Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science

Katleen Van Steendam, Marlies De Ceuleneer, Maarten Dhaenens, David Van Hoofstat, Dieter Deforce, Katleen Van Steendam, Marlies De Ceuleneer, Maarten Dhaenens, David Van Hoofstat, Dieter Deforce

Abstract

In forensic casework analysis, identification of the biological matrix and the species of a forensic trace, preferably without loss of DNA, is of major importance. The biological matrices that can be encountered in a forensic context are blood (human or non-human), saliva, semen, vaginal fluid, and to a lesser extent nasal secretions, feces, and urine. All these matrices were applied on swabs and digested with trypsin in order to obtain peptides. These peptides were injected on a mass spectrometer (ESI Q-TOF) resulting in the detection of several biomarkers that were used to build a decision tree for matrix identification. Saliva and blood were characterized by the presence of alpha-amylase 1 and hemoglobin, respectively. In vaginal fluid, cornulin, cornifin, and/or involucrin were found as biomarkers while semenogelin, prostate-specific antigen, and/or acid phosphatase were characteristic proteins for semen. Uromodulin or AMBP protein imply the presence of urine, while plunc protein is present in nasal secretions. Feces could be determined by the presence of immunoglobulins without hemoglobin. The biomarkers for the most frequently encountered biological matrices (saliva, blood, vaginal fluid, and semen) were validated in blind experiments and on real forensic samples. Additionally, by means of this proteomic approach, species identification was possible. This approach has the advantage that the analysis is performed on the first "washing" step of the chelex DNA extraction, a solution which is normally discarded, and that one single test is sufficient to determine the identity and the species of the biological matrix, while the conventional methods require cascade testing. This technique can be considered as a useful additional tool for biological matrix identification in forensic science and holds the promise of further automation.

Figures

Fig. 1
Fig. 1
Workflow for mass spectrometric identification of biological matrices
Fig. 2
Fig. 2
Decision tree with biomarkers per biological matrix. *The absence of the biomarker (uromodulin/AMBP protein or immunoglobulins) does not necessarily exclude the presence of the matrix (urine or feces, respectively)

