Distinct but Spatially Overlapping Intestinal Niches for Vancomycin-Resistant Enterococcus faecium and Carbapenem-Resistant Klebsiella pneumoniae

Silvia Caballero, Rebecca Carter, Xu Ke, Bože Sušac, Ingrid M Leiner, Grace J Kim, Liza Miller, Lilan Ling, Katia Manova, Eric G Pamer, Silvia Caballero, Rebecca Carter, Xu Ke, Bože Sušac, Ingrid M Leiner, Grace J Kim, Liza Miller, Lilan Ling, Katia Manova, Eric G Pamer

Abstract

Antibiotic resistance among enterococci and γ-proteobacteria is an increasing problem in healthcare settings. Dense colonization of the gut by antibiotic-resistant bacteria facilitates their spread between patients and also leads to bloodstream and other systemic infections. Antibiotic-mediated destruction of the intestinal microbiota and consequent loss of colonization resistance are critical factors leading to persistence and spread of antibiotic-resistant bacteria. The mechanisms underlying microbiota-mediated colonization resistance remain incompletely defined and are likely distinct for different antibiotic-resistant bacterial species. It is unclear whether enterococci or γ-proteobacteria, upon expanding to high density in the gut, confer colonization resistance against competing bacterial species. Herein, we demonstrate that dense intestinal colonization with vancomycin-resistant Enterococcus faecium (VRE) does not reduce in vivo growth of carbapenem-resistant Klebsiella pneumoniae. Reciprocally, K. pneumoniae does not impair intestinal colonization by VRE. In contrast, transplantation of a diverse fecal microbiota eliminates both VRE and K. pneumoniae from the gut. Fluorescence in situ hybridization demonstrates that VRE and K. pneumoniae localize to the same regions in the colon but differ with respect to stimulation and invasion of the colonic mucus layer. While VRE and K. pneumoniae occupy the same three-dimensional space within the gut lumen, their independent growth and persistence in the gut suggests that they reside in distinct niches that satisfy their specific in vivo metabolic needs.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Pre-colonization with VRE does not…
Fig 1. Pre-colonization with VRE does not prevent colonization by K. pneumoniae.
(A) Experimental design. Mice were treated with ampicillin for 29 days. On day 5 of ampicillin treatment, mice were inoculated with 5x104 colony-forming units (CFU) of VRE by oral gavage or left uninfected. Three days later, half of the VRE-infected mice and the uninfected group were challenged with 5x104 CFU of K. pneumoniae (Kpn). (B, C) CFU of K. pneumoniae (B) and VRE (C) were quantified in fecal pellets collected at different time points post K. pneumoniae inoculation. (D, E) Mice were sacrificed 21 days post K. pneumoniae challenge. K. pneumoniae (D) and VRE (E) burden was quantified in the luminal contents from the duodenum, ileum and cecum. L.O.D., limit of detection. Data were pooled from two independent experiments (n = 10 per group). (B-E) Data were analyzed by the Mann-Whitney test.
Fig 2. Pre-colonization with K . pneumoniae…
Fig 2. Pre-colonization with K. pneumoniae does not prevent colonization by VRE.
(A) Experimental design. Mice were treated with ampicillin for 29 days. On day 5 of ampicillin treatment, mice were inoculated with 5x104 colony-forming units (CFU) of K. pneumoniae (Kpn) by oral gavage o left uninfected. Three days later, half of the K. pneumoniae-infected mice and the uninfected group were challenged with 5x104 CFU of VRE. (B, C) CFU of VRE (B) and K. pneumoniae (C) were quantified in fecal pellets collected at different time points post VRE inoculation. (D, E) Mice were sacrificed 21 days post VRE challenge. VRE (D) and K. pneumoniae (E) burden was quantified in the luminal contents from the duodenum, ileum and cecum. L.O.D., limit of detection. Data were pooled from two independent experiments (n = 10 per group). (B-E) ****P<0.0001, by the the Mann-Whitney test.
Fig 3. K . pneumoniae and VRE…
Fig 3. K. pneumoniae and VRE achieve similar densities in the large intestine of co-colonized mice.
Ampicillin-treated mice were inoculated with K. pneumoniae by oral gavage or left uninfected. Three days later, half of the K. pneumoniae-infected mice and the uninfected group were challenged with VRE. Microbiota composition of mice colonized with VRE alone (V), K. pneumoniae alone (K) or both (VK) was determined by sequencing of the V4-V5 region of the 16S rRNA genes. (A) Fecal microbiota composition at different time points post VRE challenge. (B) Ileal and cecal microbiota composition at day 21 of colonization. (A,B) Each stacked bar represents the average of five individually-housed mice per time point.
Fig 4. Fecal bacteriotherapy eliminates established K…
Fig 4. Fecal bacteriotherapy eliminates established K. pneumoniae and VRE intestinal domination.
