Analysis of Older Adults in Spanish Care Facilities, Risk of Falling and Daily Activity Using Xiaomi Mi Band 2

María Del Carmen Miranda-Duro, Laura Nieto-Riveiro, Patricia Concheiro-Moscoso, Betania Groba, Thais Pousada, Nereida Canosa, Javier Pereira, María Del Carmen Miranda-Duro, Laura Nieto-Riveiro, Patricia Concheiro-Moscoso, Betania Groba, Thais Pousada, Nereida Canosa, Javier Pereira

Abstract

Background: Presently the use of technological devices such as wearable devices has emerged. Physical activity monitoring with wearable sensors is an easy and non-intrusive approach to encourage preventive care for older adults. It may be useful to follow a continuous assessment of the risk of falling. The objective is to explore the relationship between the daily activity measured by Xiaomi Mi Band 2 and the risk of falling of older adults residing in or attending care facilities.

Methods: A cross-sectional study was conducted on three different institutions located in Galicia (autonomous community) (Spain).

Results: A total of 31 older adults were included in the study, with a mean age of 84 ± 8.71 years old. The main findings obtained were that a greater number of steps and distance could be related to a lower probability of falling, of dependency in basic activities of daily living, or of mobility problems.

Conclusions: The importance of focusing on daily steps, intrinsically related to the objective assessment of daily physical activity, is that it is a modifiable factor that impacts different aspects of health and quality of life.

Keywords: daily steps; falls; health-related quality of life; nursing home; occupational therapy; physical activity; remote monitoring; sleep; wearable technology; wristband.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Fall distribution and main causes.
Figure 2
Figure 2
EQ-5D-5L Descriptive system dimensions.
Figure 3
Figure 3
Associations between daily steps and level of dependency in B.A.D.L. and risk of falling. (a) it is shown the comparison of daily steps between people with risk of falling and people with no risk of falling. (b) it is shown the comparison of daily steps between dependent people and independent people.

