White matter changes in chronic and episodic migraine: a diffusion tensor imaging study

Álvaro Planchuelo-Gómez, David García-Azorín, Ángel L Guerrero, Santiago Aja-Fernández, Margarita Rodríguez, Rodrigo de Luis-García, Álvaro Planchuelo-Gómez, David García-Azorín, Ángel L Guerrero, Santiago Aja-Fernández, Margarita Rodríguez, Rodrigo de Luis-García

Abstract

Background: White matter alterations have been observed in patients with migraine. However, no microstructural white matter alterations have been found particularly in episodic or chronic migraine patients, and there is limited research focused on the comparison between these two groups of migraine patients.

Methods: Fifty-one healthy controls, 55 episodic migraine patients and 57 chronic migraine patients were recruited and underwent brain T1-weighted and diffusion-weighted MRI acquisition. Using Tract-Based Spatial Statistics (TBSS), fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity were compared between the different groups. On the one hand, all migraine patients were compared against healthy controls. On the other hand, patients from each migraine group were compared between them and also against healthy controls. Correlation analysis between clinical features (duration of migraine in years, time from onset of chronic migraine in months, where applicable, and headache and migraine frequency, where applicable) and Diffusion Tensor Imaging measures was performed.

Results: Fifty healthy controls, 54 episodic migraine and 56 chronic migraine patients were finally included in the analysis. Significant decreased axial diffusivity (p < .05 false discovery rate and by number of contrasts corrected) was found in chronic migraine compared to episodic migraine in 38 white matter regions from the Johns Hopkins University ICBM-DTI-81 White-Matter Atlas. Significant positive correlation was found between time from onset of chronic migraine and mean fractional anisotropy in the bilateral external capsule, and negative correlation between time from onset of chronic migraine and mean radial diffusivity in the bilateral external capsule.

Conclusions: These findings suggest global white matter structural differences between episodic migraine and chronic migraine. Patients with chronic migraine could present axonal integrity impairment in the first months of chronic migraine with respect to episodic migraine patients. White matter changes after the onset of chronic migraine might reflect a set of maladaptive plastic changes.

Keywords: Chronic migraine; Diffusion tensor imaging; Magnetic resonance imaging (MRI); Migraine; Tract-based spatial statistics.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
White matter alterations in chronic migraine compared to episodic migraine patients. TBSS shows decreased AD values in CM compared to EM in widespread locations with no covariate corrections (top) and correcting for time from onset of CM (bottom). White matter skeleton is shown in green, and voxels with significant differences in red-yellow. The colour bar shows the p-values (uncorrected). The maximum uncorrected p-value for each case is given by FDR and number of contrasts corrections
Fig. 2
Fig. 2
Association graphs between clinical parameters and DTI measures. Significant association with the mean FA in the bilateral external capsule is shown in (a) and (b). Significant association with the mean RD is shown in (c) and (d). LEC = left external capsule; REC = right external capsule
Fig. 3
Fig. 3
DTI measures temporal change hypothesis. Illustrative values are shown for generalized trends in FA, RD and AD (from left to right) in each of the different migraine stages, including a previous healthy control stage. Stages are ordered chronologically from left to right in each subplot. The interpretation of different trends in DTI measures is given in each subplot. The values in the vertical axes should only be used as an orientation to watch the trends and differences between groups, not interpreted as real values

