Randomized clinical trial on the clinical effects of a toothpaste containing extra virgin olive oil, xylitol, and betaine in gingivitis

Alejandro Rodríguez-Agurto, Manuel Bravo, Antonio Magán-Fernandez, Ana López-Toruño, Ricardo Muñoz, Joaquín Ferrer, Francisco Mesa, Alejandro Rodríguez-Agurto, Manuel Bravo, Antonio Magán-Fernandez, Ana López-Toruño, Ricardo Muñoz, Joaquín Ferrer, Francisco Mesa

Abstract

To determine the effects on gingival bleeding, dental biofilm, and salivary flow and pH in patients with gingivitis of using toothpaste with extra-virgin olive oil (EVOO), xylitol, and betaine in comparison to a placebo or commercial toothpaste. This controlled, double blinded, and multicenter randomized clinical trial included patients with gingivitis randomly assigned to one of three groups: test group (EVOO, xylitol, and betaine toothpaste), control group 1 (placebo toothpaste), or control group 2 (commercial toothpaste). Percentage supragingival biofilm and gingival bleeding were evaluated at baseline (T0), 2 months (T2), and 4 months (T4), measuring non-stimulated salivary flow and salivary pH. Comparisons were performed between and within groups. The final study sample comprised 20 in the test group, 21 in control group 1, and 20 in control group 2. In comparison to control group 1, the test group showed significantly greater decreases in gingival bleeding between T4 and T0 (p = 0.02) and in biofilm between T2 and T0 (p = 0.02) and between T4 and T0 (p = 0.01). In the test group, salivary flow significantly increased between T2 and T0 (p = 0.01), while pH alkalization was significantly greater between T4 and T0 versus control group 2 (p = 0.01) and close-to-significantly greater versus control group 1 (p = 0.06). The toothpaste with EVOO, xylitol, and betaine obtained the best outcomes in patients with gingivitis, who showed reductions in gingival bleeding and supragingival biofilm and an increase in pH at 4 months in comparison to a commercial toothpaste.

Conflict of interest statement

The authors declare no competing interests.

© 2023. The Author(s).

Figures

Figure 1
Figure 1
CONSORT flow diagram showing the enrolment, allocation, follow-up, and analysis of the participants in the study.