References

    1. Tobe SS, Watson N, Daeid NN. Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA. J Forensic Sci. 2007;52(1):102–109. doi: 10.1111/j.1556-4029.2006.00324.x.
    1. Webb JL, Creamer JI, Quickenden TI. A comparison of the presumptive luminol test for blood with four non-chemiluminescent forensic techniques. Luminescence. 2006;21(4):214–220. doi: 10.1002/bio.908.
    1. Allery JP, Telmon N, Blanc A, Mieusset R, Rouge D. Rapid detection of sperm: comparison of two methods. J Clin Forensic Med. 2003;10(1):5–7. doi: 10.1016/S1353-1131(02)00158-X.
    1. Pang BCM, Cheung BKK. Identification of human semenogelin in membrane strip test as an alternative method for the detection of semen. Forensic Sci Int. 2007;169(1):27–31. doi: 10.1016/j.forsciint.2006.07.021.
    1. Khaldi N, Miras A, Botti K, Benali L, Gromb S. Evaluation of three rapid detection methods for the forensic identification of seminal fluid in rape cases. J Forensic Sci. 2004;49(4):749–753. doi: 10.1520/JFS2003317.
    1. Bjartell A, Malm J, Moller C, Gunnarsson M, Lundwall A, Lilja H. Distribution and tissue expression of semenogelin I and II in man as demonstrated by in situ hybridization and immunocytochemistry. J Androl. 1996;17(1):17–26.
    1. Robert M, Gagnon C. Semenogelin I: a coagulum forming, multifunctional seminal vesicle protein. Cell Mol Life Sci. 1999;55(6–7):944–960. doi: 10.1007/s000180050346.
    1. Hedman J, Gustavsson K, Ansell R. Using the new Phadebas® Forensic Press test to find crime scene saliva stains suitable for DNA analysis. Forensic Sci Int Genet Supplement Ser. 2008;1:430–432. doi: 10.1016/j.fsigss.2007.10.205.
    1. Quarino L, Dang Q, Hartmann J, Moynihan N. An ELISA method for the identification of salivary amylase. J Forensic Sci. 2005;50(4):873–876. doi: 10.1520/JFS2004417.
    1. Merritt AD, Rivas ML, Bixler D, Newell R. Salivary and pancreatic amylase: electrophoretic characterizations and genetic studies. Am J Hum Genet. 1973;25(5):510–522.
    1. Myers JR, Adkins WK. Comparison of modern techniques for saliva screening. J Forensic Sci. 2008;53(4):862–867. doi: 10.1111/j.1556-4029.2008.00755.x.
    1. Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int. 2009;188(1–3):1–17. doi: 10.1016/j.forsciint.2009.02.013.
    1. Owen GW, Smalldon KW. Blood and semen stains on outer clothing and shoes not related to crime: report of a survey using presumptive tests. J Forensic Sci. 1975;20(2):391–403.
    1. De Wael K, Lepot L, Gason F, Gilbert B. In search of blood—detection of minute particles using spectroscopic methods. Forensic Sci Int. 2008;180(1):37–42. doi: 10.1016/j.forsciint.2008.06.013.
    1. Juusola J, Ballantyne J. mRNA profiling for body fluid identification by multiplex quantitative RT–PCR. J Forensic Sci. 2007;52(6):1252–1262.
    1. Johnston E, Ames CE, Dagnall KE, Foster J, Daniel BE. Comparison of presumptive blood test kits including hexagon OBTI. J Forensic Sci. 2008;53(3):687–689. doi: 10.1111/j.1556-4029.2008.00727.x.
    1. Deforce DL, Millecamps RE, Van Hoofstat D, Van den Eeckhout EG. Comparison of slab gel electrophoresis and capillary electrophoresis for the detection of the fluorescently labeled polymerase chain reaction products of short tandem repeat fragments. J Chromatogr A. 1998;806(1):149–155. doi: 10.1016/S0021-9673(97)00394-4.
    1. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>;2-2.
    1. Levine RL, Mosoni L, Berlett BS, Stadtman ER. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996;93(26):15036–15040. doi: 10.1073/pnas.93.26.15036.
    1. Robinson NE, Robinson AB. Molecular clocks: deamidation of asparaginyl and glutaminyl residues in peptides and proteins. Cave Junction: Althouse; 2004.
    1. Graves PR, Haystead TA. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002;66(1):39–63. doi: 10.1128/MMBR.66.1.39-63.2002.
    1. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312(5771):212–217. doi: 10.1126/science.1124619.
    1. Wild BJ, Green BN, Cooper EK, Lalloz MR, Erten S, Stephens AD, Layton DM. Rapid identification of hemoglobin variants by electrospray ionization mass spectrometry. Blood Cells Mol Dis. 2001;27(3):691–704. doi: 10.1006/bcmd.2001.0430.
    1. Espinoza EO, Lindley NC, Gordon KM, Ekhoff JA, Kirms MA. Electrospray ionization mass spectrometric analysis of blood for differentiation of species. Anal Biochem. 1999;268(2):252–261. doi: 10.1006/abio.1998.3048.
    1. Campos MA, Abreu AR, Nlend MC, Cobas MA, Conner GE, Whitney PL. Purification and characterization of PLUNC from human tracheobronchial secretions. Am J Respir Cell Mol Biol. 2004;30(2):184–192. doi: 10.1165/rcmb.2003-0142OC.
    1. Lindahl M, Stahlbom B, Tagesson C. Identification of a new potential airway irritation marker, palate lung nasal epithelial clone protein, in human nasal lavage fluid with two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight. Electrophoresis. 2001;22(9):1795–1800. doi: 10.1002/1522-2683(200105)22:9<1795::AID-ELPS1795>;2-J.