References

    1. Headache Classification Committee of the International Headache Society The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. doi: 10.1177/0333102417738202.
    1. Lipton RB, Fanning KM, Buse DC, Martin VT, Reed ML, Manack Adams A, et al. Identifying natural subgroups of migraine based on comorbidity and concomitant condition profiles: results of the chronic migraine epidemiology and outcomes (CaMEO) study. Headache. 2018;58(7):933–947. doi: 10.1111/head.13342.
    1. Katsarava Z, Buse DC, Manack AN, Lipton RB. Defining the differences between episodic migraine and chronic migraine. Curr Pain Headache Rep. 2012;16(1):86–92. doi: 10.1007/s11916-011-0233-z.
    1. Aurora SK, Brin MF. Chronic migraine: an update on physiology, imaging, and the mechanism of action of two available pharmacologic therapies. Headache. 2017;57(1):109–125. doi: 10.1111/head.12999.
    1. Li XL, Fang YN, Gao QC, Lin EJ, Hu SH, Ren L, et al. A diffusion tensor magnetic resonance image study of Corpus callosum from adult patients with migraine complicated with depressive/anxious disorder. Headache. 2011;51(2):237–245. doi: 10.1111/j.1526-4610.2010.01774.x.
    1. Yuan K, Qin W, Liu P, Zhao L, Yu D, Zhao L, et al. Reduced fractional anisotropy of Corpus callosum modulates inter-hemispheric resting state functional connectivity in migraine patients without Aura. PLoS One. 2012;7(9):e45476. doi: 10.1371/journal.pone.0045476.
    1. Yu D, Yuan K, Qin W, Zhao L, Dong M, Liu P, et al. Axonal loss of white matter in migraine without aura: a tract-based spatial statistics study. Cephalalgia. 2013;33(1):34–42. doi: 10.1177/0333102412466964.
    1. Yu D, Yuan K, Zhao L, Dong M, Liu P, Yang X, et al. White matter integrity affected by depressive symptoms in migraine without aura: a tract-based spatial statistics study. NMR Biomed. 2013;26(9):1103–1112. doi: 10.1002/nbm.2924.
    1. Messina R, Rocca MA, Colombo B, Pagani E, Falini A, Comi G, et al. White matter microstructure abnormalities in pediatric migraine patients. Cephalalgia. 2015;35(14):1278–1286. doi: 10.1177/0333102415578428.
    1. Szabó N, Faragó P, Király A, Veréb A, Csete G, Tóth E, et al. Evidence for plastic processes in migraine with Aura: a diffusion weighted MRI study. Front Neuroanat. 2017;11:138. doi: 10.3389/fnana.2017.00138.
    1. Shibata Y, Ishiyama S, Matsushita A. White matter diffusion abnormalities in migraine and medication overuse headache: A 1.5-T tract-based spatial statistics study. Clin Neurol Neurosurg. 2018;174:167–173. doi: 10.1016/j.clineuro.2018.09.022.
    1. DaSilva AFM, Granziera C, Tuch DS, Snyder J, Vincent M, Hadjikhani N. Interictal alterations of the trigeminal somatosensory pathway and PAG in migraine. Neuroreport. 2007;18(4):301–305. doi: 10.1097/WNR.0b013e32801776bb.
    1. Coppola G, Tinelli E, Lepre C, Iacovelli E, Di Lorenzo C, Di Lorenzo G, et al. Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol. 2014;21(2):287–e13. doi: 10.1111/ene.12296.
    1. Chong CD, Schwedt TJ. Migraine affects white-matter tract integrity: a diffusion-tensor imaging study. Cephalalgia. 2015;35(13):1162–1171. doi: 10.1177/0333102415573513.
    1. Petrušić I, Daković M, Kačar K, Mićić O, Zidverc-Trajković J. Migraine with aura and white matter tract changes. Acta Neurol Belg. 2018;118:485–491. doi: 10.1007/s13760-018-0984-y.
    1. Gomez-Beldarrain M, Oroz I, Garcia Zapirain B, Fernandez Ruanova B, Garcia Fernandez Y, Cabrera A, et al. Right fronto-insular white matter tracts link cognitive reserve and pain in migraine patients [erratum in J headache pain. 2016;17:22] J Headache Pain. 2015;17:4. doi: 10.1186/s10194-016-0593-1.
    1. Liu J, Ma S, Mu J, Chen T, Xu Q, Dun W, et al. Integration of white matter network is associated with Interindividual differences in psychologically mediated placebo response in migraine patients. Hum Brain Mapp. 2017;38(10):5250–5259. doi: 10.1002/hbm.23729.
    1. Rocca MA, Pagani E, Colombo B, Tortorella P, Falini A, Comi G, et al. Selective diffusion changes of the visual pathways in patients with migraine: a 3-T Tractography study. Cephalalgia. 2008;28(10):1061–1068. doi: 10.1111/j.1468-2982.2008.01655.x.
    1. Granziera C, DaSilva AFM, Snyder J, Tuch DS, Hadjikhani N. Anatomical alterations of the visual motion processing network in migraine with and without Aura. PLoS Med. 2006;3(10):e402. doi: 10.1371/journal.pmed.0030402.
