The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria

Douglas B Kell, Eugene L Heyden, Etheresia Pretorius, Douglas B Kell, Eugene L Heyden, Etheresia Pretorius

Abstract

Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid. It has important immunological properties, and is both antibacterial and antiviral. In particular, there is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2), as based on other activities lactoferrin might prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more specifically enteric-coated LF because of increased bioavailability) may consequently be of preventive and therapeutic value during the present COVID-19 pandemic.

Keywords: HSPGs; coronaviruses; iron; lactoferrin; membrane receptors.

Copyright © 2020 Kell, Heyden and Pretorius.

Figures

Figure 1
Figure 1
Overview of this review of lactoferrin (LF). We discuss (1) discovery and structure of LF; (2) LF membrane receptors and some of the bacteria, their products and viruses that might also bind to these receptors, (3) including how acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (causing COVID-19) may interact with host cells (see Figure 6 and Conclusion for a detailed discussion); (4) and how LF assists with host immunity. Diagram created with BioRender (www.biorender.com).
Figure 2
Figure 2
Crystal structures of bovine lactoferrin (PDB code = 1BLF), human lactoferrin (1B0L), and rabbit serum transferrin (1JNF). Adapted from Vogel (10). Pink spheres represent ferric iron (Fe3+) binding sites.
Figure 3
Figure 3
Bacterial binding to various receptors, e.g., Toll-like receptors 2 and 4 (TLR2 and 4), as well as complement receptors, leads to protein arginine deiminase 4 (PAD4) activation, followed by chromatin decondensation, hypercitrullination of histones 3 and 4 in the nucleus, and nuclear membrane disruption. Granules also release lactoferrin. Neutrophil Extracellular Traps (NETs) and their protein constituents (including lactoferrin) are released from the neutrophil. Adapted from Jorch and Kubes (142) and Law and Gray (143). Bacteria are expelled and trapped in the NETs. Diagram created with BioRender (https://biorender.com/).
Figure 4
Figure 4
Ways by which bacteria acquire iron [adapted from (19, 30)]. Transferrin receptor, lactoferrin receptor, hemophore (Hp), hemophore receptor, and hemopexin. Siderophores remove iron from lactoferrin, ferritin and transferrin, and also from the environment. Stealth siderophores are modified in such a way as to prevent siderocalin binding. A primary bacterial defense against siderocalin involves the production of stealth siderophores. Modified from Rosa et al. and Skaar (19, 30). Diagram created with BioRender (https://biorender.com/).
Figure 5
Figure 5
Simplified platelet signaling and receptor activation during disease with main dysregulated molecules thrombin, fibrin(ogen), von Willebrand Factor (vWF) interleukins (IL) like IL-1α, IL-1β, and IL17A and cytokines like TNF-α. Diagram created with BioRender (https://biorender.com/).
Figure 6
Figure 6
Possible action of (1) lactoferrin by occupying binding sites of (2) SARS-CoV-2 that causes COVID-19. (3) Entry into host cells occur when SARS-CoV-2 first attaches to Heparan sulfate proteoglycans (HSPGs). This attachment initiates the first contact between the cell and the virus, concentrating the virus on the cell surface, (4) followed attaching of the virus to the host receptor (ACE2) and association and entering are then facilitated via clathrin-coated pits (5) Virus replication can then happen inside the cell. (6) One of the characteristics of Lactoferrin, is that it attaches to HSPGs. (7) Currently we do not know if ACE2 is also a receptor for lactoferrin. (8) Lactoferrin may block the entry of SARS-CoV-2 into the host cell, by occupying HPSGs, thereby preventing SARS-CoV-2 initial attachment and accumulation on the host cell membrane. COVID-19 infection template adjusted from www.biorender.com.

References

    1. Okubo K, Kamiya M, Urano Y, Nishi H, Herter JM, Mayadas T, et al. . Lactoferrin suppresses neutrophil extracellular traps release in inflammation. EBioMedicine. (2016) 10:204–15. 10.1016/j.ebiom.2016.07.012
    1. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. . Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. (2020) 126:1456–74. 10.1161/CIRCRESAHA.120.317015
    1. Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons from available evidence and insights into COVID-19. Hypertens Res. (2020) 1–7. 10.1038/s41440-020-0455-8. [Epub ahead of print].
    1. Yang J, Li H, Hu S, Zhou Y. ACE2 correlated with immune infiltration serves as a prognostic biomarker in endometrial carcinoma and renal papillary cell carcinoma: implication for COVID-19. Aging. (2020) 12:6518–35. 10.18632/aging.103100
    1. South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. (2020) 318:H1084–90. 10.1152/ajpheart.00217.2020
    1. Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun. (2020). 10.1016/j.bbi.2020.04.046. [Epub ahead of print].
    1. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. . Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. (2020). 10.1016/j.cell.2020.04.004. [Epub ahead of print].
