Bi-directional prospective associations between objectively measured physical activity and fundamental motor skills in children: a two-year follow-up

Ada Kristine Ofrim Nilsen, Sigmund Alfred Anderssen, Kjersti Johannessen, Katrine Nyvoll Aadland, Einar Ylvisaaker, Jan Morten Loftesnes, Eivind Aadland, Ada Kristine Ofrim Nilsen, Sigmund Alfred Anderssen, Kjersti Johannessen, Katrine Nyvoll Aadland, Einar Ylvisaaker, Jan Morten Loftesnes, Eivind Aadland

Abstract

Background: The direction of the longitudinal relationship between physical activity (PA) and fundamental motor skills (FMS) remains unclear. We evaluated the bi-directional, prospective relationships between intensity-specific physical activity (PA) and domain-specific fundamental motor skills (FMS) over 2 years in children attending preschool at baseline.

Methods: A sample of 230 children (mean age at baseline 4.7 yr, 52% boys) from the 'Sogn og Fjordane Preschool Physical Activity Study' was measured 2 years apart. PA was assessed using ActiGraph accelerometers (GT3X+). FMS were evaluated by a test battery guided by the 'Test of Gross Motor Development 3' and the 'Preschooler Gross Motor Quality Scale'. PA outcomes were total PA (TPA [counts per minute]) and intensity specific PA and sedentary behaviour (SED) (min/day). FMS outcomes were locomotor, object control, and balance skills. Linear mixed model adjusting for potential co-variates was used to evaluate the bi-directional prospective associations between these variables, including the moderating effect of sex and age.

Results: Baseline total PA, moderate-to-vigorous PA (MVPA), and vigorous PA predicted higher locomotor, object control, and balance skills at follow-up (standardized regression coefficient (β): 0.17 to 0.26, p = 0.002-0.017). Baseline SED predicted lower locomotor skills at follow-up (β: - 0.27, p = 0.012). Baseline light PA did not predict FMS at follow-up. Baseline FMS were not associated with PA or SED at follow-up.

Conclusions: MVPA was positively associated with development of FMS in young children. In contrast, FMS were not related to future PA levels. Our results suggest promotion of MVPA is important for FMS development in young children.

Keywords: Accelerometer; Health behaviour; Longitudinal association; Motor competence; Motor development; Movement; Physical activity measurement; Preschool; Reciprocal relationship.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Development in moderate-to-vigorous physical activity (MVPA) from baseline (T1) to follow-up (T2) in boys and girls by age