    1. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365–391. doi: 10.1146/annurev-physiol-030212-183717.
    1. Dodick DW. A phase-by-phase review of migraine pathophysiology. Headache. 2018;58(Suppl 1):4–16. doi: 10.1111/head.13300.
    1. Neeb L, Bastian K, Villringer K, Gits HC, Israel H, Reuter U, et al. No microstructural white matter alterations in chronic and episodic Migraineurs: a case-control diffusion tensor magnetic resonance imaging study. Headache. 2015;55(2):241–251. doi: 10.1111/head.12496.
    1. Valfrè W, Rainero I, Bergui M, Pinessi L. Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache. 2008;48(1):109–117. doi: 10.1111/j.1526-4610.2007.00723.x.
    1. Neeb L, Bastian K, Villringer K, Israel H, Reuter U, Fiebach JB. Structural gray matter alterations in chronic migraine: implications for a progressive disease? Headache. 2017;57(3):400–416. doi: 10.1111/head.13012.
    1. Schulte LH, Allers A, May A. Hypothalamus as a mediator of chronic migraine. Neurology. 2017;88(21):2011–2016. doi: 10.1212/WNL.0000000000003963.
    1. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–1505. doi: 10.1016/j.neuroimage.2006.02.024.
    1. Headache Classification Committee of the International Headache Society The international classification of headache disorders, 3rd edition (beta version) Cephalalgia. 2013;33(9):629–808. doi: 10.1177/0333102413485658.
    1. Serrano D, Lipton RB, Scher AI, Reed ML, Stewart WF, Manack Adams A, et al. Fluctuations in episodic and chronic migraine status over the course of 1 year: implications for diagnosis, treatment and clinical trial design. J Headache Pain. 2017;18(1):101. doi: 10.1186/s10194-017-0787-1.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Pelletier A, Periot O, Dilharreguy B, Hiba B, Bordessoules M, Chanraud S, et al. Age-related modifications of diffusion tensor imaging parameters and white matter Hyperintensities as inter-dependent processes. Front Aging Neurosci. 2015;7:255.
    1. Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage. 2016;142:394–406. doi: 10.1016/j.neuroimage.2016.08.016.
    1. Tournier J-D, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M et al (2019) MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. bioRxiv Available from: . Accessed 25 July 2019
    1. Andersson JL, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2015;125:1063–1078. doi: 10.1016/j.neuroimage.2015.10.019.
    1. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.
    1. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20:45–57. doi: 10.1109/42.906424.
    1. Dhollander T, Raffelt D, Connelly A (2016) Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. ISMRM Work Break Barriers Diffus MRI 5
    1. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015.
    1. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;18(8):712–721. doi: 10.1109/42.796284.
    1. Mori S, Wakana S, Nagae-Poetscher LM, van Zijl PC. MRI atlas of human white matter. Amsterdam: Elsevier; 2005.
    1. Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, et al. Human brain white matter atlas: identification and assignment of commom anatomical structures in superficial white matter. Neuroimage. 2008;43(3):447–457. doi: 10.1016/j.neuroimage.2008.07.009.
    1. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage. 2008;39(1):336–347. doi: 10.1016/j.neuroimage.2007.07.053.
    1. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1–25. doi: 10.1002/hbm.1058.
    1. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44(1):83–98. doi: 10.1016/j.neuroimage.2008.03.061.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. Hillsdale: Lawrence Erlbaum Associates, Publishers; 1988.
    1. Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JHJ. Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum Brain Mapp. 2010;31(3):378–390.
    1. Winklewski PJ, Sabisz A, Naumczyk P, Jodzio K, Szurowska E, Szarmach A. Understanding the physiopathology behind axial and radial diffusivity changes — what do we know? Front Neurol. 2018;9:92. doi: 10.3389/fneur.2018.00092.
    1. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–329. doi: 10.1016/j.nurt.2007.05.011.
    1. Sun S-W, Liang H-F, Cross AH, Song S-K. Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage. 2008;40(1):1–10. doi: 10.1016/j.neuroimage.2007.11.049.