    1. Hondermarck H, Bartlett NW, Nurcombe V. The role of growth factor receptors in viral infections: an opportunity for drug repurposing against emerging viral diseases such as COVID-19? FASEB Bioadv. (2020) 2:296–303. 10.1096/fba.2020-00015
    1. Anderson BF, Baker HM, Norris GE, Rumball SV, Baker EN. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature. (1990) 344:784–7. 10.1038/344784a0
    1. Vogel HJ. Lactoferrin, a bird's eye view. Biochem Cell Biol. (2012) 90:233–44. 10.1139/o2012-016
    1. Karav S, German JB, Rouquié C, Le Parc A, Barile D. Studying lactoferrin N-glycosylation. Int J Mol Sci. (2017) 18:E870. 10.3390/ijms18040870
    1. Karav S. Selective deglycosylation of lactoferrin to understand glycans' contribution to antimicrobial activity of lactoferrin. Cell Mol Biol. (2018) 64:52–7. 10.14715/cmb/2018.64.9.8
    1. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN. Three-dimensional structure of diferric bovine lactoferrin at 2.8 A resolution. J Mol Biol. (1997) 274:222–36. 10.1006/jmbi.1997.1386
    1. Sorensen M, Sorensen S. Compte Rendu des Travaux du Laboratoire de Carlsberg. Copenhague: The Proteins in Whey, Hagerup in Komm; (1939).
    1. Querinjean P, Masson PL, Heremans JF. Molecular weight, single-chain structure and amino acid composition of human lactoferrin. Eur J Biochem. (1971) 20:420–5. 10.1111/j.1432-1033.1971.tb01408.x
    1. Bluard-Deconinck JM, Masson PL, Osinski PA, Heremans JF. Amino acid sequence of cysteic peptides of lactoferrin and demonstration of similarities between lactoferrin and transferrin. Biochim Biophys Acta. (1974) 365:311–7. 10.1016/0005-2795(74)90002-6
    1. Furmanski P, Li ZP, Fortuna MB, Swamy CV, Das MR. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J Exp Med. (1989) 170:415–29. 10.1084/jem.170.2.415
    1. Jameson GB, Anderson BF, Norris GE, Thomas DH, Baker EN. Structure of human apolactoferrin at 2.0 A resolution. Refinement and analysis of ligand-induced conformational change. Acta Crystallogr D Biol Crystallogr. (1998) 54:1319–35. 10.1107/S0907444998004417
    1. Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci. (2017) 18:1985. 10.3390/ijms18091985
    1. Teraguchi S, Wakabayashi H, Kuwata H, Yamauchi K, Tamura Y. Protection against infections by oral lactoferrin: evaluation in animal models. Biometals. (2004) 17:231–4. 10.1023/B:BIOM.0000027697.83706.32
    1. Togawa J, Nagase H, Tanaka K, Inamori M, Umezawa T, Nakajima A, et al. . Lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. Am J Physiol Gastrointest Liver Physiol. (2002) 283:G187–95. 10.1152/ajpgi.00331.2001
    1. Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, et al. . Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. (2009) 324:242–6. 10.1126/science.1164860
    1. Anderberg RJ, Meek RL, Hudkins KL, Cooney SK, Alpers CE, Leboeuf RC, et al. Serum amyloid A and inflammation in diabetic kidney disease and podocytes. Lab Invest. (2015) 95:250–62. 10.1038/labinvest.2014.163
    1. Brock JH. The physiology of lactoferrin. Biochem Cell Biol. (2002) 80:1–6. 10.1139/o01-212
    1. Brock JH. Lactoferrin−50 years on. Biochem Cell Biol. (2012) 90:245–51. 10.1139/o2012-018
    1. Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Lactoferrin in aseptic and septic inflammation. Molecules. (2019) 24:1323. 10.3390/molecules24071323
    1. Ganz T. Iron and infection. Int J Hematol. (2018) 107:7–15. 10.1007/s12185-017-2366-2
    1. Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genom. (2009) 2:2. 10.1186/1755-8794-2-2
    1. Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. (2014) 6:748–73. 10.1039/C3MT00347G
    1. Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. (2010) 6:e1000949. 10.1371/journal.ppat.1000949
    1. White KN, Conesa C, Sánchez L, Amini M, Farnaud S, Lorvoralak C, et al. . The transfer of iron between ceruloplasmin and transferrins. Biochim Biophys Acta. (2012) 1820:411–6. 10.1016/j.bbagen.2011.10.006
    1. Kell DB, Pretorius E. No effects without causes. The iron dysregulation and dormant microbes hypothesis for chronic, inflammatory diseases: evidence and consequences. Biol Rev. (2018) 93:1518–57. 10.1111/brv.12407
    1. Posey JE, Gherardini FC. Lack of a role for iron in the Lyme disease pathogen. Science. (2000) 288:1651–3. 10.1126/science.288.5471.1651
    1. Telang S. Lactoferrin: a critical player in neonatal host defense. Nutrients. (2018) 10:1228. 10.3390/nu10091228
    1. Chow BD, Reardon JL, Perry EO, Laforce-Nesbitt SS, Tucker R, Bliss JM. Host defense proteins in breast milk and neonatal yeast colonization. J Hum Lact. (2016) 32:168–73. 10.1177/0890334415592402
    1. Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, van Arendonk J, et al. . The host defense proteome of human and bovine milk. PLoS ONE. (2011) 6:e19433. 10.1371/journal.pone.0019433
