Figura 3. Asociación entre el Perme Score…
Figura 3. Asociación entre el Perme Score y los tres primeros días de estancia en UTI, según el procedimiento quirúrgico realizado. Definición de abreviaturas: Día 1 = primer día postoperatorio; Día 2 = segundo día postoperatorio; Día 3 = tercer día postoperatorio; UCI = unidad de cuidados intensivos. *Los puntajes de movilidad de la UCI de Perme varían de 0 a 32, y los puntajes más altos indican un mejor nivel de movilidad.

References

    1. Melly L, Torregrossa G, Lee T, Jansens JL, Puskas JD. Fifty years of coronary artery bypass grafting. J Thorac Dis. 2018;10(3):1960–1967. doi: 10.21037/jtd.2018.02.43.
    1. Silva da GS, Colósimo FC, Sousa de AG, Piotto RF, Castilho V. Coronary artery bypass graft surgery cost coverage by the brazilian unified health system (SUS) Braz J Cardiovasc Surg. 2017;32(4):253–259. doi: 10.21470/1678-9741-2016-0069.
    1. Boujemaa H, Verboven K, Hendrikx M, Rummens JL, Frederix I, Eijnde BO. Muscle wasting after coronary artery bypass graft surgery impact on postoperative clinical status and effect of exercise-based rehabilitation. Acta Cardiol. 2020;75(5):406–410. doi: 10.1080/00015385.2019.1598035.
    1. Calles AC do N, Lira JLF, Granja KSB, Medeiro JD de, Farias AR, Cavalcanti RC. Pulmonary complications in patients undergoing coronary artery bypass grafting at a hospital in Maceio, Brazil. Fisioter Mov. 2016;29(4):661–667. doi: 10.1590/1980-5918.029.004.AO01.
    1. Roncada G, Dendale P, Linsen L, Hendrikx M, Hansen D. Reduction in pulmonary function after CABG surgery is related to postoperative inflammation and hypercortisolemia. Int J Clin Exp Med. 2015;8(7):10938–10946.
    1. Mgbemena N, Jones A, Saxena P, Ang N, Senthuran S, Leicht A. Acute changes in handgrip strength, lung function and health-related quality of life following cardiac surgery. PLoS One. 2022;17(2):e0263683. doi: 10.1371/journal.pone.0263683.
    1. Hansen D, Linsen L, Verboven K, Hendrikx M, Rummens JL, van Erum M. Magnitude of muscle wasting early after on-pump coronary artery bypass graft surgery and exploration of aetiology. Exp Physiol. 2015;100(7):818–828. doi: 10.1113/EP085053.
    1. Dimopoulos S, Raidou V, Elaiopoulos D, Chatzivasiloglou F, Markantonaki D, Lyberopoulou E. Sonographic muscle mass assessment in patients after cardiac surgery. World J Cardiol. 2020;12(7):351–361. doi: 10.4330/wjc.v12.i7.351.
    1. Parry SM, Nydahl P, Needham DM. Implementing early physical rehabilitation and mobilisation in the ICU institutional, clinician, and patient considerations. Intensive Care Med. 2018;44(4):470–473. doi: 10.1007/s00134-017-4908-8.
    1. Gatty A, Samuel SR, Alaparthi GK, Prabhu D, Upadya M, Krishnan S, et al. effectiveness of structured early mobilization protocol on mobility status of patients in medical intensive care unit. Physiother Theory Pract. 2020:1–13. doi: 10.1080/09593985.2020.1840683.
    1. Parry SM, Denehy L, Beach LJ, Berney S, Williamson HC, Granger CL. Functional outcomes in ICU - what should we be using - an observational study. Crit Care. 2015;19(1):127–127. doi: 10.1186/s13054-015-0829-5.
    1. Parry SM, Granger CL, Berney S, Jones J, Beach L, El-Ansary D. Assessment of impairment and activity limitations in the critically ill a systematic review of measurement instruments and their clinimetric properties. Intensive Care Med. 2015;41(5):744–762. doi: 10.1007/s00134-015-3672-x.
    1. Perme C, Nawa RK, Winkelman C, Masud F. A tool to assess mobility status in critically ill patients the Perme Intensive Care Unit Mobility Score. Methodist Debakey Cardiovasc J. 2014;10(1):41–49. doi: 10.14797/mdcj-10-1-41.
