Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter

Kenichi Oishi, Karl Zilles, Katrin Amunts, Andreia Faria, Hangyi Jiang, Xin Li, Kazi Akhter, Kegang Hua, Roger Woods, Arthur W Toga, G Bruce Pike, Pedro Rosa-Neto, Alan Evans, Jiangyang Zhang, Hao Huang, Michael I Miller, Peter C M van Zijl, John Mazziotta, Susumu Mori, Kenichi Oishi, Karl Zilles, Katrin Amunts, Andreia Faria, Hangyi Jiang, Xin Li, Kazi Akhter, Kegang Hua, Roger Woods, Arthur W Toga, G Bruce Pike, Pedro Rosa-Neto, Alan Evans, Jiangyang Zhang, Hao Huang, Michael I Miller, Peter C M van Zijl, John Mazziotta, Susumu Mori

Abstract

Structural delineation and assignment are the fundamental steps in understanding the anatomy of the human brain. The white matter has been structurally defined in the past only at its core regions (deep white matter). However, the most peripheral white matter areas, which are interleaved between the cortex and the deep white matter, have lacked clear anatomical definitions and parcellations. We used axonal fiber alignment information from diffusion tensor imaging (DTI) to delineate the peripheral white matter, and investigated its relationship with the cortex and the deep white matter. Using DTI data from 81 healthy subjects, we identified nine common, blade-like anatomical regions, which were further parcellated into 21 subregions based on the cortical anatomy. Four short association fiber tracts connecting adjacent gyri (U-fibers) were also identified reproducibly among the healthy population. We anticipate that this atlas will be useful resource for atlas-based white matter anatomical studies.

Figures

Figure 1
Figure 1
The ICBM-DTI-81 atlas, hand-segmented DWM structures, and SWM. (A): The ICBM-152 atlas used as a target image to register the DTI data from 81 normal subjects. (B): The ICBMDTI-81 atlas, which was created by linearly averaging the normative DTI data. The hand-segmented WM parcellation map (WMPM) is superimposed. (C): Probabilistic WM map. (D): A 3D view of the WMPM representing the anatomy of the DWM. (E) and (F): 3D views of the SWM, defined by 0.6 white matter probability. Figures[S21] A-D and the WMPM are from our previous publication (Mori et al., 2008b) and are presented in this figure to help visualize the relationship with the SWM.
Figure 2
Figure 2
Nine blade-like structures (blades) defined by different level of the white matter probability in the SWM; A: 60%, B: 70%, C: 80%, and D: 90%. The blades are: superior frontal blade (SF, purple); middle frontal blade (MF, light green); inferior frontal blade (IF, deep green); pre-central blade (PrC, yellow); post-central blade (PoC, blue); superior parietal blade (SP, brown); parieto-temporal blade (PT, red); temporal blade (Tmp, ochre); and occipital blade (OC, light blue).
Figure 3
Figure 3
Results of nine blade identifications in five individual brains. The color assignment is the same as Figure 2.
Figure 4
Figure 4
Comparison of the blade and cortical structures. (A) – (C): Nine blade-like structures (blades) viewed from 3 different angles. (D) – (F): The probabilistic cortical parcellation results obtained from 40 subjects (LPBA40), labeled by the name of gyri. Abbreviations are: SFG, superior frontal girus; MFG, middle frontal girus; IFG, inferior frontal girus; PrCG, pre-central girus; PoCG, post-central girus; SPG; superior parietal girus; SMG, supramarginal girus; AG, angular girus; STG; superior temporal girus; MTG, middle temporal girus; ITG, inferior temporal girus; SOG, superior occipital girus; MOG, middle occipital girus; IFG, inferior occipital girus. The names of the gyri are color-coded based on the color assignment of the blades.
Figure 5
Figure 5
Inter-blade connectivity studies with tractography. (A): Overall fiber structures in the SWM. In most of the blade-like structures, the fiber orientation is aligned along the radial orientation and intra-blade fibers could not be located. (B): Results of inter-blade tract reconstruction. The four short association fibers identified in this study are: frontal short association fiber (yellow); fronto-central short association fibers (green); central short association fibers (red); and parietal short association fibers (blue) . The one long association fiber, the parieto-temporal long association fiber, is shown in purple. (C): Detailed views of the four short association fibers in the left side; the arrow indicates the orientation of the front of the brain.
Figure 6
Figure 6
Locations of the four short association fibers in the ICBM-DTI-81 atlas (ICBM-152 coordinates). The yellow (1), green (2), red (3), and blue (4) arrows indicate the locations of the frontal, fronto-central, central, and parietal association fibers, respectively. The Y and Z slice locations are defined by the distance (mm) from the anterior commissure.
Figure 7
Figure 7
Identification of the four short association fibers in individual brains. Results from five normal individuals, not included in the ICBM-DTI-81, are shown. The color assignment is the same as Fig. 5.