    1. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. (2013) 60:49–74. 10.1016/j.pcl.2012.10.002
    1. Woodman T, Strunk T, Patole S, Hartmann B, Simmer K, Currie A. Effects of lactoferrin on neonatal pathogens and Bifidobacterium breve in human breast milk. PLoS ONE. (2018) 13:e0201819. 10.1371/journal.pone.0201819
    1. Czosnykowska-Łukacka M, Orczyk-Pawiłowicz M, Broers B, Królak-Olejnik B. Lactoferrin in human milk of prolonged lactation. Nutrients. (2019) 11:E2350. 10.3390/nu11102350
    1. Lönnerdal B. Bioactive proteins in human milk: health, nutrition, and implications for infant formulas. J Pediatr. (2016) 173(Suppl):S4–9. 10.1016/j.jpeds.2016.02.070
    1. Cai X, Duan Y, Li Y, Wang J, Mao Y, Yang Z, et al. . Lactoferrin level in breast milk: a study of 248 samples from eight regions in China. Food Funct. (2018) 9:4216–22. 10.1039/C7FO01559C
    1. Valenti P, Rosa L, Capobianco D, Lepanto MS, Schiavi E, Cutone A, et al. . Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense. Front Immunol. (2018) 9:376. 10.3389/fimmu.2018.00376
    1. Cole AM. Innate host defense of human vaginal and cervical mucosae. Curr Top Microbiol Immunol. (2006) 306:199–230. 10.1007/3-540-29916-5_8
    1. Bard E, Laibe S, Bettinger D, Riethmuller D, Biichlé S, Seilles E, et al. . New sensitive method for the measurement of lysozyme and lactoferrin for the assessment of innate mucosal immunity. Part I: time-resolved immunofluorometric assay in serum and mucosal secretions. Clin Chem Lab Med. (2003) 41:127–33. 10.1515/CCLM.2003.021
    1. Boesch AW, Zhao Y, Landman AS, Garcia MR, Fahey JV, Wira CR, et al. . A multiplexed assay to detect antimicrobial peptides in biological fluids and cell secretions. J Immunol Methods. (2013) 397:71–6. 10.1016/j.jim.2013.09.001
    1. Laube DM, Yim S, Ryan LK, Kisich KO, Diamond G. Antimicrobial peptides in the airway. Curr Top Microbiol Immunol. (2006) 306:153–82. 10.1007/3-540-29916-5_6
    1. Vargas Buonfiglio LG, Borcherding JA, Frommelt M, Parker GJ, Duchman B, Vanegas Calderón OG, et al. . Airway surface liquid from smokers promotes bacterial growth and biofilm formation via iron-lactoferrin imbalance. Respir Res. (2018) 19:42. 10.1186/s12931-018-0743-x
    1. Ward PP, Uribe-Luna S, Conneely OM. Lactoferrin and host defense. Biochem Cell Biol. (2002) 80:95–102. 10.1139/o01-214
    1. Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. (2017) 8:81. 10.3389/fimmu.2017.00081
    1. Lynge Pedersen AM, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. (2019) 80(Suppl. 1):S3–12. 10.1016/j.jdent.2018.08.010
    1. van Leeuwen SJM, Potting CMJ, Huysmans M, Blijlevens NMA. Salivary changes before and after hematopoietic stem cell transplantation: a systematic review. Biol Blood Marrow Transplant. (2019) 25:1055–61. 10.1016/j.bbmt.2019.01.026
    1. Wang A, Duncan SE, Lesser GJ, Ray WK, Dietrich AM. Effect of lactoferrin on taste and smell abnormalities induced by chemotherapy: a proteome analysis. Food Funct. (2018) 9:4948–58. 10.1039/C8FO00813B
    1. Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Said Sadier N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J. (2018) 41:63–87. 10.1016/j.bj.2018.03.004
    1. Gleerup HS, Hasselbalch SG, Simonsen AH. Biomarkers for Alzheimer's disease in saliva: a systematic review. Dis Markers. (2019) 2019:4761054. 10.1155/2019/4761054
    1. Carro E, Bartolomé F, Bermejo-Pareja F, Villarejo-Galende A, Molina JA, Ortiz P, et al. . Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin. Alzheimers Dement. (2017) 8:131–8. 10.1016/j.dadm.2017.04.002
    1. Koshi R, Kotani K, Ohtsu M, Yoshinuma N, Sugano N. Application of lactoferrin and α1-antitrypsin in gingival retention fluid to diagnosis of periodontal disease. Dis Mark. (2018) 2018:4308291. 10.1155/2018/4308291
    1. Mizuhashi F, Koide K, Toya S, Takahashi M, Mizuhashi R, Shimomura H. Levels of the antimicrobial proteins lactoferrin and chromogranin in the saliva of individuals with oral dryness. J Prosthet Dent. (2015) 113:35–8. 10.1016/j.prosdent.2013.12.028
    1. Glimvall P, Wickström C, Jansson H. Elevated levels of salivary lactoferrin, a marker for chronic periodontitis? J Periodontal Res. (2012) 47:655–60. 10.1111/j.1600-0765.2012.01479.x
    1. Jalil RA, Ashley FP, Wilson RF, Wagaiyu EG. Concentrations of thiocyanate, hypothiocyanite, 'free' and 'total' lysozyme, lactoferrin and secretory IgA in resting and stimulated whole saliva of children aged 12–14 years and the relationship with plaque accumulation and gingivitis. J Periodontal Res. (1993) 28:130–6. 10.1111/j.1600-0765.1993.tb01060.x
    1. Jiang R, Lopez V, Kelleher SL, Lönnerdal B. Apo- and holo-lactoferrin are both internalized by lactoferrin receptor via clathrin-mediated endocytosis but differentially affect ERK-signaling and cell proliferation in Caco-2 cells. J Cell Physiol. (2011) 226:3022–31. 10.1002/jcp.22650