References

    1. Dewhirst FE, et al. The human oral microbiome. J. Bacteriol. 2010;192:5002–5017. doi: 10.1128/JB.00542-10.
    1. Wade WG. The oral microbiome in health and disease. Pharmacol. Res. 2013;69:137–143. doi: 10.1016/j.phrs.2012.11.006.
    1. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018;16:745–759. doi: 10.1038/s41579-018-0089-x.
    1. Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 2019;23:122–128. doi: 10.4103/jomfp.JOMFP_304_18.
    1. Abusleme L, Hoare A, Hong BY, Diaz PI. Microbial signatures of health, gingivitis, and periodontitis. Periodontol. 2021;2000(86):57–78. doi: 10.1111/prd.12362.
    1. Trombelli L, Farina R, Silva CO, Tatakis DN. Plaque-induced gingivitis: Case definition and diagnostic considerations. J. Periodontol. 2018;89(Suppl 1):S46–S73. doi: 10.1002/JPER.17-0576.
    1. Seethalakshmi C, Reddy RC, Asifa N, Prabhu S. Correlation of salivary pH, incidence of dental caries and periodontal status in diabetes mellitus patients: A cross-sectional study. J. Clin. Diagn. Res. 2016;10:12–14. doi: 10.7860/JCDR/2016/16310.7351.
    1. Kubala E, et al. A review of selected studies that determine the physical and chemical properties of saliva in the field of dental treatment. Biomed. Res. Int. 2018;2018:6572381. doi: 10.1155/2018/6572381.
    1. Laleman I, Teughels W. Novel natural product-based oral topical rinses and toothpastes to prevent periodontal diseases. Periodontol. 2020;2000(84):102–123. doi: 10.1111/prd.12339.
    1. Dhingra K. Aloe vera herbal dentifrices for plaque and gingivitis control: A systematic review. Oral Dis. 2014;20:254–267. doi: 10.1111/odi.12113.
    1. Ship JA, McCutcheon JA, Spivakovsky S, Kerr AR. Safety and effectiveness of topical dry mouth products containing olive oil, betaine, and xylitol in reducing xerostomia for polypharmacy-induced dry mouth. J. Oral Rehabil. 2007;34:724–732. doi: 10.1111/j.1365-2842.2006.01718.x.
    1. Pretty IA, Gallagher MJ, Martin MV, Edgar WM, Higham SM. A study to assess the effects of a new detergent-free, olive oil formulation dentifrice in vitro and in vivo. J. Dent. 2003;31:327–332. doi: 10.1016/s0300-5712(03)00052-6.
    1. Romani A, et al. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients. 2019 doi: 10.3390/nu11081776.
    1. Scotece M, et al. Further evidence for the anti-inflammatory activity of oleocanthal: Inhibition of MIP-1alpha and IL-6 in J774 macrophages and in ATDC5 chondrocytes. Life Sci. 2012;91:1229–1235. doi: 10.1016/j.lfs.2012.09.012.
    1. Bertelli M, et al. Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol. 2020;309:29–33. doi: 10.1016/j.jbiotec.2019.12.016.
    1. Beauchamp GK, et al. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature. 2005;437:45–46. doi: 10.1038/437045a.
    1. Lozano-Castellon J, et al. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit. Rev. Food Sci. Nutr. 2020;60:2532–2548. doi: 10.1080/10408398.2019.1650715.
    1. Alagna F, et al. Olive phenolic compounds: Metabolic and transcriptional profiling during fruit development. BMC Plant Biol. 2012;12:162. doi: 10.1186/1471-2229-12-162.
    1. Czerwińska M, Kiss AK, Naruszewicz M. A comparison of antioxidant activities of oleuropein and its dialdehydic derivative from olive oil, oleacein. Food Chem. 2012;131:940–947. doi: 10.1016/j.foodchem.2011.09.082.
    1. Sindona G, et al. Anti-inflammatory effect of 3,4-DHPEA-EDA [2-(3,4 -hydroxyphenyl) ethyl (3S, 4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] on primary human vascular endothelial cells. Curr. Med. Chem. 2012;19:4006–4013. doi: 10.2174/092986712802002536.
    1. Filipek A, Czerwinska ME, Kiss AK, Wrzosek M, Naruszewicz M. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression. Phytomedicine. 2015;22:1255–1261. doi: 10.1016/j.phymed.2015.10.005.
    1. Han SJ, et al. Xylitol inhibits inflammatory cytokine expression induced by lipopolysaccharide from Porphyromonas gingivalis. Clin. Diagn. Lab. Immunol. 2005;12:1285–1291. doi: 10.1128/CDLI.12.11.1285-1291.2005.
    1. Golestannejad Z, et al. Inhibitory effects of ethanolic, methanolic, and hydroalcoholic extracts of olive (Olea europaea) leaf on growth, acid production, and adhesion of Streptococcus mutans. Dent. Res. J. 2020;17:179–185. doi: 10.4103/1735-3327.284730.
    1. Karygianni L, et al. Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth. BMC Complement Altern. Med. 2019;19:51. doi: 10.1186/s12906-019-2461-4.
    1. Talib HJ, Mousa HA, Mahmood AA. Assessment of the plaque-induced gingivitis patient with and without hyaluronic acid and xylitol toothpaste. J. Int. Soc. Prev. Community Dent. 2021;11:138–143. doi: 10.4103/jispcd.JISPCD_371_20.
    1. Burt BA. The use of sorbitol- and xylitol-sweetened chewing gum in caries control. J. Am. Dent. Assoc. 2006;137:190–196. doi: 10.14219/jada.archive.2006.0144.
    1. GasmiBenahmed A, et al. Health benefits of xylitol. Appl. Microbiol. Biotechnol. 2020;104:7225–7237. doi: 10.1007/s00253-020-10708-7.
    1. Go EK, Jung KJ, Kim JY, Yu BP, Chung HY. Betaine suppresses proinflammatory signaling during aging: The involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinases. J. Gerontol. A Biol. Sci. Med. Sci. 2005;60:1252–1264. doi: 10.1093/gerona/60.10.1252.
    1. Lee EK, et al. Betaine attenuates lysophosphatidylcholine-mediated adhesion molecules in aged rat aorta: Modulation of the nuclear factor-kappaB pathway. Exp. Gerontol. 2013;48:517–524. doi: 10.1016/j.exger.2013.02.024.
    1. Koppolu P, et al. Correlation of blood and salivary pH levels in healthy, gingivitis, and periodontitis patients before and after non-surgical periodontal therapy. Diagnostics. 2022 doi: 10.3390/diagnostics12010097.
    1. Menkin V. Biology of inflammation; chemical mediators and cellular injury. Science. 1956;123:527–534. doi: 10.1126/science.123.3196.527.
    1. Rajamaki K, et al. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J. Biol. Chem. 2013;288:13410–13419. doi: 10.1074/jbc.M112.426254.
    1. Lazureanu PC, et al. Saliva pH and flow rate in patients with periodontal disease and associated cardiovascular disease. Med. Sci. Monit. 2021;27:e931362. doi: 10.12659/MSM.931362.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. J. Clin. Epidemiol. 2010;63:834–840. doi: 10.1016/j.jclinepi.2010.02.005.
    1. Seriwatanachai D, et al. Effect of stannous fluoride and zinc phosphate dentifrice on dental plaque and gingivitis: A randomized clinical trial with 6-month follow-up. J. Am. Dent. Assoc. 2019;150:S25–S31. doi: 10.1016/j.adaj.2019.01.003.
    1. Tonetti MS. The future of periodontology: New treatments for a new era. J. Int. Acad. Periodontol. 2002;4:110–114.
    1. Ainamo J, Bay I. Problems and proposals for recording gingivitis and plaque. Int. Dent. J. 1975;25:229–235.
    1. Navazesh M. Methods for collecting saliva. Ann. N. Y. Acad. Sci. 1993;694:72–77. doi: 10.1111/j.1749-6632.1993.tb18343.x.
    1. Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2. Lawrence Erlbaum Associates; 1988.

Source: PubMed

3
Sottoscrivi