References

    1. Eurostats Ageing Europe—Statistics on Population Developments—Statistics Explained. [(accessed on 8 February 2021)]; Available online: .
    1. Daykin C., Stavrakis C., Bogataj D., Risku I., Van den Bosch J., Woodall J., Economou M., Papamichail M., Gatenby P., Marcelloni R., et al. Meeting the Challenge of Ageing in the European Union. [(accessed on 8 February 2021)];2019 Available online:
    1. World Health Organization Life Expectancy at Age 60 Years. [(accessed on 8 February 2021)]; Available online:
    1. World Health Organization Health Systems that Meet the Needs of Older People. [(accessed on 8 February 2021)]; Available online:
    1. World Health Organization Ageing and Health. [(accessed on 8 February 2021)]; Available online: .
    1. Fernández-Carro C. Ageing at home, co-residence or institutionalisation? Preferred care and residential arrangements of older adults in Spain. Ageing Soc. 2016;36:586–612. doi: 10.1017/S0144686X1400138X.
    1. Abellán García A., Aceituno Nieto M.D.P., Ramiro Fariñas D., Castillo Belmonte A.B. Informes Estadísticas Sobre Residencias. Distribución de Centros y Plazas Residenciales por Provincia. Datos de Septiembre de 2020. [(accessed on 8 February 2021)];2021 Available online:
    1. Abellán García A., Aceituno Nieto M.D.P., Castillo Belmonte A.B., Ramiro Fariñas D. Nivel de Ocupación en Residencias de Personas Mayors. [(accessed on 9 February 2021)]; Available online:
    1. de Medeiros M.M.D., Carletti T.M., Magno M.B., Maia L.C., Cavalcanti Y.W., Rodrigues-Garcia R.C.M. Does the institutionalization influence elderly’s quality of life? A systematic review and meta–analysis. BMC Geriatr. 2020;20:44. doi: 10.1186/s12877-020-1452-0.
    1. Tuna H.D., Edeer A.O., Malkoc M., Aksakoglu G. Effect of age and physical activity level on functional fitness in older adults. Eur. Rev. Aging Phys. Act. 2009;6:99–106. doi: 10.1007/s11556-009-0051-z.
    1. Riebe D., Blissmer B.J., Greaney M.L., Ewing Garber C., Lees F.D., Clark P.G. The Relationship between Obesity, Physical Activity, and Physical Function in Older Adults. J. Aging Health. 2009;21:1159–1178. doi: 10.1177/0898264309350076.
    1. Durstine J.L., Gordon B., Wang Z., Luo X. Chronic disease and the link to physical activity. J. Sport Health Sci. 2013;2:3–11. doi: 10.1016/j.jshs.2012.07.009.
    1. World Health Organization Global Recommendations on Physical Activity for Health. [(accessed on 9 February 2021)]; Available online: .
    1. World Health Organization What Are the Main Risk Factors for Falls Amongst Older People and What Are the Most Effective Interventions to Prevent These Falls? [(accessed on 9 February 2021)];2004 Available online: .
    1. De La Cámara M.Á., Jiménez-Fuente A., Pardos A.I. Falls in older adults: The new pandemic in the post COVID-19 era? Med. Hypotheses. 2020;145:110321. doi: 10.1016/j.mehy.2020.110321.
    1. Agmon M., Shochat T., Kizony R. Sleep quality is associated with walking under dual-task, but not single-task performance. Gait Posture. 2016;49:127–131. doi: 10.1016/j.gaitpost.2016.06.016.
    1. Miranda-Duro M.D.C., Nieto-Riveiro L., Concheiro-Moscoso P., Groba B., Pousada T., Canosa N., Pereira J. Occupational Therapy and the Use of Technology on Older Adult Fall Prevention: A Scoping Review. Int. J. Environ. Res. Public Health. 2021;18:702. doi: 10.3390/ijerph18020702.
    1. Godinho C., Domingos J., Cunha G., Santos A.T., Fernandes R.M., Abreu D., Gonçalves N., Matthews H., Isaacs T., Duffen J., et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J. Neuroeng. Rehabil. 2016;13:24. doi: 10.1186/s12984-016-0136-7.
    1. Luna-Perejón F., Muñoz-Saavedra L., Civit-Masot J., Civit A., Domínguez-Morales M. AnkFall—Falls, Falling Risks and Daily-Life Activities Dataset with an Ankle-Placed Accelerometer and Training Using Recurrent Neural Networks. Sensors. 2021;21:1889. doi: 10.3390/s21051889.
    1. Corrà M.F., Warmerdam E., Vila-Chã N., Maetzler W., Maia L. Wearable Health Technology to Quantify the Functional Impact of Peripheral Neuropathy on Mobility in Parkinson’s Disease: A Systematic Review. Sensors. 2020;20:6627. doi: 10.3390/s20226627.
    1. Warmerdam E., Hausdorff J.M., Atrsaei A., Zhou Y., Mirelman A., Aminian K., Espay A.J., Hansen C., Evers L.J.W., Keller A., et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 2020;19:462–470. doi: 10.1016/S1474-4422(19)30397-7.