    1. Suzuki YA, Lopez V, Lönnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. (2005) 62:2560–75. 10.1007/s00018-005-5371-1
    1. Rawat P, Kumar S, Sheokand N, Raje CI, Raje M. The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor. Biochem Cell Biol. (2012) 90:329–38. 10.1139/o11-058
    1. Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaïssa M, Spik G, et al. . Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. (1999) 274:7011–7. 10.1074/jbc.274.11.7011
    1. Grey A, Banovic T, Zhu Q, Watson M, Callon K, Palmano K, et al. . The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol Endocrinol. (2004) 18:2268–78. 10.1210/me.2003-0456
    1. Ikoma-Seki K, Nakamura K, Morishita S, Ono T, Sugiyama K, Nishino H, et al. . Role of LRP1 and ERK and cAMP signaling pathways in lactoferrin-induced lipolysis in mature rat adipocytes. PLoS ONE. (2015) 10:e0141378. 10.1371/journal.pone.0141378
    1. Shin K, Wakabayashi H, Yamauchi K, Yaeshima T, Iwatsuki K. Recombinant human intelectin binds bovine lactoferrin and its peptides. Biol Pharm Bull. (2008) 31:1605–8. 10.1248/bpb.31.1605
    1. Gao CH, Dong HL, Tai L, Gao XM. Lactoferrin-containing immunocomplexes drive the conversion of human macrophages from M2- into M1-like phenotype. Front Immunol. (2018) 9:37. 10.3389/fimmu.2018.00037
    1. Takayama Y, Aoki R, Uchida R, Tajima A, Aoki-Yoshida A. Role of CXC chemokine receptor type 4 as a lactoferrin receptor. Biochem Cell Biol. (2017) 95:57–63. 10.1139/bcb-2016-0039
    1. Patel P, Shah J. Role of vitamin D in Amyloid clearance via LRP-1 upregulation in Alzheimer's disease: a potential therapeutic target? J Chem Neuroanat. (2017) 85:36–42. 10.1016/j.jchemneu.2017.06.007
    1. Tamaki C, Ohtsuki S, Terasaki T. Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1 40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Mol Pharmacol. (2007) 72:850–5. 10.1124/mol.107.036913
    1. Yan FL, Zheng Y, Zhao FD. Effects of ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathol. (2008) 116:529–35. 10.1007/s00401-008-0435-6
    1. Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R. Adipose tissue-derived omentin-1 function and regulation. Compr Physiol. (2017) 7:765–81. 10.1002/cphy.c160043
    1. Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, et al. . Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. (2017) 545:305–10. 10.1038/nature22075
    1. Vogel S, Thein SL. Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br J Haematol. (2018) 180:761–7. 10.1111/bjh.15117
    1. Olumuyiwa-Akeredolu OO, Page MJ, Soma P, Pretorius E. Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat Rev Rheumatol. (2019) 15:237–48. 10.1038/s41584-019-0187-9
    1. Pretorius E. Platelets as potent signaling entities in type 2 diabetes mellitus. Trends Endocrinol Metab. (2019) 30:532–45. 10.1016/j.tem.2019.05.003
    1. García-Culebras A, Durán-Laforet V, Peña-Martínez C, Moraga A, Ballesteros I, Cuartero MI, et al. . Role of TLR4 (Toll-Like receptor 4) in N1/N2 neutrophil programming after stroke. Stroke. (2019) 50:2922–32. 10.1161/STROKEAHA.119.025085
    1. Page MJ, Pretorius E. A champion of host defense: a generic large-scale cause for platelet dysfunction and depletion in infection. Semin Thromb Hemost. (2020) 46:302–19. 10.1055/s-0040-1708827
    1. Assinger A, Laky M, Badrnya S, Esfandeyari A, Volf I. Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4. Thromb Res. (2012) 130:e73–8. 10.1016/j.thromres.2012.04.017
    1. He Y, Lawlor NT, Newburg DS. Human milk components modulate Toll-like receptor-mediated inflammation. Adv Nutr. (2016) 7:102–11. 10.3945/an.115.010090
    1. Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, et al. . Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. (2009) 182:7997–8004. 10.4049/jimmunol.0802884
    1. De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest. (2018) 48(Suppl. 2):e12949. 10.1111/eci.12949
    1. Seo YD, Jiang X, Sullivan KM, Jalikis FG, Smythe KS, Abbasi A, et al. . Mobilization of CD8(+) T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin Cancer Res. (2019) 25:3934–45. 10.1158/1078-0432.CCR-19-0081
    1. Sanui T, Takeshita M, Fukuda T, Haraguchi A, Aida Y, Nishimura F. Anti-CD14 antibody-treated neutrophils respond to lps: possible involvement of CD14 upregulated by anti-CD14 antibody binding. Immunol Invest. (2017) 46:190–200. 10.1080/08820139.2016.1238925
    1. Palipane M, Snyder JD, LeMessurier KS, Schofield AK, Woolard SN, Samarasinghe AE. Macrophage CD14 impacts immune defenses against influenza virus in allergic hosts. Microb Pathog. (2019) 127:212–9. 10.1016/j.micpath.2018.12.008
    1. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harbor Perspect Biol. (2011) 3:a004952. 10.1101/cshperspect.a004952