(A) Experimental design. Mice were treated with ampicillin for 8 days. On day 5 of ampicillin treatment, mice were simultaneously infected with 5x104 CFU of VRE and K. pneumoniae (Kpn). Three days post infection, ampicillin treatment was stopped. Mice were administered PBS or a fecal microbiota transplant (FMT) from an untreated mouse on three consecutive days starting on the third day after ampicillin cessation. (B, C) VRE and K. pneumoniae burden was quantified in fecal pellets at the indicated time points after the last PBS (B) or FMT (C) dose. (D, E) PBS- and FMT-treated mice were sacrificed on day 10 following the last treatment dose and numbers of K. pneumoniae (D) and VRE (E) CFU were quantified in the duodenum, ileum and cecum. L.O.D., limit of detection. n ≥ 5 per group. (B-E) **P<0.005 by the Mann-Whitney test.
Fig 5. K . pneumoniae and VRE…
Fig 5. K. pneumoniae and VRE occupy a fraction of the total available space in the colon.
(A-E) Visualization of bacterial localization by FISH. Entire colon cross-sections from untreated mice (A) and mice treated with ampicillin for 3 weeks (B) were stained with a universal probe that targets the 16S rRNA gene of all bacteria. Cross-sections from ampicillin-treated mice colonized with K. pneumoniae (C) or VRE (D) for 21 days were hybridized with probes specific for K. pneumoniae (Kpn) and Enterococcus, respectively. Sections were counterstained with Hoechst dye to visualize nuclei. Images are representative of 5 mice per group. Scale bar, 500 μm. (E) Number of bacteria per unit area of whole colon cross-sections. n = 3 per group. ND = non-detectable. Error bars (mean ± SEM). **P<0.005, ***P<0.0005 by the Mann-Whitney test.
Fig 6. K . pneumoniae and VRE…
Fig 6. K. pneumoniae and VRE reside within the same intestinal regions but occupy distinct metabolic niches.
(A-D) Spatial localization of K. pneumoniae and VRE in the colon. Colon sections from ampicillin-treated mice colonized for 21 days with K. pneumoniae alone (A), VRE alone (B) and K. pneumoniae together with VRE (C, D) were hybridized with probes specific for K. pneumoniae and Enterococcus. (D) VRE and K. pneumoniae islands (dashed circles and square) in the colonic lumen of co-colonized mice. (A-D) All sections were counterstained with Hoechst dye to visualize nuclei. Scale bars, 10 μm. Insets, 63X oil objective plus 4X digital zoom. Images are representative of at least 5 mice per group. (E) Minimum distance between neighboring bacteria determined by confocal microscopy. ns = non-significant; ****P<0.0001, by the Mann-Whitney test.
Fig 7. K . pneumoniae and VRE…
Fig 7. K. pneumoniae and VRE colonization influences the thickness of the inner mucus layer.
(A-D) Colon sections from untreated mice (A), ampicillin-treated mice (B) and ampicillin-treated mice mono-colonized with either K. pneumoniae (C) or VRE (D) for 21 days were stained with an anti-Muc2 antibody to visualize the inner and outer mucus layers along with goblet cells (arrows). Double arrows denote the inner mucus layer. i, inner mucus layer; o, outer mucus layer; GC, goblet cell. Scale bars, 10 μm. Images are representative of 5 mice per group. (E) Quantification of inner mucus layer thickness. Error bars (mean ± SEM). n = 3–6 mice per group. ns = non-significant; ***P<0.0005, ****P<0.0001, by the unpaired Student t test.
Fig 8. Differential mucus layer infiltration and…
Fig 8. Differential mucus layer infiltration and translocation by VRE and K. pneumoniae.
(A-C) Dual immunostaining of colon sections from untreated mice (A) and ampicillin-treated mice mono-colonized with either K. pneumoniae (B) or VRE (C) for 21 days using anti-Muc2 and a pan-bacterial 16S rRNA gene FISH probe. Sections were counterstained with Hoechst dye to visualize nuclei. Arrowheads indicate bacteria within the inner mucus layer. Scale bar, 10 μm. Images are representative of 5 mice per group. Boundaries of the inner mucus layer (IML) zone were determined by the density of Muc2 staining and the stratified organization characteristic of the inner, but not outer, mucus layer. (D) Number of bacteria within the IML. UT, untreated. (E) Numbers of VRE and K. pneumoniae in mesenteric lymph nodes of mono-colonized mice and mice pre-colonized with either VRE or K. pneumoniae (initial strain) and challenged with the opposite strain at day 21 post challenge. Data were pooled from two independent experiments. (F) Numbers of VRE and K. pneumoniae in mesenteric lymph nodes of mice co-colonized with VRE and K. pneumoniae with or without a fecal transplant (FMT) 10 days after receiving the last of three FMT/PBS doses. Data were pooled from two independent experiments. L.O.D., limit of detection. (D-F) ns = non-significant; *P<0.05, **P<0.005, by the Mann-Whitney test.