    1. Nawa RK, Lettvin C, Winkelman C, Evora PRB, Perme C. Initial interrater reliability for a novel measure of patient mobility in a cardiovascular intensive care unit. J Crit Care. 2014;29(3):475–475. doi: 10.1016/j.jcrc.2014.01.019.
    1. Pereira CS, Carvalho de AT, Bosco AD, Forgiarini LA., Júnior The Perme scale score as a predictor of functional status and complications after discharge from the intensive care unit in patients undergoing liver transplantation. Rev Bras Ter Intensiva. 2019;31(1):57–62. doi: 10.5935/0103-507X.20190016.
    1. Ceron C, Otto D, Signorini AV, Beck MC, Camilis M, Sganzerla D. The Effect of Speaking Valves on ICU Mobility of Individuals With Tracheostomy. Respir Care. 2020;65(2):144–149. doi: 10.4187/respcare.06768.
    1. Timenetsky KT, Serpa A, Neto, Lazarin AC, Pardini A, Moreira CRS, Corrêa TD. The Perme Mobility Index A new concept to assess mobility level in patients with coronavirus (COVID-19) infection. PLoS One. 2021;16(4):e0250180. doi: 10.1371/journal.pone.0250180.
    1. Milton A, Schandl A, Soliman I, Joelsson-Alm E. van den Boogaard M.Wallin E ICU discharge screening for prediction of new-onset physical disability-A multinational cohort study. Acta Anaesthesiol Scand. 2020;64(6):789–797. doi: 10.1111/aas.13563.
    1. Riegel B, Huang L, Mikkelsen ME, Kutney-Lee A, Hanlon AL, Murtaugh CM. Early Post-Intensive Care Syndrome among Older Adult Sepsis Survivors Receiving Home Care. J Am Geriatr Soc. 2019;67(3):520–526. doi: 10.1111/jgs.15691.
    1. Wong WT, Lai VK, Chee YE, Lee A. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst Rev. 2016;9:CD003587–CD003587. doi: 10.1002/14651858.CD003587.pub3.
    1. Guest JF, Keating T, Gould D, Wigglesworth N. Modelling the annual NHS costs and outcomes attributable to healthcare-associated infections in England. BMJ Open. 2020;10(1):e033367. doi: 10.1136/bmjopen-2019-033367.
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement guidelines for reporting observational studies. PLoS Med. 2007;4(10):e296. doi: 10.1371/journal.pmed.0040296.
    1. American Thoracic Society/European Respiratory Society ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518–624. doi: 10.1164/rccm.166.4.518.
    1. Pessoa IMBS, Houri M, Neto, Montemezzo D, Silva LAM, Andrade ADD, Parreira VF. Predictive equations for respiratory muscle strength according to international and Brazilian guidelines. Braz J Phys Ther. 2014;18(5):410–418. doi: 10.1590/bjpt-rbf.2014.0044.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. Pereira CA de C.Sato T.Rodrigues SC New reference values for forced spirometry in white adults in Brazil. J Bras Pneumol. 2007;33(4):397–406. doi: 10.1590/s1806-37132007000400008.
    1. Richards LG, Olson B, Palmiter-Thomas P. How forearm position affects grip strength. Am J Occup Ther. 1996;50(2):133–138. doi: 10.5014/ajot.50.2.133.
    1. Novaes RD, de Miranda AS. de Oliveira Silva J.Tavares BVF.Dourado VZ Equações de referência para a predição da força de preensão manual em brasileiros de meia idade e idosos. Fisioterapia e Pesquisa. 2009;16:217–222. doi: 10.1590/s1809-29502009000300005.
    1. Winkelmann ER, Dallazen F, Bronzatti ABS, Lorenzoni JCW, Windmöller P. Analysis of steps adapted protocol in cardiac rehabilitation in the hospital phase. Rev Bras Cir Cardiovasc. 2015;30(1):40–48. doi: 10.5935/1678-9741.20140048.
    1. Witz K, Hinkle DE, Wiersma W, Jurs SG. Applied statistics for the behavioral sciences. J Educ Stat. 1990;15(1):84–84. doi: 10.2307/1164825.