References

    1. Jones RA, Hinkley T, Okely AD, Salmon J. Tracking physical activity and sedentary behavior in childhood A systematic review. Am J Prev Med. 2013;44(6):651–658. doi: 10.1016/j.amepre.2013.03.001.
    1. Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs EM, et al. Objectively measured physical activity and sedentary time in youth: the international children’s accelerometry database (ICAD) Int J Behav Nutr Phys Act. 2015;12(1):113. doi: 10.1186/s12966-015-0274-5.
    1. Goldfield GS, Harvey A, Grattan K, Adamo KB. Physical activity promotion in the preschool years: a critical period to intervene. Int J Environ Res Public Health. 2012;9(4):1326–1342. doi: 10.3390/ijerph9041326.
    1. Timmons BW, LeBlanc AG, Carson V, Gorber SC, Dillman C, Janssen I, et al. Systematic review of physical activity and health in the early years (aged 0-4 years) Appl Physiol Nutr Metab. 2012;37(4):773–792. doi: 10.1139/h2012-070.
    1. Carson V, Lee EY, Hewitt L, Jennings C, Hunter S, Kuzik N, et al. Systematic review of the relationships between physical activity and health indicators in the early years (0-4 years) BMC Public Health. 2017;17(Suppl 5):854. doi: 10.1186/s12889-017-4860-0.
    1. Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S197–S239. doi: 10.1139/apnm-2015-0663.
    1. WHO . Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.
    1. Bornstein DB, Beets MW, Byun W, McIver K. Accelerometer-derived physical activity levels of preschoolers: a meta-analysis. J Sci Med Sport. 2011;14(6):504–511. doi: 10.1016/j.jsams.2011.05.007.
    1. Hnatiuk JA, Salmon J, Hinkley T, Okely AD, Trost S. A review of preschool Children's physical activity and sedentary time using objective measures. Am J Prev Med. 2014;47(4):487–497. doi: 10.1016/j.amepre.2014.05.042.
    1. Griffiths LJ, Cortina-Borja M, Sera F, Pouliou T, Geraci M, Rich C, et al. How active are our children? Findings from the millennium cohort study. BMJ Open. 2013;3(8):e002893. doi: 10.1136/bmjopen-2013-002893.
    1. Sallis JF, Owen N, Fotheringham MJ. Behavioral epidemiology: a systematic framework to classify phases of research on health promotion and disease prevention. Ann Behavior Med. 2000;22(4):294–298. doi: 10.1007/BF02895665.
    1. Gallahue DL, Ozmun JC, Goodway JD. Understanding motor development: infants, children, adolescents, adults. 7. New York: McGraw-Hill; 2012.
    1. Robinson LE, Stodden DF, Barnett LM, Lopes VP, Logan SW, Rodrigues LP, et al. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015;45(9):1273–1284. doi: 10.1007/s40279-015-0351-6.
    1. Logan SW, Ross SM, Chee K, Stodden DF, Robinson LE. Fundamental motor skills: A systematic review of terminology. J Sports Sci. 2018;36(7):781–796. doi: 10.1080/02640414.2017.1340660.
    1. Figueroa R, An R. Motor skill competence and physical activity in preschoolers: A review. Matern Child Health J. 2017;21(1):136–146. doi: 10.1007/s10995-016-2102-1.
    1. Fisher A, Reilly JJ, Kelly LA, Montgomery C, Williamson A, Paton JY, et al. Fundamental movement skills and habitual physical activity in young children. Med Sci Sports Exerc. 2005;37(4):684–688. doi: 10.1249/01.MSS.0000159138.48107.7D.
    1. Okely AD, Booth ML, Patterson JW. Relationship of physical activity to fundamental movement skills among adolescents. Med Sci Sports Exerc. 2001;33(11):1899–1904. doi: 10.1097/00005768-200111000-00015.
    1. Stodden DF, Goodway JD, Langendorfer SJ, Roberton MA, Rudisill ME, Garcia C, et al. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest. 2008;60(2):290–306. doi: 10.1080/00336297.2008.10483582.
    1. Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents review of associated health benefits. Sports Med. 2010;40(12):1019–1035. doi: 10.2165/11536850-000000000-00000.
    1. Logan SW, Kipling Webster E, Getchell N, Pfeiffer KA, Robinson LE. Relationship between fundamental motor skill competence and physical activity during childhood and adolescence: A systematic review. Kinesiology Rev. 2015;4(4):416–426. doi: 10.1123/kr.2013-0012.
    1. Bryant ES, Duncan MJ, Birch SL. Fundamental movement skills and weight status in British primary school children. Eur J Sport Sci. 2014;14(7):730–736. doi: 10.1080/17461391.2013.870232.
    1. Hardy LL, Barnett L, Espinel P, Okely AD. Thirteen-year trends in child and adolescent fundamental movement skills: 1997-2010. Med Sci Sports Exerc. 2013;45(10):1965–1970. doi: 10.1249/MSS.0b013e318295a9fc.
    1. Erwin HE, Castelli DM. National physical education standards: a summary of student performance and its correlates. Res Q Exerc Sport. 2008;79(4):495–505. doi: 10.1080/02701367.2008.10599516.
    1. Schmutz EA, Haile SR, Leeger-Aschmann CS, Kakebeeke TH, Zysset AE, Messerli-Burgy N, et al. Physical activity and sedentary behavior in preschoolers: a longitudinal assessment of trajectories and determinants. Int J Behavior Nutr Phys Activity. 2018;15(1):35. doi: 10.1186/s12966-018-0670-8.
    1. Venetsanou F, Kambas A. Can motor proficiency in preschool age affect physical activity in adolescence? Pediatr Exerc Sci. 2017;29(2):254–259. doi: 10.1123/pes.2016-0119.
    1. Lopes Luís, Silva Mota Jorge Augusto Pinto, Moreira Carla, Abreu Sandra, Agostinis Sobrinho Cesar, Oliveira-Santos José, Oliveira André, Okely Anthony, Santos Rute. Longitudinal associations between motor competence and different physical activity intensities: LabMed physical activity study. Journal of Sports Sciences. 2018;37(3):285–290. doi: 10.1080/02640414.2018.1497424.