References

    1. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 2014, March 27;370(13):1198–208. 10.1056/NEJMoa1306801
    1. Arias CA, Murray BE. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther 2008, October;6(5):637–55. 10.1586/14787210.6.5.637
    1. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant enterobacteriaceae: Epidemiology and prevention. Clin Infect Dis 2011, July 1;53(1):60–7. 10.1093/cid/cir202
    1. Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant staphylococcus aureus, enterococcus, gram-negative bacilli, clostridium difficile, and candida. Ann Intern Med 2002, June 4;136(11):834–44.
    1. Donskey CJ. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 2004, July 15;39(2):219–26.
    1. Blot S, Depuydt P, Vogelaers D, Decruyenaere J, De Waele J, Hoste E, et al. Colonization status and appropriate antibiotic therapy for nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in an intensive care unit. Infect Control Hosp Epidemiol 2005, June;26(6):575–9.
    1. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et al. Vancomycin-resistant enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010, December;120(12):4332–41. 10.1172/JCI43918
    1. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2012, October;55(7):905–14. 10.1093/cid/cis580
    1. van der Waaij D, Berghuis-de Vries JM, Lekkerkerk Lekkerkerk-v. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 1971, September;69(3):405–11.
    1. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 2013, November;13(11):790–801. 10.1038/nri3535
    1. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, et al. Intestinal microbiota containing barnesiella species cures vancomycin-resistant enterococcus faecium colonization. Infect Immun 2013, March;81(3):965–73. 10.1128/IAI.01197-12
    1. Favre-Bonté S, Licht TR, Forestier C, Krogfelt KA. Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice. Infect Immun 1999, November;67(11):6152–6.
    1. Perez F, Pultz MJ, Endimiani A, Bonomo RA, Donskey CJ. Effect of antibiotic treatment on establishment and elimination of intestinal colonization by kpc-producing klebsiella pneumoniae in mice. Antimicrob Agents Chemother 2011, June;55(6):2585–9. 10.1128/AAC.00891-10
    1. Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008, October 9;455(7214):804–7. 10.1038/nature07250
    1. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010, May;6(5):e1000902 10.1371/journal.ppat.1000902
    1. Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG. Bacterial flagellin stimulates toll-like receptor 5-dependent defense against vancomycin-resistant enterococcus infection. J Infect Dis 2010, February 15;201(4):534–43. 10.1086/650203
    1. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin regiiigamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011, October 14;334(6053):255–8. 10.1126/science.1209791
    1. Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated citrobacter rodentium-induced colitis. Infect Immun 2011, April;79(4):1536–45. 10.1128/IAI.01104-10
    1. Sonnenburg JL, Chen CT, Gordon JI. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 2006, November;4(12):e413
    1. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012;3(4):289–306.
    1. Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, Núñez G. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012, June 8;336(6086):1325–9. 10.1126/science.1222195
    1. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013, September 19;501(7467):426–9. 10.1038/nature12447
    1. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013, October 3;502(7469):96–9. 10.1038/nature12503
    1. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent clostridium difficile. N Engl J Med 2013, January 31;368(5):407–15. 10.1056/NEJMoa1205037
    1. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008, September 30;105(39):15064–9. 10.1073/pnas.0803124105
    1. Caballero S, Pamer EG. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 2015, March 21;33:227–56. 10.1146/annurev-immunol-032713-120238
    1. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 2011, April;9(4):265–78. 10.1038/nrmicro2538