    1. Yang C.-C., Hsu Y.-L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors. 2010;10:7772–7788. doi: 10.3390/s100807772.
    1. Saris W.H.M., Binkhorst R.A. The use of pedometer and actometer in studying daily physical activity in man. Part I: Reliability of pedometer and actometer. Eur. J. Appl. Physiol. Occup. Physiol. 1977;37:219–228. doi: 10.1007/BF00421777.
    1. Strain T., Wijndaele K., Dempsey P.C., Sharp S.J., Pearce M., Jeon J., Lindsay T., Wareham N., Brage S. Wearable-device-measured physical activity and future health risk. Nat. Med. 2020;26:1385–1391. doi: 10.1038/s41591-020-1012-3.
    1. Zhou H., Al-Ali F., Rahemi H., Kulkarni N., Hamad A., Ibrahim R., Talal T., Najafi B. Hemodialysis Impact on Motor Function beyond Aging and Diabetes—Objectively Assessing Gait and Balance by Wearable Technology. Sensors. 2018;18:3939. doi: 10.3390/s18113939.
    1. Silva de Lima A.L., Smits T., Darweesh S.K.L., Valenti G., Milosevic M., Pijl M., Baldus H., Vries N.M., Meinders M.J., Bloem B.R. Home-Based Monitoring of Falls Using Wearable Sensors in Parkinson’s Disease. Mov. Disord. 2020;35:109–115. doi: 10.1002/mds.27830.
    1. Del Din S., Godfrey A., Mazzà C., Lord S., Rochester L. Free-living monitoring of Parkinson’s disease: Lessons from the field. Mov. Disord. 2016;31:1293–1313. doi: 10.1002/mds.26718.
    1. Rastogi T., Backes A., Schmitz S., Fagherazzi G., van Hees V., Malisoux L. Advanced analytical methods to assess physical activity behaviour using accelerometer raw time series data: A protocol for a scoping review. Syst. Rev. 2020;9:259. doi: 10.1186/s13643-020-01515-2.
    1. Scheers T., Philippaerts R., Lefevre J. Assessment of physical activity and inactivity in multiple domains of daily life: A comparison between a computerized questionnaire and the SenseWear Armband complemented with an electronic diary. Int. J. Behav. Nutr. Phys. Act. 2012;9:71. doi: 10.1186/1479-5868-9-71.
    1. Yang Y., Hirdes J.P., Dubin J.A., Lee J. Fall Risk Classification in Community-Dwelling Older Adults Using a Smart Wrist-Worn Device and the Resident Assessment Instrument-Home Care: Prospective Observational Study. JMIR Aging. 2019;2:e12153. doi: 10.2196/12153.
    1. Chen B., Gwin J. Proceedings of the Conference on Wireless Health—WH ’12: Wireless Health 2012, San Diego, CA, USA, 22–25 October 2012. ACM Press; New York, NY, USA: 2012. Fall detection and risk of falling assessment with wearable sensors; pp. 1–2.
    1. Burton E., Hill K.D., Lautenschlager N.T., Thøgersen-Ntoumani C., Lewin G., Boyle E., Howie E. Reliability and validity of two fitness tracker devices in the laboratory and home environment for older community-dwelling people. BMC Geriatr. 2018;18:103. doi: 10.1186/s12877-018-0793-4.
    1. O’Brien T., Troutman-Jordan M., Hathaway D., Armstrong S., Moore M. Acceptability of wristband activity trackers among community dwelling older adults. Geriatr. Nurs. 2015;36:S21–S25. doi: 10.1016/j.gerinurse.2015.02.019.
    1. Cadmus-Bertram L.A., Marcus B.H., Patterson R.E., Parker B.A., Morey B.L. Randomized Trial of a Fitbit-Based Physical Activity Intervention for Women. Am. J. Prev. Med. 2015;49:414–418. doi: 10.1016/j.amepre.2015.01.020.
    1. Paul S.S., Tiedemann A., Hassett L.M., Ramsay E., Kirkham C., Chagpar S., Sherrington C. Validity of the Fitbit activity tracker for measuring steps in community-dwelling older adults. BMJ Open Sport Exerc. Med. 2015;1:e000013. doi: 10.1136/bmjsem-2015-000013.
    1. Kim M., Yoshida H., Sasai H., Kojima N., Kim H. Association between objectively measured sleep quality and physical function among community-dwelling oldest old Japanese: A cross-sectional study. Geriatr. Gerontol. Int. 2015;15:1040–1048. doi: 10.1111/ggi.12396.
    1. Schlomann A. A case study on older adults’ long-term use of an activity tracker. Gerontechnology. 2017;16:115–124. doi: 10.4017/gt.2017.16.2.007.00.
    1. Steinert A., Haesner M., Steinhagen-Thiessen E. Activity-tracking devices for older adults: Comparison and preferences. Univers. Access Inf. Soc. 2018;17:411–419. doi: 10.1007/s10209-017-0539-7.
    1. Puri A., Kim B., Nguyen O., Stolee P., Tung J., Lee J. User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study. JMIR mHealth uHealth. 2017;5:e173. doi: 10.2196/mhealth.8211.
