Diabetic retinopathy: Looking forward to 2030

Tien-En Tan, Tien Yin Wong, Tien-En Tan, Tien Yin Wong

Abstract

Diabetic retinopathy (DR) is the major ocular complication of diabetes mellitus, and is a problem with significant global health impact. Major advances in diagnostics, technology and treatment have already revolutionized how we manage DR in the early part of the 21st century. For example, the accessibility of imaging with optical coherence tomography, and the development of anti-vascular endothelial growth factor (VEGF) treatment are just some of the landmark developments that have shaped the DR landscape over the last few decades. Yet, there are still more exciting advances being made. Looking forward to 2030, many of these ongoing developments are likely to further transform the field. First, epidemiologic projections show that the global burden of DR is not only increasing, but also shifting from high-income countries towards middle- and low-income areas. Second, better understanding of disease pathophysiology is placing greater emphasis on retinal neural dysfunction and non-vascular aspects of diabetic retinal disease. Third, a wealth of information is becoming available from newer imaging modalities such as widefield imaging systems and optical coherence tomography angiography. Fourth, artificial intelligence for screening, diagnosis and prognostication of DR will become increasingly accessible and important. Fifth, new pharmacologic agents targeting other non-VEGF-driven pathways, and novel therapeutic strategies such as gene therapy are being developed for DR. Finally, the classification system for diabetic retinal disease will need to be continually updated to keep pace with new developments. In this article, we discuss these major trends in DR that we expect to see in 2030 and beyond.

Keywords: artificial intelligence; classification and staging system; diabetic retinopathy; epidemiology; future trends and predictions; imaging modalities; new treatments; pathophysiology.

Conflict of interest statement

TYW is a co­inventor, with patents pending, for a deep learning system for diabetic retinopathy, glaucoma, and age-­related macular degeneration (SG Non-Provisional Application number 10201706186V), and a computer-implemented method for training an image classifier using weakly annotated training data (SG Provisional Patent Application number 10201901083Y), and is co­founder and shareholder of EyRIS Pte Ltd, Singapore. The remaining author declares that the research was conducted in the absence of any other commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Tan and Wong.

References

    1. Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. . Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care (2012) 35:556–64. doi: 10.2337/dc11-1909
    1. Ruta LM, Magliano DJ, Lemesurier R, Taylor HR, Zimmet PZ, Shaw JE. Prevalence of diabetic retinopathy in type 2 diabetes in developing and developed countries. Diabetes Med (2013) 30:387–98. doi: 10.1111/dme.12119
    1. Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: A review. Clin Exp Ophthalmol (2016) 44:260–77. doi: 10.1111/ceo.12696
    1. Wong TY, Mwamburi M, Klein R, Larsen M, Flynn H, Hernandez-Medina M, et al. . Rates of progression in diabetic retinopathy during different time periods: A systematic review and meta-analysis. Diabetes Care (2009) 32:2307–13. doi: 10.2337/dc09-0615
    1. Sabanayagam C, Yip W, Ting DSW, Tan G, Wong TY. Ten emerging trends in the epidemiology of diabetic retinopathy. Ophthalmic Epidemiol (2016) 23:209–22. doi: 10.1080/09286586.2016.1193618
    1. Early Treatment Diabetic Retinopathy Study Research Group . Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Ophthalmology (1991) 98:823–33.
    1. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. . Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology (2003) 110:1677–82. doi: 10.1016/s0161-6420(03)00475-5
    1. Early Treatment Diabetic Retinopathy Study Research Group . Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology (1991) 98:766–85.