    1. Sun W, Li F, Wu S, Wang X, Zheng D, Wang J, Gao Y. Human urine proteome analysis by three separation approaches. Proteomics. 2005;5(18):4994–5001. doi: 10.1002/pmic.200401334.
    1. Schmid M, Prajczer S, Gruber LN, Bertocchi C, Gandini R, Pfaller W, Jennings P, Joannidis M. Uromodulin facilitates neutrophil migration across renal epithelial monolayers. Cell Physiol Biochem. 2010;26(3):311–318. doi: 10.1159/000320554.
    1. Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 2006;7(9):R80. doi: 10.1186/gb-2006-7-9-r80.
    1. Serafini-Cessi F, Malagolini N, Cavallone D. Tamm–Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis. 2003;42(4):658–676. doi: 10.1016/S0272-6386(03)00829-1.
    1. Wimmer T, Cohen G, Saemann MD, Horl WH. Effects of Tamm–Horsfall protein on polymorphonuclear leukocyte function. Nephrol Dial Transplant. 2004;19(9):2192–2197. doi: 10.1093/ndt/gfh206.
    1. Lin S, Lin Z, Yao G, Deng C, Yang P, Zhang X. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Rapid Commun Mass Spectrom. 2007;21(23):3910–3918. doi: 10.1002/rcm.3283.
    1. Wang N, Li L. Reproducible microwave-assisted acid hydrolysis of proteins using a household microwave oven and its combination with LC–ESI MS/MS for mapping protein sequences and modifications. J Am Soc Mass Spectrom. 2010;21(9):1573–1587. doi: 10.1016/j.jasms.2010.04.014.
    1. Meng Z, Veenstra TD. Targeted mass spectrometry approaches for protein biomarker verification. J Proteomics. 2011;74(12):2650–2659. doi: 10.1016/j.jprot.2011.04.011.
    1. Seraglia R, Teatino A, Traldi P. MALDI mass spectrometry in the solution of some forensic problems. Forensic Sci Int. 2004;146(Suppl):S83–S85. doi: 10.1016/j.forsciint.2004.09.031.
    1. Maurer HH. Current role of liquid chromatography-mass spectrometry in clinical and forensic toxicology. Anal Bioanal Chem. 2007;388(7):1315–1325. doi: 10.1007/s00216-007-1248-5.
    1. Maurer HH. Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography–single stage or tandem mass spectrometry (LC–MS or LC–MS/MS) relevant to clinical and forensic toxicology. Clin Biochem. 2005;38(4):310–318. doi: 10.1016/j.clinbiochem.2005.01.014.
    1. Benson S, Lennard C, Maynard P, Roux C. Forensic applications of isotope ratio mass spectrometry—a review. Forensic Sci Int. 2006;157(1):1–22. doi: 10.1016/j.forsciint.2005.03.012.
    1. Hofstadler SA, Sannes-Lowery KA, Hannis JC. Analysis of nucleic acids by FTICR MS. Mass Spectrom Rev. 2005;24(2):265–285. doi: 10.1002/mas.20016.
    1. Oberacher H, Parson W. Forensic DNA fingerprinting by liquid chromatography–electrospray ionization mass spectrometry. Biotechniques. 2007;43(4):vii–xiii. doi: 10.2144/000112581.
    1. Oberacher H, Niederstatter H, Parson W. Liquid chromatography–electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms. Int J Legal Med. 2007;121(1):57–67. doi: 10.1007/s00414-006-0117-7.
    1. Richard ML, Harper KA, Craig RL, Onorato AJ, Robertson JM, Donfack J (2011) Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. Forensic Sci Int Genet. doi:10.1016/j.fsigen.2011.09.007
    1. Juusola J, Ballantyne J. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int. 2003;135(2):85–96. doi: 10.1016/S0379-0738(03)00197-X.
    1. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995;59(3):423–450.
    1. Setzer M, Juusola J, Ballantyne J. Recovery and stability of RNA in vaginal swabs and blood, semen, and saliva stains. J Forensic Sci. 2008;53(2):296–305. doi: 10.1111/j.1556-4029.2007.00652.x.
    1. Courts C, Madea B. Micro-RNA—a potential for forensic science? Forensic Sci Int. 2010;203(1–3):106–111. doi: 10.1016/j.forsciint.2010.07.002.
    1. Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT–PCR confirmation. Int J Legal Med. 2010;124(3):217–226. doi: 10.1007/s00414-009-0402-3.
    1. Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387(2):303–314. doi: 10.1016/j.ab.2009.01.037.
    1. Frumkin D, Wasserstrom A, Budowle B, Davidson A. DNA methylation-based forensic tissue identification. Forensic Sci Int Genet. 2011;5(5):517–524. doi: 10.1016/j.fsigen.2010.12.001.
    1. Frumkin D, Wasserstrom A, Davidson A, Grafit A. Authentication of forensic DNA samples. Forensic Sci Int-Gen. 2010;4(2):95–103. doi: 10.1016/j.fsigen.2009.06.009.
    1. Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci Int. 2000;112(1):17–40. doi: 10.1016/S0379-0738(00)00158-4.
    1. Fremout W, Dhaenens M, Saverwyns S, Sanyova J, Vandenabeele P, Deforce D, Moens L. Tryptic peptide analysis of protein binders in works of art by liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 2010;658(2):156–162. doi: 10.1016/j.aca.2009.11.010.
    1. Virkler K, Lednev IK. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci Int. 2008;181(1–3):E1–E5. doi: 10.1016/j.forsciint.2008.08.004.

Source: PubMed

3
Sottoscrivi