    1. Zarepour M, Bhullar K, Montero M, Ma C, Huang T, Velcich A, et al. The mucin muc2 limits pathogen burdens and epithelial barrier dysfunction during salmonella enterica serovar typhimurium colitis. Infect Immun 2013, October;81(10):3672–83. 10.1128/IAI.00854-13
    1. Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to clostridium difficile-induced colitis. Infect Immun 2012, January;80(1):62–73. 10.1128/IAI.05496-11
    1. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: Surviving and thriving in the microbial jungle. Nat Rev Microbiol 2010, January;8(1):15–25. 10.1038/nrmicro2259
    1. Lam LH, Monack DM. Intraspecies competition for niches in the distal gut dictate transmission during persistent salmonella infection. PLoS Pathog 2014, December;10(12):e1004527 10.1371/journal.ppat.1004527
    1. Meador JP, Caldwell ME, Cohen PS, Conway T. Escherichia coli pathotypes occupy distinct niches in the mouse intestine. Infect Immun 2014, May;82(5):1931–8. 10.1128/IAI.01435-13
    1. Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, Sperandio V. Fucose sensing regulates bacterial intestinal colonization. Nature 2012, December 6;492(7427):113–7. 10.1038/nature11623
    1. Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, et al. Carbon nutrition of escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 2004, May 11;101(19):7427–32.
    1. Pultz NJ, Hoskins LC, Donskey CJ. Vancomycin-resistant enterococci may obtain nutritional support by scavenging carbohydrate fragments generated during mucin degradation by the anaerobic microbiota of the colon. Microb Drug Resist 2006;12(1):63–7.
    1. Ferreyra JA, Ng KM, Sonnenburg JL. The enteric two-step: Nutritional strategies of bacterial pathogens within the gut. Cell Microbiol 2014, July;16(7):993–1003. 10.1111/cmi.12300
    1. Liao YC, Huang TW, Chen FC, Charusanti P, Hong JS, Chang HY, et al. An experimentally validated genome-scale metabolic reconstruction of klebsiella pneumoniae MGH 78578, iyl1228. J Bacteriol 2011, April;193(7):1710–7. 10.1128/JB.01218-10
    1. Schinner SA, Mokszycki ME, Adediran J, Leatham-Jensen M, Conway T, Cohen PS. Escherichia coli EDL933 requires gluconeogenic nutrients to successfully colonize the intestines of streptomycin-treated mice precolonized with E. Coli nissle 1917. Infect Immun 2015, May;83(5):1983–91. 10.1128/IAI.02943-14
    1. Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015, February;16(2):164–77. 10.15252/embr.201439263
    1. O'Boyle CJ, MacFie J, Mitchell CJ, Johnstone D, Sagar PM, Sedman PC. Microbiology of bacterial translocation in humans. Gut 1998, January;42(1):29–35.
    1. Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 2013, March 21;38(3):581–95. 10.1016/j.immuni.2013.01.009
    1. Diehl GE, Longman RS, Zhang JX, Breart B, Galan C, Cuesta A, et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013, February 7;494(7435):116–20. 10.1038/nature11809
    1. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to clostridium difficile. Nature 2015, January 8;517(7533):205–8. 10.1038/nature13828
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, December;75(23):7537–41. 10.1128/AEM.01541-09
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rrna gene database and workbench compatible with ARB. Appl Environ Microbiol 2006, July;72(7):5069–72.
    1. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 2005, July;43(7):3380–9.
    1. Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 1990, February;172(2):762–70.
    1. Loy A, Maixner F, Wagner M, Horn M. ProbeBase—an online resource for rrna-targeted oligonucleotide probes: New features 2007. Nucleic Acids Res 2007, January;35(Database issue):D800–4.
    1. Waar K, Degener JE, van Luyn MJ, Harmsen HJ. Fluorescent in situ hybridization with specific DNA probes offers adequate detection of enterococcus faecalis and enterococcus faecium in clinical samples. J Med Microbiol 2005, October;54(Pt 10):937–44.
    1. Loonen LM, Stolte EH, Jaklofsky MT, Meijerink M, Dekker J, van Baarlen P, Wells JM. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol 2014, July;7(4):939–47. 10.1038/mi.2013.109
    1. Gouyer V, Gottrand F, Desseyn JL. The extraordinarily complex but highly structured organization of intestinal mucus-gel unveiled in multicolor images. PLoS One 2011;6(4):e18761 10.1371/journal.pone.0018761

Source: PubMed

3
Sottoscrivi