    1. Morimoto Y, Matsuo T, Yano Y, Fukushima T, Eishi K, Kozu R. Impact of sarcopenia on the progress of cardiac rehabilitation and discharge destination after cardiovascular surgery. J Phys Therapy Sci. 2021;33(3):213–221. doi: 10.1589/jpts.33.213.
    1. Itagaki A, Saitoh M, Okamura D, Kawamura T, Otsuka S, Tahara M. Factors related to physical functioning decline after cardiac surgery in older patients A multicenter retrospective study. J Cardiol. 2019;74(3):279–283. doi: 10.1016/j.jjcc.2019.02.020.
    1. Parry SM, Huang M, Needham DM. Evaluating physical functioning in critical care considerations for clinical practice and research. Crit Care. 2017;21(1):249–249. doi: 10.1186/s13054-017-1827-6.
    1. Jacob P, Gupta P, Shiju S, Omar AS, Ansari S, Mathew G, et al. Multidisciplinary, early mobility approach to enhance functional independence in patients admitted to a cardiothoracic intensive care unit: a quality improvement programme. BMJ Open Qual. 2021;10(3):10.1136/bmjoq–102020-001256.
    1. Wu J, Cong X, Lou Z, Zhang M. Trend and Impact of Concomitant CABG and Multiple-Valve Procedure on In-hospital Outcomes of SAVR Patients. Front Cardiovasc Med. 2021;8:740084–740084. doi: 10.3389/fcvm.2021.740084.
    1. Kanejima Y, Shimogai T, Kitamura M, Ishihara K, Izawa KP. Effect of Early Mobilization on Physical Function in Patients after Cardiac Surgery: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2020;17(19) doi: 10.3390/ijerph17197091.
    1. Zang K, Chen B, Wang M, Chen D, Hui L, Guo S, et al. The effect of early mobilization in critically ill patients: A meta-analysis. Nurs Crit Care. 2020;25(6):360–367. doi: 10.1111/nicc.1245537.
    1. Wilches Luna EC, de Oliveira AS, Perme C, Gastaldi AC. Spanish version of the Perme Intensive Care Unit Mobility Score: Minimal detectable change and responsiveness. Physiother Res Int. 2021;26(1):e1875. doi: 10.1002/pri.1875.
    1. Evans J, Kobewka D, Thavorn K, D’Egidio G, Rosenberg E, Kyeremanteng K. The impact of reducing intensive care unit length of stay on hospital costs: evidence from a tertiary care hospital in Canada. Can J Anaesth. 2018;65(6):627–635. doi: 10.1007/s12630-018-1087-1.
    1. Kahn JM, Rubenfeld GD, Rohrbach J, Fuchs BD. Cost savings attributable to reductions in intensive care unit length of stay for mechanically ventilated patients. Med Care. 2008;46(12):1226–1233. doi: 10.1097/MLR.0b013e31817d9342.
    1. Ferreira GB, Donadello JCS, Mulinari LA. Healthcare-Associated Infections in a Cardiac Surgery Service in Brazil. Braz J Cardiovasc Surg. 2020;35(5):614–618. doi: 10.21470/1678-9741-2019-0284.
    1. Mazzeffi M, Gammie J, Taylor B, Cardillo S, Haldane-Lutterodt N, Amoroso A, et al. Healthcare-Associated Infections in Cardiac Surgery Patients With Prolonged Intensive Care Unit Stay. Ann Thorac Surg. 2017;103(4):1165–1170. doi: 10.1016/j.athoracsur.2016.12.041.
    1. Kasotakis G, Schmidt U, Perry D, Grosse-Sundrup M, Benjamin J, Ryan C, et al. The surgical intensive care unit optimal mobility score predicts mortality and length of stay. Crit Care Med. 2012;40(4):1122–1128. doi: 10.1097/CCM.0b013e3182376e6d.
    1. Herridge MS, Chu LM, Matte A, Tomlinson G, Chan L, Thomas C, et al. The RECOVER Program: Disability Risk Groups and 1-Year Outcome after 7 or More Days of Mechanical Ventilation. Am J Respir Crit Care Med. 2016;194(7):831–844. doi: 10.1164/rccm.201512-2343OC.
    1. Iwashyna TJ. Trajectories of recovery and dysfunction after acute illness, with implications for clinical trial design. Am J Respir Crit Care Med. 2012;186(4):302–304. doi: 10.1164/rccm.201206-1138ED.