    1. Alasil T, Waheed NK. Pan retinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser. Curr Opin Ophthalmol (2014) 25:164–70. doi: 10.1097/ICU.0000000000000048
    1. Nagpal M, Marlecha S, Nagpal K. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multispot pattern scan laser. Retina (2010) 30:452–8. doi: 10.1097/IAE.0b013e3181c70127
    1. Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography. Invest Ophthalmol Vis Sci (2016) 57:OCT1–OCT13. doi: 10.1167/iovs.16-19963
    1. Wells JA, Glassman AR, Ayala AR, Jampol LM, Bressler NM, Bressler SB, et al. . Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: Two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology (2016) 123:1351–9. doi: 10.1016/j.ophtha.2016.02.022
    1. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, et al. . Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology (2012) 119:789–801. doi: 10.1016/j.ophtha.2011.12.039
    1. Berrocal MH, Acaba LA, Acaba A. Surgery for diabetic eye complications. Curr Diabetes Rep (2016) 16:99. doi: 10.1007/s11892-016-0787-6
    1. Gupta B, Sivaprasad S, Wong R, Laidlaw A, Jackson TL, McHugh D, et al. . Visual and anatomical outcomes following vitrectomy for complications of diabetic retinopathy: the DRIVE UK study. Eye (Lond) (2012) 26:510–6. doi: 10.1038/eye.2011.321
    1. Zhang Z-H, Liu H-Y, Hernandez-Da Mota SE, Romano MR, Falavarjani KG, Ahmadieh H, et al. . Vitrectomy with or without preoperative intravitreal bevacizumab for proliferative diabetic retinopathy: a meta-analysis of randomized controlled trials. Am J Ophthalmol (2013) 156:106–15.e2. doi: 10.1016/j.ajo.2013.02.008
    1. Teo ZL, Tham Y-C, Yu M, Chee ML, Rim TH, Cheung N, et al. . Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology (2021) 128:1580–91. doi: 10.1016/j.ophtha.2021.04.027
    1. Rein DB, Zhang P, Wirth KE, Lee PP, Hoerger TJ, McCall N, et al. . The economic burden of major adult visual disorders in the united states. Arch Ophthalmol (2006) 124:1754–60. doi: 10.1001/archopht.124.12.1754
    1. Romero-Aroca P, de la Riva-Fernandez S, Valls-Mateu A, Sagarra-Alamo R, Moreno-Ribas A, Soler N, et al. . Cost of diabetic retinopathy and macular oedema in a population, an eight year follow up. BMC Ophthalmol (2016) 16:136. doi: 10.1186/s12886-016-0318-x
    1. Chen E, Looman M, Laouri M, Gallagher M, Van Nuys K, Lakdawalla D, et al. . Burden of illness of diabetic macular edema: Literature review. Curr Med Res Opin (2010) 26:1587–97. doi: 10.1185/03007995.2010.482503
    1. Nguyen HV, Tan GSW, Tapp RJ, Mital S, Ting DSW, Wong HT, et al. . Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology (2016) 123:2571–80. doi: 10.1016/j.ophtha.2016.08.021
    1. Javitt JC, Aiello LP. Cost-effectiveness of detecting and treating diabetic retinopathy. Ann Intern Med (1996) 124:164–9. doi: 10.7326/0003-4819-124-1_part_2-199601011-00017
    1. Javitt JC, Canner JK, Sommer A. Cost effectiveness of current approaches to the control of retinopathy in type I diabetics. Ophthalmology (1989) 96:255–64. doi: 10.1016/s0161-6420(89)32923-x
    1. Vujosevic S, Aldington SJ, Silva P, Hernández C, Scanlon P, Peto T, et al. . Screening for diabetic retinopathy: New perspectives and challenges. Lancet Diabetes Endocrinol (2020) 8:337–47. doi: 10.1016/S2213-8587(19)30411-5
    1. Sohn EH, Han IC, Abramoff MD. Diabetic retinal neurodegeneration-should we redefine retinopathy from diabetes? JAMA Ophthalmol (2019) 137(10):1132–3. doi: 10.1001/jamaophthalmol.2019.2536
    1. Sohn EH, van Dijk HW, Jiao C, Kok PHB, Jeong W, Demirkaya N, et al. . Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA (2016) 113:E2655–2664. doi: 10.1073/pnas.1522014113
    1. Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res (2017) 139:101–7. doi: 10.1016/j.visres.2017.03.003
    1. Abramoff MD, Fort PE, Han IC, Jayasundera KT, Sohn EH, Gardner TW. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease. Invest Ophthalmol Vis Sci (2018) 59:519–27. doi: 10.1167/iovs.17-21873