    1. Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol. (2014) 88:13221–30. 10.1128/JVI.02078-14
    1. Seong K-J, Lee H-G, Kook MS, Ko H-M, Jung J-Y, Kim W-J. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice. Korean J Physiol Pharmacol. (2016) 20:41–51. 10.4196/kjpp.2016.20.1.41
    1. Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, et al. . Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron. (2007) 56:66–78. 10.1016/j.neuron.2007.08.008
    1. Kanekiyo T, Cirrito JR, Liu CC, Shinohara M, Li J, Schuler DR, et al. . Neuronal clearance of amyloid-beta by endocytic receptor LRP1. J Neurosci. (2013) 33:19276–83. 10.1523/JNEUROSCI.3487-13.2013
    1. McMahon CM, Isabella CR, Windsor IW, Kosma P, Raines RT, Kiessling LL. Stereoelectronic effects impact glycan recognition. J Am Chem Soc. (2020) 142:2386–95. 10.1021/jacs.9b11699
    1. Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol. (2015) 7:1339–77. 10.1039/c5ib00158g
    1. Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol. (2019) 13:3–15. 10.1080/17474124.2019.1543023
    1. Lv X, Wang H, Su A, Xu S, Chu Y. Herpes simplex virus type 2 infection triggers AP-1 transcription activity through TLR4 signaling in genital epithelial cells. Virol J. (2018) 15:173. 10.1186/s12985-018-1087-3
    1. Chen B, Molecular mechanism of HIV-1 entry Trends Microbiol. (2019) 27:878–91. 10.1016/j.tim.2019.06.002
    1. Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, et al. . The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, HIV infections. Virulence. (2019) 10:376–413. 10.1080/21505594.2019.1605803
    1. Lee ACY, Zhang AJX, Chu H, Li C, Zhu H, Mak WWN, et al. . H7N9 influenza A virus activation of necroptosis in human monocytes links innate and adaptive immune responses. Cell Death Dis. (2019) 10:442. 10.1038/s41419-019-1684-0
    1. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. (1988) 55:1189–93. 10.1016/0092-8674(88)90263-2
    1. Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, et al. . Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS ONE. (2011) 6:e23710. 10.1371/journal.pone.0023710
    1. Naskalska A, Dabrowska A, Szczepanski A, Milewska A, Jasik KP, Pyrc K. Membrane protein of human coronavirus NL63 is responsible for interaction with the adhesion receptor. J Virol. (2019) 93:e00355-19. 10.1128/JVI.00355-19
    1. Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan sulfate proteoglycans and viral attachment: true receptors or adaptation bias? Viruses. (2019) 11:E596 10.3390/v11070596
    1. Szczepanski A, Owczarek K, Bzowska M, Gula K, Drebot I, Ochman M, et al. . Canine respiratory coronavirus, bovine coronavirus, and human coronavirus OC43: receptors and attachment factors. Viruses. (2019) 11:E328. 10.3390/v11040328
    1. Cornish-Bowden A, Hofmeyr J-HS, Cárdenas ML. Strategies for manipulating metabolic fluxes in biotechnology. Bioorg Chem. (1995) 23:439–49. 10.1006/bioo.1995.1030
    1. Kell DB, Knowles JD. The role of modeling in systems biology. In: Szallasi Z, Stelling J, Periwal V, editors. System Modeling in Cellular Biology: From Concepts to Nuts and Bolts. Cambridge: MIT Press; (2006). p. 3–18.
    1. Liu C, Tang X, Zhang W, Li G, Chen Y, Guo A, et al. . 6-Bromoindirubin-3'-oxime suppresses LPS-induced inflammation via inhibition of the TLR4/NF-κB and TLR4/MAPK signaling pathways. Inflammation. (2019) 42:2192–204. 10.1007/s10753-019-01083-1
    1. Zhou P, She Y, Dong N, Li P, He H, Borio A, et al. . Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature. (2018) 561:122–6. 10.1038/s41586-018-0433-3
    1. Srivastava M, Saqib U, Banerjee S, Wary K, Kizil B, Muthu K, et al. . Inhibition of the TIRAP-c-Jun interaction as a therapeutic strategy for AP1-mediated inflammatory responses. Int Immunopharmacol. (2019) 71:188–97. 10.1016/j.intimp.2019.03.031
    1. Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. (2013) 17:638–50. 10.1016/j.intimp.2013.06.034
    1. Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. An Acad Bras Cienc. (2009) 81:409–29. 10.1590/S0001-37652009000300007
    1. Christianson HC, Belting M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. (2014) 35:51–5. 10.1016/j.matbio.2013.10.004
    1. Milewska A, Nowak P, Owczarek K, Szczepanski A, Zarebski M, Hoang A, et al. . Entry of human coronavirus NL63 into the cell. J Virol. (2018) 92:e01933–17. 10.1128/JVI.01933-17
    1. Xu D, Olson J, Cole JN, van Wijk XM, Brinkmann V, Zychlinsky A, et al. . Heparan sulfate modulates neutrophil and endothelial function in antibacterial innate immunity. Infect Immun. (2015) 83:3648–56. 10.1128/IAI.00545-15
    1. Elass-Rochard E, Legrand D, Salmon V, Roseanu A, Trif M, Tobias PS, et al. . Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun. (1998) 66:486–91. 10.1128/IAI.66.2.486-491.1998
    1. Baveye S, Elass E, Mazurier J, Spik G, Legrand D. Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med. (1999) 37:281–6. 10.1515/CCLM.1999.049