    1. Iwashyna TJ, Hodgson CL, Pilcher D, Bailey M, van Lint A, Chavan S, et al. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study. Lancet Respir Med. 2016;4(7):566–573. doi: 10.1016/S2213-2600(16)30098-4.
    1. Tse L, Bowering JB, Schwarz SKW, Moore RL, Sztramko R, Barr AM. Incidence and risk factors for impaired mobility in older cardiac surgery patients during the early postoperative period. Geriatr Gerontol Int. 2015;15(3):276–281. doi: 10.1111/ggi.12269.
    1. Kuwata T, Shibasaki I, Ogata K, Ogawa H, Takei Y, Seki M, et al. Lung-diffusing capacity for carbon monoxide predicts early complications after cardiac surgery. Surg Today. 2019;49(7):571–579. doi: 10.1007/s00595-019-1770-z.
    1. Winkelmann ER, Steffens É, Windmöller P, Fontela PC, da Cruz DT, Battisti IDE. Preoperative expiratory and inspiratory muscle weakness to predict postoperative outcomes in patients undergoing elective cardiac surgery. J Card Surg. 2020;35(1):128–134. doi: 10.1111/jocs.14355.
    1. Rodrigues A, Da Silva ML, Berton DC, Cipriano GJr, Pitta F, O'Donnell DE, et al. Maximal Inspiratory Pressure: Does the Choice of Reference Values Actually Matter? Chest. 2017;152(1):32–39. doi: 10.1016/j.chest.2016.11.045.
    1. Risom EC, Buggeskov KB, Mogensen UB, Sundskard M, Mortensen J, Ravn HB. Preoperative pulmonary function in all comers for cardiac surgery predicts mortality. Interact Cardiovasc Thorac Surg. 2019 doi: 10.1093/icvts/ivz049.
    1. Şimşek T, Şimşek HU, Cantürk NZ. Response to trauma and metabolic changes: posttraumatic metabolism. Ulus Cerrahi Derg. 2014;30(3):153–159. doi: 10.5152/UCD.2014.2653.
    1. Santos KMS, Cerqueira NML, Carvalho VO, Santana FVJ, Silva JWM, Araújo FAA, et al. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study. Rev Bras Cir Cardiovasc. 2014;29(3):355–359. doi: 10.5935/1678-9741.20140043.
    1. Iida Y, Yamazaki T, Arima H, Kawabe T, Yamada S. Predictors of surgery-induced muscle proteolysis in patients undergoing cardiac surgery. J Cardiol. 2016;68(6):536–541. doi: 10.1016/j.jjcc.2015.11.011.
    1. Madhavan S, Chan SP, Tan WC, Eng J, Li B, Luo HD, et al. Cardiopulmonary bypass time: every minute counts. J Cardiovasc Surg. 2018;59(2):274–281. doi: 10.23736/S0021-9509.17.09864-0.
    1. Sumin AN, Oleinik PA, Bezdenezhnykh AV, Bezdenezhnykh NA. Factors Determining the Functional State of Cardiac Surgery Patients with Complicated Postoperative Period. Int J Environ Res Public Health. 2022;19(7) doi: 10.3390/ijerph19074329.
    1. Kim GR, Sun J, Han M, Park S, Nam CM. Impact of handgrip strength on cardiovascular, cancer and all-cause mortality in the Korean longitudinal study of ageing. BMJ Open. 2019;9(5):e027019. doi: 10.1136/bmjopen-2018-027019.
    1. Larcher B, Zanolin-Purin D, Vonbank A, Heinzle CF, Mader A, Sternbauer S, et al. Usefulness of Handgrip Strength to Predict Mortality in Patients With Coronary Artery Disease. Am J Cardiol. 2020;129:5–9. doi: 10.1016/j.amjcard.2020.05.006.
    1. Perry IS, Pinto LC, da Silva TK, Vieira SRR, Souza GC. Handgrip Strength in Preoperative Elective Cardiac Surgery Patients and Association With Body Composition and Surgical Risk. Nutr Clin Pract. 2019;34(5):760–766. doi: 10.1002/ncp.10267.

Source: PubMed

3
Sottoscrivi