References

    1. Alexander DC, Pierpaoli C, Basser PJ, Gee JC. Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging. 2001;20:1131–1139.
    1. Amunts K, Zilles K, editors. Advances in cytoarchitectonic mapping of the human cerebral cortex. Saunders Company; Philadelphia: 2001.
    1. Axer H, Keyserlingk DG. Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy. J Neurosci Methods. 2000;94:165–175.
    1. Barbas H, Pandya DN. Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol. 1987;256:211–228.
    1. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B. 1994;103:247–254.
    1. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vitro fiber tractography using DT-MRI data. Magn. Reson. Med. 2000;44:625–632.
    1. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6:750–757.
    1. Burgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage. 2006;29:1092–1105.
    1. Burgel U, Mecklenburg I, Blohm U, Zilles K. Histological visualization of long fiber tracts in the white matter of adult human brains. J Hirnforsch. 1997;38:397–404.
    1. Burgel U, Schormann T, Schleicher A, Zilles K. Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage. 1999;10:489–499.
    1. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17:77–94.
    1. Catani M, Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57:8–16.
    1. Cervos-Navarro J, Lafuente JV, Gutierrez E, Kannuki S. Subcortical U-fibers layer preservation in brain edema. Acta Neurochir Suppl (Wien) 1994;60:151–154.
    1. Clarke S, Miklossy J. Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol. 1990;298:188–214.
    1. Cobb S, Pool JL, Scarff J, Schwab RS, Walker AE, White JC. Section of U fibers of motor cortex in cases of paralysis agitans (Parkinson's disease); report of 9 cases. Arch Neurol Psychiatry. 1950;64:57–59.
    1. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME. Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. USA. 1999;96:10422–10427.
    1. Crosby E, Humphrey T, Lauer E. Correlative anatomy of the nervous system. MacMillan; New York: 1962.
    1. Dejerine J. Anatomie des centres nerveux. Rueff; Paris: 1895.
    1. Eickhoff S, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25:1325–1335.
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–191.
    1. Flechsig P. Anatomie des menschlichen Gehirns und Ruchenmarks auf myelogenetischer Grundlage. Thieme; Leipzig: 1920.
    1. Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2001;45:935–939.
    1. Huang H, Zhang J, van Zijl PC, Mori S. Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach. Magn Reson Med. 2004;52:559–565.
    1. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25:356–369.
    1. Jiang H, van Zijl PC, J. K, Pearlson GD, Mori S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed. 2006;81:106–116.
    1. Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 1999;42:515–525.
    1. Kahle W, Leonhardt H, Platzer W. Taschenatlas der Anatomie fur Studium and Praxis; Stuttgart: 1986.
    1. Krieg W. Connections of the cerebral cortex. Brain books; Evanston, IL: 1963.
    1. Kurachi Y, Sakakihara Y, Kubota M, Oka A, Hatakeyama K, Nose K, Yazawa K. Preferential involvement of U-fibers in human herpesvirus 6-associated acute encephalopathy. Ann Neurol. 1999;45:684.
    1. Leichnetz GR. Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8. J Comp Neurol. 1986;254:460–492.
    1. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Jr., Pandya DN. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2005;15:854–869.
    1. Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Reese TG, Wedeen VJ, Davis TL, Stakes JW, Caviness VS, Kaplan E, Rosen BR, Pandya DN, Kennedy DN. Morphometry of in vivo human white matter association pathways with diffusion weighted magnetic resonance imaging. Ann. Neurol. 1997;42:951–962.
    1. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J. A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage. 1995;2:89–101.
    1. Meynert T, editor. Vom Gehirn der Saugetiere. Engelmann; Leipzig: 1872.
    1. Mori S, Crain BJ, Chacko VP, van Zijl PCM. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annal. Neurol. 1999;45:265–269.
    1. Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV, Moser HW, van Zijl PCM. Imaging cortical association tracts in human brain. Magn Reson Med. 2002;47:215–223.
    1. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage. 2008a
    1. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008b;40:570–582.
    1. Mori S, Wakana S, Nagae-Poetscher LM, van Zijl PC. MRI atlas of human white matter. Elsevier; Amsterdam, The Netherlands: 2005.
    1. Pandya DN, Kuypers HG. Cortico-cortical connections in the rhesus monkey. Brain Res. 1969;13:13–36.
    1. Pandya DN, Vignolo LA. Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res. 1971;26:217–233.
    1. Parker GJ, Stephan KE, Barker GJ, Rowe JB, MacManus DG, Wheeler-Kingshott CA, Ciccarelli O, Passingham RE, Spinks RL, Lemon RN, Turner R. Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. Neuroimage. 2002;15:797–809.
    1. Petrides M, Pandya DN. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol. 1984;228:105–116.
    1. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn.Reson.Med. 1996;36:893–906.
    1. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of human brain. Radiology. 1996;201:637–648.
    1. Poupon C, Clark CA, Frouin V, Regis J, Bloch L, Le Bihan D, Mangin JF. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicules. Neuroimage. 2000;12:184–195.
    1. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–962.
    1. Stieltjes B, Kaufmann WE, van Zijl PCM, Fredericksen K, Pearlson GD, Mori S. Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage. 2001;14:723–735.
    1. Toga AW, Thompson PM, Mori S, Amunts K, Zilles K. Towards multimodal atlases of the human brain. Nat Rev Neurosci. 2006;7:952–966.
    1. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48:577–582.
    1. Wakana S, Jiang H, Nagae-Poetscher LM, Van Zijl PC, Mori S. Fiber Tract-based Atlas of Human White Matter Anatomy. Radiology. 2004;230:77–87.
    1. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr. 1998;22:139–152.
    1. Xu D, Mori S, Shen D, van Zijl PC, Davatzikos C. Spatial normalization of diffusion tensor fields. Magn Reson Med. 2003;50:175–182.
    1. Xue R, van Zijl PCM, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn. Reson. Med. 1999;42:1123–1127.
    1. Zilles K, editor. Architecture of the human cerebral cortex: Regional and laminar organization. Elsevier; Amsterdam: 2004.

Source: PubMed

3
Sottoscrivi