    1. Chen X, Nie C, Gong Y, Zhang Y, Jin X, Wei S, et al. . Peripapillary retinal nerve fiber layer changes in preclinical diabetic retinopathy: A meta-analysis. PloS One (2015) 10:e0125919. doi: 10.1371/journal.pone.0125919
    1. Lim HB, Shin YI, Lee MW, Park GS, Kim JY. Longitudinal changes in the peripapillary retinal nerve fiber layer thickness of patients with type 2 diabetes. JAMA Ophthalmol (2019) 137(10):1125–32. doi: 10.1001/jamaophthalmol.2019.2537
    1. Aschauer J, Pollreisz A, Karst S, Hülsmann M, Hajdu D, Datlinger F, et al. . Longitudinal analysis of microvascular perfusion and neurodegenerative changes in early type 2 diabetic retinal disease. Br J Ophthalmol (2022) 106(4):528–33. doi: 10.1136/bjophthalmol-2020-317322
    1. Obara EA, Hannibal J, Heegaard S, Fahrenkrug J. Loss of melanopsin-expressing retinal ganglion cells in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci (2017) 58:2187–92. doi: 10.1167/iovs.16-21168
    1. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol (1985) 103:51–4. doi: 10.1001/archopht.1985.01050010055018
    1. Han Y, Adams AJ, Bearse MA, Schneck ME. Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol (2004) 122:1809–15. doi: 10.1001/archopht.122.12.1809
    1. Falsini B, Porciatti V, Scalia G, Caputo S, Minnella A, Di Leo MA, et al. . Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol (1989) 73:193–200. doi: 10.1007/BF00155037
    1. Aung MH, Kim MK, Olson DE, Thule PM, Pardue MT. Early visual deficits in streptozotocin-induced diabetic long evans rats. Invest Ophthalmol Vis Sci (2013) 54:1370–7. doi: 10.1167/iovs.12-10927
    1. Feigl B, Zele AJ, Fader SM, Howes AN, Hughes CE, Jones KA, et al. . The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmol (2012) 90:e230–234. doi: 10.1111/j.1755-3768.2011.02226.x
    1. Tan T-E, Finkelstein MT, Tan GSW, Tan ACS, Chan CM, Mathur R, et al. . Retinal neural dysfunction in diabetes revealed with handheld chromatic pupillometry. Clin Exp Ophthalmol (2022) 50(7):745–56. doi: 10.1111/ceo.14116
    1. Jampol LM, Tadayoni R, Ip M. Need for a new classification of diabetic retinopathy. Retina (2021) 41:459–60. doi: 10.1097/IAE.0000000000003070
    1. Sun JK, Aiello LP, Abràmoff MD, Antonetti DA, Dutta S, Pragnell M, et al. . Updating the staging system for diabetic retinal disease. Ophthalmology (2021) 128(4):490–3. doi: 10.1016/j.ophtha.2020.10.008
    1. Choudhry N, Duker JS, Freund KB, Kiss S, Querques G, Rosen R, et al. . Classification and guidelines for widefield imaging: Recommendations from the international widefield imaging study group. Ophthalmol Retina (2019) 3:843–9. doi: 10.1016/j.oret.2019.05.007
    1. Byberg S, Vistisen D, Diaz L, Charles MH, Hajari JN, Valerius M, et al. . Optos wide-field imaging versus conventional camera imaging in Danish patients with type 2 diabetes. Acta Ophthalmol (2019) 97:815–20. doi: 10.1111/aos.14118
    1. Silva PS, Cavallerano JD, Sun JK, Soliman AZ, Aiello LM, Aiello LP. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology (2013) 120:2587–95. doi: 10.1016/j.ophtha.2013.05.004
    1. Aiello LP, Odia I, Glassman AR, Melia M, Jampol LM, Bressler NM, et al. . Comparison of early treatment diabetic retinopathy study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy. JAMA Ophthalmol (2019) 137:65–73. doi: 10.1001/jamaophthalmol.2018.4982
    1. Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy. Clin Ophthalmol (2015) 9:527–31. doi: 10.2147/OPTH.S79448
    1. Silva PS, El-Rami H, Barham R, Gupta A, Fleming A, van Hemert J, et al. . Hemorrhage and/or microaneurysm severity and count in ultrawide field images and early treatment diabetic retinopathy study photography. Ophthalmology (2017) 124:970–6. doi: 10.1016/j.ophtha.2017.02.012
    1. Silva PS, Cavallerano JD, Haddad NMN, Kwak H, Dyer KH, Omar AF, et al. . Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology (2015) 122:949–56. doi: 10.1016/j.ophtha.2015.01.008
    1. Sadda SR, Nittala MG, Taweebanjongsin W, Verma A, Velaga SB, Alagorie AR, et al. . Quantitative assessment of the severity of diabetic retinopathy. Am J Ophthalmol (2020) 218:342–52. doi: 10.1016/j.ajo.2020.05.021