    1. Larsen LR, Kristensen PL, Junge T, Rexen CT, Wedderkopp N. Motor performance as predictor of physical activity in children: the CHAMPS study-DK. Med Sci Sports Exerc. 2015;47(9):1849–1856. doi: 10.1249/MSS.0000000000000604.
    1. Barnett LM, Salmon J, Hesketh KD. More active pre-school children have better motor competence at school starting age: an observational cohort study. BMC Public Health. 2016;16(1):1068. doi: 10.1186/s12889-016-3742-1.
    1. Lima RA, Pfeiffer K, Larsen LR, Bugge A, Moller NC, Anderson LB, et al. Physical activity and motor competence present a positive reciprocal longitudinal relationship across childhood and early adolescence. J Phys Act Health. 2017;14(6):440–447. doi: 10.1123/jpah.2016-0473.
    1. Nilsen AKO, Anderssen SA, Ylvisaaker E, Johannessen K, Aadland E. Physical activity among Norwegian preschoolers varies by sex, age, and season. Scand J Med Sci Sports. 2019;29:862–873. doi: 10.1111/sms.13405.
    1. Nilsen AKOA, Anderssen SA, Resaland GK, Johannessen K, Ylvisaaker E, Aadland E. Boys, older children, and highly active children benefit most from the preschool arena regarding moderate-to-vigorous physical activity: A cross-sectional study of Norwegian preschoolers. Prev Med Rep. 2019;14:100837. doi: 10.1016/j.pmedr.2019.100837.
    1. John D, Freedson P. ActiGraph and Actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc. 2012;44(1 Suppl 1):S86–S89. doi: 10.1249/MSS.0b013e3182399f5e.
    1. Esliger DW, Copeland JL, Barnes JD, Tremblay MS. Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J Phys Act Health. 2005;2(3):366. doi: 10.1123/jpah.2.3.366.
    1. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–1565. doi: 10.1080/02640410802334196.
    1. Ulrich DA. The test of gross motor development – 3 (TGMD3): Administration, scoring, and international norms. Spor Bilimleri Dergisi. 2013;24(2):27–33.
    1. Ulrich DA. Test of gross motor development - third edition. Examiner's manual. Austin: Pro.ed; 2019.
    1. Sun SH, Zhu YC, Shih CL, Lin CH, Wu SK. Development and initial validation of the preschooler gross motor quality scale. Res Dev Disabil. 2010;31(6):1187–1196. doi: 10.1016/j.ridd.2010.08.002.
    1. Gallahue DL, Cleland-Donnelly F. Developmental physical education for all children. 4. Champaign: Human Kinetics; 2003.
    1. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. Bmj. 2000;320(7244):1240–1243. doi: 10.1136/bmj.320.7244.1240.
    1. Tonge KL, Jones RA, Okely AD. Correlates of children's objectively measured physical activity and sedentary behavior in early childhood education and care services: A systematic review. Prev Med. 2016;89:129–139. doi: 10.1016/j.ypmed.2016.05.019.
    1. Barnett LM, Lai SK, Veldman SL, Hardy LL, Cliff DP, Morgan PJ, et al. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46(11):1663–1688. doi: 10.1007/s40279-016-0495-z.
    1. Aadland KN, Moe VF, Aadland E, Anderssen SA, Resaland GK, Ommundsen Y. Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment Health Phys Act. 2017;12:10–18. doi: 10.1016/j.mhpa.2017.01.001.
    1. Jackson DM, Reilly JJ, Kelly LA, Montgomery C, Grant S, Paton JY. Objectively measured physical activity in a representative sample of 3- to 4-year-old children. Obes Res. 2003;11(3):420–425. doi: 10.1038/oby.2003.57.
    1. Kelly LA, Reilly JJ, Jackson DM, Montgomery C, Grant S, Paton JY. Tracking physical activity and sedentary behavior in young children. Pediatr Exerc Sci. 2007;19(1):51–60. doi: 10.1123/pes.19.1.51.
    1. Taylor RW, Murdoch L, Carter P, Gerrard DF, Williams SM, Taylor BJ. Longitudinal study of physical activity and inactivity in preschoolers: the FLAME study. Med Sci Sports Exerc. 2009;41(1):96–102. doi: 10.1249/MSS.0b013e3181849d81.
    1. Bala G, Katic R. Sex differences in anthropometric characteristics, motor and cognitive functioning in preschool children at the time of school enrolment. Coll Antropol. 2009;33(4):1071–1078.
    1. Morley D, Till K, Ogilvie P, Turner G. Influences of gender and socioeconomic status on the motor proficiency of children in the UK. Hum Mov Sci. 2015;44:150–156. doi: 10.1016/j.humov.2015.08.022.
    1. Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression dilution bias. Bmj. 2010;340:c2289. doi: 10.1136/bmj.c2289.
    1. Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–450. doi: 10.1123/jpah.10.3.437.
    1. Rowlands AV, Pilgrim EL, Eston RG. Patterns of habitual activity across weekdays and weekend days in 9-11-year-old children. Prev Med. 2008;46(4):317–324. doi: 10.1016/j.ypmed.2007.11.004.
    1. Sanders T, Cliff DP, Lonsdale C. Measuring adolescent boys' physical activity: bout length and the influence of accelerometer epoch length. PLoS One. 2014;9(3):e92040. doi: 10.1371/journal.pone.0092040.
    1. Aadland E, Andersen LB, Anderssen SA, Resaland GK, Kvalheim OM. Associations of volumes and patterns of physical activity with metabolic health in children: A multivariate pattern analysis approach. Prev Med. 2018;115:12–18. doi: 10.1016/j.ypmed.2018.08.001.
    1. Vale S, Santos R, Silva P, Soares-Miranda L, Mota J. Preschool children physical activity measurement: importance of epoch length choice. Pediatr Exerc Sci. 2009;21(4):413–420. doi: 10.1123/pes.21.4.413.
    1. Logan SW, Robinson LE, Getchell N. The comparison of performances of preschool children on two motor assessments. Percept Mot Skills. 2011;113(3):715–723. doi: 10.2466/03.06.25.PMS.113.6.715-723.
    1. Hardy LL, King L, Farrell L, Macniven R, Howlett S. Fundamental movement skills among Australian preschool children. J Sci Med Sport. 2010;13(5):503–508. doi: 10.1016/j.jsams.2009.05.010.

Source: PubMed

3
Sottoscrivi