    1. Mercer K., Giangregorio L., Schneider E., Chilana P., Li M., Grindrod K. Acceptance of Commercially Available Wearable Activity Trackers Among Adults Aged Over 50 and With Chronic Illness: A Mixed-Methods Evaluation. JMIR mHealth uHealth. 2016;4:e7. doi: 10.2196/mhealth.4225.
    1. Peng W., Li L., Kononova A., Cotten S., Kamp K., Bowen M. Habit Formation in Wearable Activity Tracker Use Among Older Adults: Qualitative Study. JMIR mHealth uHealth. 2021;9:e22488. doi: 10.2196/22488.
    1. Degroote L., Hamerlinck G., Poels K., Maher C., Crombez G., De Bourdeaudhuij I., Vandendriessche A., Curtis R.G., DeSmet A. Low-Cost Consumer-Based Trackers to Measure Physical Activity and Sleep Duration Among Adults in Free-Living Conditions: Validation Study. JMIR mHealth uHealth. 2020;8:e16674. doi: 10.2196/16674.
    1. El-Amrawy F., Nounou M.I. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Healthc. Inform. Res. 2015;21:315. doi: 10.4258/hir.2015.21.4.315.
    1. Mičková E, Machová K, Daďová K, Svobodová I. Does Dog Ownership Affect Physical Activity, Sleep, and Self-Reported Health in Older Adults? Int. J. Environ. Res. Public Health. 2019;16:3355. doi: 10.3390/ijerph16183355.
    1. Tudor-Locke C., Craig C.L., Aoyagi Y., Bell R.C., Croteau K.A., De Bourdeaudhuij I., Ewald B., Gardner A.W., Hatano Y., Lutes L.D., et al. How many steps/day are enough? For older adults and special populations. Int. J. Behav. Nutr. Phys. Act. 2011;8:80. doi: 10.1186/1479-5868-8-80.
    1. Nieto-Riveiro L., Groba B., Miranda M.C., Concheiro P., Pazos A., Pousada T., Pereira J. Technologies for participatory medicine and health promotion in the elderly population. Medicine. 2018;97:e10791. doi: 10.1097/MD.0000000000010791.
    1. Miranda Duro M.D.C., Nieto-Riveiro L., Concheiro-Moscoso P., Groba B., Pousada T., Canosa N., Pereira J. Older Adults Daily Activity and Risk of Falling in Spanish Care Facilities using Xiaomi Mi Band 2. Mendeley Data. 2021 doi: 10.17632/9ppr49cnzx.2.
    1. Mahoney F.I., Barthel D.W. Functional evaluation: The Barthel Index. MD State Med. J. 1965;14:61–65.
    1. Tinetti M.E., Williams T.F., Mayewski R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 1986;80:429–434. doi: 10.1016/0002-9343(86)90717-5.
    1. EuroQol Foundation Research EQ-5D-5L User Guide. [(accessed on 9 February 2021)];2019 Available online: .
    1. Sleep Foundation How Much Sleep Do We Really Need? | Sleep Foundation. [(accessed on 8 March 2021)]; Available online: .
    1. I.B.M Knowledge Center. Generalized Linear Models. [(accessed on 5 March 2021)]; Available online: .
    1. Paterson D.H., Warburton D.E. Physical activity and functional limitations in older adults: A systematic review related to Canada’s Physical Activity Guidelines. Int. J. Behav. Nutr. Phys. Act. 2010;7:38. doi: 10.1186/1479-5868-7-38.
    1. Sherrington C., Whitney J.C., Lord S.R., Herbert R.D., Cumming R.G., Close J.C.T. Effective Exercise for the Prevention of Falls: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2008;56:2234–2243. doi: 10.1111/j.1532-5415.2008.02014.x.
    1. Warburton D.E.R., Nicol C.W., Bredin S.S.D. Health benefits of physical activity: The evidence. CMAJ. 2006;174:801–809. doi: 10.1503/cmaj.051351.
    1. Ambrose A.F., Paul G., Hausdorff J.M. Risk factors for falls among older adults: A review of the literature. Maturitas. 2013;75:51–61. doi: 10.1016/j.maturitas.2013.02.009.
    1. Haines T.P., Lee D.-C.A., O’Connell B., McDermott F., Hoffmann T. Why do hospitalized older adults take risks that may lead to falls? Heal. Expect. 2015;18:233–249. doi: 10.1111/hex.12026.
    1. Russell M.A., Hill K.D., Blackberry I., Day L.L., Dharmage S.C. Falls Risk and Functional Decline in Older Fallers Discharged Directly from Emergency Departments. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006;61:1090–1095. doi: 10.1093/gerona/61.10.1090.
    1. Štefan L., Vrgoč G., Rupčić T., Sporiš G., Sekulić D. Sleep Duration and Sleep Quality Are Associated with Physical Activity in Elderly People Living in Nursing Homes. Int. J. Environ. Res. Public Health. 2018;15:2512. doi: 10.3390/ijerph15112512.
    1. Zisberg A., Gur-Yaish N., Shochat T. Contribution of Routine to Sleep Quality in Community Elderly. Sleep. 2010;33:509–514. doi: 10.1093/sleep/33.4.509.
    1. Hopman Rock M. New Ways to Promote Physical Activity in Residential Care. J. Gerontol. Geriatr. Res. 2017;06 doi: 10.4172/2167-7182.1000407.

Source: PubMed

3
Sottoscrivi