    1. Marcus DM, Silva PS, Liu D, Aiello LP, Antoszyk A, Elman M, et al. . Association of predominantly peripheral lesions on ultra-widefield imaging and the risk of diabetic retinopathy worsening over time. JAMA Ophthalmol (2022) 140(10):946–54. doi: 10.1001/jamaophthalmol.2022.3131
    1. Silva PS, Marcus DM, Liu D, Aiello LP, Antoszyk A, Elman M, et al. . Association of ultra-widefield fluorescein angiography–identified retinal nonperfusion and the risk of diabetic retinopathy worsening over time. JAMA Ophthalmol (2022) 140(10):936–45. doi: 10.1001/jamaophthalmol.2022.3130
    1. Chua J, Sim R, Tan B, Wong D, Yao X, Liu X, et al. . Optical coherence tomography angiography in diabetes and diabetic retinopathy. J Clin Med (2020) 9(6):1723. doi: 10.3390/jcm9061723
    1. Tan T-E, Nguyen Q, Chua J, Schmetterer L, Tan GSW, Wong CW, et al. . Global assessment of retinal arteriolar, venular and capillary microcirculations using fundus photographs and optical coherence tomography angiography in diabetic retinopathy. Sci Rep (2019) 9:11751. doi: 10.1038/s41598-019-47770-9
    1. Sun Z, Yang D, Tang Z, Ng DS, Cheung CY. Optical coherence tomography angiography in diabetic retinopathy: An updated review. Eye (Lond) (2021) 35(1):149–61. doi: 10.1038/s41433-020-01233-y
    1. Ting DSW, Tan GSW, Agrawal R, Yanagi Y, Sie NM, Wong CW, et al. . Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol (2017) 135:306–12. doi: 10.1001/jamaophthalmol.2016.5877
    1. Nesper PL, Roberts PK, Onishi AC, Chai H, Liu L, Jampol LM, et al. . Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci (2017) 58:BIO307–15. doi: 10.1167/iovs.17-21787
    1. Tsai ASH, Jordan-Yu JM, Gan ATL, Teo KYC, Tan GSW, Lee SY, et al. . Diabetic macular ischemia: Influence of optical coherence tomography angiography parameters on changes in functional outcomes over one year. Invest Ophthalmol Vis Sci (2021) 62:9. doi: 10.1167/iovs.62.1.9
    1. You QS, Wang J, Guo Y, Pi S, Flaxel CJ, Bailey ST, et al. . Optical coherence tomography angiography avascular area association with 1-year treatment requirement and disease progression in diabetic retinopathy. Am J Ophthalmol (2020) 217:268–77. doi: 10.1016/j.ajo.2020.04.024
    1. Custo Greig E, Brigell M, Cao F, Levine ES, Peters K, Moult EM, et al. . Macular and peripapillary optical coherence tomography angiography metrics predict progression in diabetic retinopathy: A Sub-analysis of TIME-2b study data. Am J Ophthalmol (2020) 219:66–76. doi: 10.1016/j.ajo.2020.06.009
    1. Sun Z, Tang F, Wong R, Lok J, Szeto SKH, Chan JCK, et al. . OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: A prospective study. Ophthalmology (2019) 126:1675–84. doi: 10.1016/j.ophtha.2019.06.016
    1. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. . Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol (2019) 103:167–75. doi: 10.1136/bjophthalmol-2018-313173
    1. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. . Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA (2016) 316:2402–10. doi: 10.1001/jama.2016.17216
    1. Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. . Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA (2017) 318:2211–23. doi: 10.1001/jama.2017.18152
    1. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med (2018) 1:39. doi: 10.1038/s41746-018-0040-6
    1. Bhaskaranand M, Ramachandra C, Bhat S, Cuadros J, Nittala MG, Sadda SR, et al. . The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. Diabetes Technol Ther (2019) 21:635–43. doi: 10.1089/dia.2019.0164
    1. Xie Y, Nguyen QD, Hamzah H, Lim G, Bellemo V, Gunasekeran DV, et al. . Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health (2020) 2:e240–9. doi: 10.1016/S2589-7500(20)30060-1
    1. Varadarajan AV, Bavishi P, Ruamviboonsuk P, Chotcomwongse P, Venugopalan S, Narayanaswamy A, et al. . Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning. Nat Commun (2020) 11:130. doi: 10.1038/s41467-019-13922-8
    1. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. . Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med (2018) 24:1342–50. doi: 10.1038/s41591-018-0107-6