    1. Kimoto Y, Nishinohara M, Sugiyama A, Haruna A, Takeuchi T. Protective effect of lactoferrin on cisplatin-induced nephrotoxicity in rats. J Vet Med Sci. (2013) 75:159–64. 10.1292/jvms.12-0154
    1. Hediger MA, Clemencon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med. (2013) 34:95–107. 10.1016/j.mam.2012.12.009
    1. Dobson PD, Kell DB. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Disc. (2008) 7:205–20. 10.1038/nrd2438
    1. Kell DB. What would be the observable consequences if phospholipid bilayer diffusion of drugs into cells is negligible? Trends Pharmacol Sci. (2015) 36:15–21. 10.1016/j.tips.2014.10.005
    1. Kell DB. The transporter-mediated cellular uptake of pharmaceutical drugs is based on their metabolite-likeness and not on their bulk biophysical properties: towards a systems pharmacology. Perspect Sci. (2015) 6:66–83. 10.1016/j.pisc.2015.06.004
    1. Kell DB, Dobson PD, Bilsland E, Oliver SG. The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Disc Today. (2013) 18:218–39. 10.1016/j.drudis.2012.11.008
    1. Kell DB, Dobson PD, Oliver SG. Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Disc Today. (2011) 16:704–14. 10.1016/j.drudis.2011.05.010
    1. Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol. (2014) 5:231. 10.3389/fphar.2014.00231
    1. Superti-Furga G, Lackner D, Wiedme T, Ingles-Prieto A, Barbosa B, Girardi E, et al. . The RESOLUTE consortium: unlocking SLC transporters for drug discovery. Nat Rev Drug Discov. (2020). 10.1038/d41573-020-00056-6. [Epub ahead of print]
    1. Girardi E, César-Razquin A, Lindinger S, Papakostas K, Konecka J, Hemmerich J, et al. . A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nat Chem Biol. (2020) 16:469–78. 10.1038/s41589-020-0483-3
    1. Harada E, Itoh Y, Sitizyo K, Takeuchi T, Araki Y, Kitagawa H. Characteristic transport of lactoferrin from the intestinal lumen into the bile via the blood in piglets. Comp Biochem Physiol A Mol Integr Physiol. (1999) 124:321–7. 10.1016/S1095-6433(99)00122-1
    1. Matsuzaki T, Nakamura M, Nogita T, Sato A. Cellular uptake and release of intact lactoferrin and its derivatives in an intestinal enterocyte model of Caco-2 cells. Biol Pharm Bull. (2019) 42:989–95. 10.1248/bpb.b19-00011
    1. Talukder MJ, Takeuchi T, Harada E. Characteristics of lactoferrin receptor in bovine intestine: higher binding activity to the epithelium overlying Peyer's patches. J Vet Med A Physiol Pathol Clin Med. (2003) 50:123–31. 10.1046/j.1439-0442.2003.00512.x
    1. Takeuchi T, Jyonotsuka T, Kamemori N, Kawano G, Shimizu H, Ando K, et al. . Enteric-formulated lactoferrin was more effectively transported into blood circulation from gastrointestinal tract in adult rats. Exp Physiol. (2006) 91:1033–40. 10.1113/expphysiol.2006.034876
    1. Ishikado A, Imanaka H, Takeuchi T, Harada E, Makino T. Liposomalization of lactoferrin enhanced it's anti-inflammatory effects via oral administration. Biol Pharm Bull. (2005) 28:1717–21. 10.1248/bpb.28.1717
    1. Roseanu A, Florian PE, Moisei M, Sima LE, Evans RW, Trif M. Liposomalization of lactoferrin enhanced its anti-tumoral effects on melanoma cells. Biometals. (2010) 23:485–92. 10.1007/s10534-010-9312-6
    1. Takeuchi T, Kitagawa H, Harada E. Evidence of lactoferrin transportation into blood circulation from intestine via lymphatic pathway in adult rats. Exp Physiol. (2004) 89:263–70. 10.1113/expphysiol.2003.026633
    1. Wakabayashi H, Kuwata H, Yamauchi K, Teraguchi S, Tamura Y. No detectable transfer of dietary lactoferrin or its functional fragments to portal blood in healthy adult rats. Biosci Biotechnol Biochem. (2004) 68:853–60. 10.1271/bbb.68.853
    1. Kamemori N, Takeuchi T, Sugiyama A, Miyabayashi M, Kitagawa H, Shimizu H, et al. . Trans-endothelial and trans-epithelial transfer of lactoferrin into the brain through BBB and BCSFB in adult rats. J Vet Med Sci. (2008) 70:313–5. 10.1292/jvms.70.313
    1. Talukder MJ, Takeuchi T, Harada E. Receptor-mediated transport of lactoferrin into the cerebrospinal fluid via plasma in young calves. J Vet Med Sci. (2003) 65:957–64. 10.1292/jvms.65.957
    1. Reghunathan R, Jayapal M, Hsu LY, Chng HH, Tai D, Leung BP, et al. . Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunol. (2005) 6:2. 10.1186/1471-2172-6-2
    1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. . Neutrophil extracellular traps kill bacteria. Science. (2004) 303:1532–5. 10.1126/science.1092385
    1. F.Castanheira VS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. (2019) 133:2178–85. 10.1182/blood-2018-11-844530
    1. Hahn J, Knopf J, Maueröder C, Kienhöfer D, Leppkes M, Herrmann M. Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation. Clin Exp Rheumatol. (2016) 34:6–8. Available online at:
    1. Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, et al. . Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev. (2017) 16:1160–73. 10.1016/j.autrev.2017.09.012
    1. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. (2018) 18:134–47. 10.1038/nri.2017.105
    1. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. . Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. (2009) 5:e1000639. 10.1371/journal.ppat.1000639
    1. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. (2017) 23:279–87. 10.1038/nm.4294
    1. Law SM, Gray RD. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. J Inflamm. (2017) 14:29. 10.1186/s12950-017-0176-1
    1. Petrik M, Zhai C, Haas H, Decristoforo C. Siderophores for molecular imaging applications. Clin Transl Imaging. (2017) 5:15–27. 10.1007/s40336-016-0211-x
    1. Beddek AJ, Schryvers AB. The lactoferrin receptor complex in Gram negative bacteria. Biometals. (2010) 23:377–86. 10.1007/s10534-010-9299-z
    1. Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol. (2017) 52:314–26. 10.1080/10409238.2017.1293606
    1. Wandersman C, Stojiljkovic I. Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol. (2000) 3:215–20. 10.1016/S1369-5274(00)00078-3
    1. Huang W, Wilks A. Extracellular heme uptake and the challenge of bacterial cell membranes. Annu Rev Biochem. (2017) 86:799–823. 10.1146/annurev-biochem-060815-014214
    1. Redwan EM, Uversky VN, El-Fakharany EM, Al-Mehdar H. Potential lactoferrin activity against pathogenic viruses. C R Biol. (2014) 337:581–95. 10.1016/j.crvi.2014.08.003
    1. Chen JM, Fan YC, Lin JW, Chen YY, Hsu WL, Chiou SS. Bovine lactoferrin inhibits dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. Int J Mol Sci. (2017) 18:E1957. 10.3390/ijms18091957
    1. Carvalho CAM, Casseb SMM, Goncalves RB, Silva EVP, Gomes AMO, Vasconcelos PFC. Bovine lactoferrin activity against Chikungunya and Zika viruses. J Gen Virol. (2017) 98:1749–54. 10.1099/jgv.0.000849
    1. Fernandes KE, Carter DA. The antifungal activity of lactoferrin and its derived peptides: mechanisms of action and synergy with drugs against fungal pathogens. Front Microbiol. (2017) 8:2. 10.3389/fmicb.2017.00002
    1. Liao H, Liu S, Wang H, Su H, Liu Z. Enhanced antifungal activity of bovine lactoferrin-producing probiotic Lactobacillus casei in the murine model of vulvovaginal candidiasis. BMC Microbiol. (2019) 19:7. 10.1186/s12866-018-1370-x
    1. Andrés MT, Acosta-Zaldívar M, Fierro JF. Antifungal mechanism of action of lactoferrin: identification of H+-ATPase (P3A-type) as a new apoptotic-cell membrane receptor. Antimicrob Agents Chemother. (2016) 60:4206–16. 10.1128/AAC.03130-15
    1. Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: structure, function, denaturation and digestion. Crit Rev Food Sci Nutr. (2019) 59:580–96. 10.1080/10408398.2017.1381583
    1. Nairz M, Schroll A, Sonnweber T, Weiss G. The struggle for iron - a metal at the host-pathogen interface. Cell Microbiol. (2010) 12:1691–702. 10.1111/j.1462-5822.2010.01529.x
    1. Brooks CL, Arutyunova E, Lemieux MJ. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences. Acta Crystallogr F Struct Biol Commun. (2014) 70:1312–7. 10.1107/S2053230X14019372
    1. Weinberg ED. Iron availability and infection. Biochim Biophys Acta. (2009) 1790:600–5. 10.1016/j.bbagen.2008.07.002
    1. Schryvers AB, Stojiljkovic I. Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol. (1999) 32:1117–23. 10.1046/j.1365-2958.1999.01411.x
    1. Fransson GB, Lönnerdal B. Iron in human milk. J Pediatr. (1980) 96:380–4. 10.1016/S0022-3476(80)80676-7
    1. Legrand D. Overview of lactoferrin as a natural immune modulator. J Pediatr. (2016) 173(Suppl.):S10–5. 10.1016/j.jpeds.2016.02.071
    1. Belting M. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci. (2003) 28:145–51. 10.1016/S0968-0004(03)00031-8
    1. Drobni P, Näslund J, Evander M. Lactoferrin inhibits human papillomavirus binding and uptake in vitro. Antiviral Res. (2004) 64:63–8. 10.1016/S0166-3542(04)00123-8
    1. Puddu P, Borghi P, Gessani S, Valenti P, Belardelli F, Seganti L. Antiviral effect of bovine lactoferrin saturated with metal ions on early steps of human immunodeficiency virus type 1 infection. Int J Biochem Cell Biol. (1998) 30:1055–62. 10.1016/S1357-2725(98)00066-1
    1. Superti F, Siciliano R, Rega B, Giansanti F, Valenti P, Antonini G. Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection. Biochim Biophys Acta. (2001) 1528:107–15. 10.1016/S0304-4165(01)00178-7
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. (2020) 395:1033–4. 10.1016/S0140-6736(20)30628-0
    1. Kell DB, Pretorius E. To what extent are the terminal stages of sepsis, septic shock, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome actually driven by a prion/amyloid form of fibrin? Semin Thromb Hemost. (2018) 44: 224–38.