    1. Pierpaoli C, Barnett A, Pajevic C, Chen R, Penix LR, Virta A, et al. Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage. 2001;13(6 Pt 1):1174–1185. doi: 10.1006/nimg.2001.0765.
    1. Shu N, Wang Z, Qi Z, Li K, He Y. Multiple diffusion indices reveals white matter degeneration in Alzheimer’s disease and mild cognitive impairment: a tract-based spatial statistics study. J Alzheimers Dis. 2011;26(Suppl 3):275–285. doi: 10.3233/JAD-2011-0024.
    1. Szabó N, Kincses ZT, Párdutz A, Tajti J, Szok D, Tuka A, et al. White matter microstructural alterations in migraine: a diffusion-weighted MRI study. Pain. 2012;153(3):651–656. doi: 10.1016/j.pain.2011.11.029.
    1. Kochunov P, Thompson PM, Lancaster JL, Bartzokis G, Smith S, Coyle T, et al. Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: tract-based spatial statistics study of aging. Neuroimage. 2007;35(2):478–487. doi: 10.1016/j.neuroimage.2006.12.021.
    1. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15(7–8):435–455. doi: 10.1002/nbm.782.
    1. Ito K, Kudo M, Sasaki M, Saito A, Yamashita F, Harada T, et al. Detection of changes in the periaqueductal gray matter of patients with episodic migraine using quantitative diffusion kurtosis imaging: preliminary findings. Neuroradiology. 2016;58(2):115–120. doi: 10.1007/s00234-015-1603-8.
    1. Tedeschi G, Russo A, Conte F, Corbo D, Caiazzo G, Giordano A, et al. Increased interictal visual network connectivity in patients with migraine with aura. Cephalalgia. 2016;36(2):139–147. doi: 10.1177/0333102415584360.
    1. Coppola G, Di Renzo A, Tinelli E, Di Lorenzo C, Di Lorenzo G, Parisi V, et al. Thalamo-cortical network activity during spontaneous migraine attacks. Neurology. 2016;87(20):2154–2160. doi: 10.1212/WNL.0000000000003327.
    1. Zhang J, Wu YL, Su J, Yao Q, Wang M, Li GF, et al. Assessment of gray and white matter structural alterations in migraineurs without aura. J Headache Pain. 2017;18(1):74. doi: 10.1186/s10194-017-0783-5.
    1. Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One. 2011;6(6):e20678. doi: 10.1371/journal.pone.0020678.
    1. Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, Jbabdi S, et al. Motor skill learning induces changes in white matter microstructure and myelination. J Neurosci. 2013;33(50):19499–19503. doi: 10.1523/JNEUROSCI.3048-13.2013.
    1. Ribas EC, Yağmurlu K, de Oliveira E, Ribas GC, Rhoton A. Microsurgical anatomy of the central core of the brain. J Neurosurg. 2018;129(3):752–769. doi: 10.3171/2017.5.JNS162897.
    1. Russo A, Coppola G, Pierelli F, Parisi V, Silvestro M, Tessitore A, et al. Pain perception and migraine. Front Neurol. 2018;9:576. doi: 10.3389/fneur.2018.00576.
    1. Borsook D, Veggeberg R, Erpelding N, Borra N, Linnman C, Burstein R, et al. The insula: a “hub of activity” in migraine. Neuroscientist. 2016;22(6):632–652. doi: 10.1177/1073858415601369.
    1. Porter A, Gladstone JP, Dodick DW. Migraine and white matter hyperintensities. Curr Pain Headache Rep. 2005;9(4):289–293. doi: 10.1007/s11916-005-0039-y.
    1. Yalcin A, Ceylan M, Bayraktutan OF, Akkurt A. Episodic migraine and white matter Hyperintensities: Association of Pain Lateralization. Pain Med. 2018;19(10):2051–2057. doi: 10.1093/pm/pnx312.
    1. Xie H, Zhang Q, Huo K, Liu R, Jian Z-J, Bian Y-T, et al. Association of white matter hyperintensities with migraine features and prognosis. BMC Neurol. 2018;18:93. doi: 10.1186/s12883-018-1096-2.
    1. Lantéri-Minet M, Radat F, Chautard MH, Lucas C. Anxiety and depression associated with migraine: influence on migraine subjects’ disability and quality of life, and acute migraine management. Pain. 2005;118(3):319–326. doi: 10.1016/j.pain.2005.09.010.
    1. Baskin SM, Lipchik GL, Smitherman TA. Mood and anxiety disorders in chronic headache. Headache. 2006;46(Suppl 3):S76–S87. doi: 10.1111/j.1526-4610.2006.00559.x.
    1. Minen MT. Begasse De Dhaem O, kroon Van Diest a, powers S, Schwedt TJ, Lipton R, et al. migraine and its psychiatric comorbidities. J Neurol Neurosurg Psychiatry. 2016;87(7):741–749. doi: 10.1136/jnnp-2015-312233.
    1. May A. Understanding migraine as a cycling brain syndrome: reviewing the evidence from functional imaging. Neurol Sci. 2017;38(Suppl 1):125–130. doi: 10.1007/s10072-017-2866-0.
    1. Karsan N, Goadsby PJ. Biological insights from the premonitory symptoms of migraine. Nat Rev Neurol. 2018;14(12):699–710. doi: 10.1038/s41582-018-0098-4.

Source: PubMed

3
Sottoscrivi