    1. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. (2020). 10.1016/j.jmii.2020.03.005. [Epub ahead of print]
    1. Zenewicz LA. IL-22: there is a gap in our knowledge. Immunohorizons. (2018) 2:198–207. 10.4049/immunohorizons.1800006
    1. Tse GM, To KF, Chan PK, Lo AW, Ng KC, Wu A, et al. . Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J Clin Pathol. (2004) 57:260–5. 10.1136/jcp.2003.013276
    1. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. (2020) 94:e00127-20. 10.1128/JVI.00127-20
    1. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. (2020) 11:995–8. 10.1021/acschemneuro.0c00122
    1. D'Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the “cytokine storm” for therapeutic benefit. Clin Vaccine Immunol. (2013) 20:319–27. 10.1128/CVI.00636-12
    1. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. (2020) 506:145–8. 10.1016/j.cca.2020.03.022
    1. Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res. (2020) 21:74. 10.1186/s12931-020-01338-8
    1. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. (2020) e3319. 10.1002/dmrr.3319. [Epub ahead of print].
    1. Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. (2020). 10.1093/eurheartj/ehaa254. [Epub ahead of print].
    1. Heidt T, Ehrismann S, Hövener JB, Neudorfer I, Hilgendorf I, Reisert M, et al. . Molecular imaging of activated platelets allows the detection of pulmonary embolism with magnetic resonance imaging. Sci Rep. (2016) 6:25044. 10.1038/srep25044
    1. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. (2020) 18:1094–99. 10.1111/jth.14851
    1. Ames BN. Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci USA. (2018) 115:10836–44. 10.1073/pnas.1809045115
    1. Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius R, Roberts TJ, et al. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev. (2020) 1−28. 10.1017/S0954422419000301. [Epub ahead of print].
    1. Kawakami H, Park H, Park S, Kuwata H, Shephard RJ, Aoyagi Y. Effects of enteric-coated lactoferrin supplementation on the immune function of elderly individuals: a randomised, double-blind, placebo-controlled trial. Int Dairy J. (2015) 47:79–85. 10.1016/j.idairyj.2015.02.001
    1. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta. (1992) 1121:130–6. 10.1016/0167-4838(92)90346-F
    1. Pammi M, Suresh G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. (2017) 6:CD007137. 10.1002/14651858.CD007137.pub5
    1. Cooper CA, Nelson KM, Maga EA, Murray JD. Consumption of transgenic cows' milk containing human lactoferrin results in beneficial changes in the gastrointestinal tract and systemic health of young pigs. Transgenic Res. (2013) 22:571–8. 10.1007/s11248-012-9662-7
    1. Wang M, Sun Z, Yu T, Ding F, Li L, Wang X, et al. . Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows. Sci Rep. (2017) 7:10733. 10.1038/s41598-017-11462-z
    1. Russo R, Edu A, De Seta. F. Study on the effects of an oral lactobacilli and lactoferrin complex in women with intermediate vaginal microbiota. Arch Gynecol Obstet. (2018) 298:139–45. 10.1007/s00404-018-4771-z
    1. Patras KA, Ha AD, Rooholfada E, Olson J, Ramachandra Rao SP, Lin AE, et al. . Augmentation of urinary lactoferrin enhances host innate immune clearance of uropathogenic Escherichia coli. J Innate Immun. (2019) 11:481–95. 10.1159/000499342
    1. Chanda W, Joseph TP, Wang W, Padhiar AA, Zhong M. The potential management of oral candidiasis using anti-biofilm therapies. Med Hypotheses. (2017) 106:15–8. 10.1016/j.mehy.2017.06.029
    1. Sessa R, Di Pietro M, Filardo S, Bressan A, Mastromarino P, Biasucci AV, et al. . Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection. Pathog Dis. (2017) 75. 10.1093/femspd/ftx054
    1. Morita Y, Ishikawa K, Nakano M, Wakabayashi H, Yamauchi K, Abe F, et al. . Effects of lactoferrin and lactoperoxidase-containing food on the oral hygiene status of older individuals: a randomized, double blinded, placebo-controlled clinical trial. Geriatr Gerontol Int. (2017) 17:714–21. 10.1111/ggi.12776
    1. Sangermano R, Pernarella S, Straker M, Lepanto MS, Rosa L, Cutone A, et al. . The treatment of black stain associated with of iron metabolism disorders with lactoferrin: a litterature search and two case studies. Clin Ter. (2019) 170:e373–81. 10.7417/CT.2019.2163
    1. Cutone A, Lepanto MS, Rosa L, Scotti MJ, Rossi A, Ranucci S, et al. . Aerosolized bovine lactoferrin counteracts infection, inflammation and iron dysbalance in a cystic fibrosis mouse model of Pseudomonas aeruginosa chronic lung infection. Int J Mol Sci. (2019) 20:E2128. 10.3390/ijms20092128
    1. Marshall LJ, Oguejiofor W, Price R, Shur J. Investigation of the enhanced antimicrobial activity of combination dry powder inhaler formulations of lactoferrin. Int J Pharm. (2016) 514:399–406. 10.1016/j.ijpharm.2016.09.034
    1. Oda H, Miyakawa M, Mizuki M, Misawa Y, Tsukahara T, Tanaka M, et al. . Effects of lactoferrin on subjective skin conditions in winter: a preliminary, randomized, double-blinded, placebo-controlled trial. Clin Cosmet Investig Dermatol. (2019) 12:875–80. 10.2147/CCID.S228153
    1. Peroni DG. Viral infections: lactoferrin, a further arrow in the quiver of prevention. J Pediatr Neonat Indiv Med. (2020) 9:e090142.

Source: PubMed

3
Sottoscrivi