    1. Hsu H-Y, Chou Y-B, Jheng Y-C, Kao Z-K, Huang H-Y, Chen H-R, et al. . Automatic segmentation of retinal fluid and photoreceptor layer from optical coherence tomography images of diabetic macular edema patients using deep learning and associations with visual acuity. Biomedicines (2022) 10:1269. doi: 10.3390/biomedicines10061269
    1. Roberts PK, Vogl W-D, Gerendas BS, Glassman AR, Bogunovic H, Jampol LM, et al. . Quantification of fluid resolution and visual acuity gain in patients with diabetic macular edema using deep learning: A Post hoc analysis of a randomized clinical trial. JAMA Ophthalmol (2020) 138:945–53. doi: 10.1001/jamaophthalmol.2020.2457
    1. Schmidt-Erfurth U, Reiter GS, Riedl S, Seeböck P, Vogl W-D, Blodi BA, et al. . AI-Based monitoring of retinal fluid in disease activity and under therapy. Prog Retin Eye Res (2022) 86:100972. doi: 10.1016/j.preteyeres.2021.100972
    1. Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip A-M, et al. . Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology (2018) 125:549–58. doi: 10.1016/j.ophtha.2017.10.031
    1. Sears CM, Nittala MG, Jayadev C, Verhoek M, Fleming A, van Hemert J, et al. . Comparison of subjective assessment and precise quantitative assessment of lesion distribution in diabetic retinopathy. JAMA Ophthalmol (2018) 136:365–71. doi: 10.1001/jamaophthalmol.2018.0070
    1. Nicholson L, Ramu J, Chan EW, Bainbridge JW, Hykin PG, Talks SJ, et al. . Retinal nonperfusion characteristics on ultra-widefield angiography in eyes with severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy. JAMA Ophthalmol (2019) 137:626–31. doi: 10.1001/jamaophthalmol.2019.0440
    1. Ehlers JP, Jiang AC, Boss JD, Hu M, Figueiredo N, Babiuch A, et al. . Quantitative ultra-widefield angiography and diabetic retinopathy severity: An assessment of panretinal leakage index, ischemic index and microaneurysm count. Ophthalmology (2019) 126:1527–32. doi: 10.1016/j.ophtha.2019.05.034
    1. Tan T-E, Wong TY, Ting DSW. Artificial intelligence for prediction of anti-VEGF treatment burden in retinal diseases: Towards precision medicine. Ophthalmol Retina (2021) 5:601–3. doi: 10.1016/j.oret.2021.05.001
    1. Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, et al. . Guidelines on diabetic eye care: The international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology (2018) 125:1608–22. doi: 10.1016/j.ophtha.2018.04.007
    1. Writing Committee for the Diabetic Retinopathy Clinical Research Network. Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, et al. . Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: A randomized clinical trial. JAMA (2015) 314:2137–46. doi: 10.1001/jama.2015.15217
    1. Wykoff CC, Eichenbaum DA, Roth DB, Hill L, Fung AE, Haskova Z. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmol Retina (2018) 2:997–1009. doi: 10.1016/j.oret.2018.06.005
    1. Mitchell P, McAllister I, Larsen M, Staurenghi G, Korobelnik J-F, Boyer DS, et al. . Evaluating the impact of intravitreal aflibercept on diabetic retinopathy progression in the VIVID-DME and VISTA-DME studies. Ophthalmol Retina (2018) 2:988–96. doi: 10.1016/j.oret.2018.02.011
    1. Brown DM, Wykoff CC, Boyer D, Heier JS, Clark WL, Emanuelli A, et al. . Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy: Results from the PANORAMA randomized clinical trial. JAMA Ophthalmol (2021) 139(9):946–55. doi: 10.1001/jamaophthalmol.2021.2809
    1. Maturi RK, Glassman AR, Josic K, Antoszyk AN, Blodi BA, Jampol LM, et al. . Effect of intravitreous anti-vascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy: The protocol W randomized clinical trial. JAMA Ophthalmol (2021) 139(7):701–12. doi: 10.1001/jamaophthalmol.2021.0606
    1. Couturier A, Rey P-A, Erginay A, Lavia C, Bonnin S, Dupas B, et al. . Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology (2019) 126:1685–94. doi: 10.1016/j.ophtha.2019.06.022
    1. Pearce E, Chong V, Sivaprasad S. Aflibercept reduces retinal hemorrhages and intravitreal microvascular abnormalities but not venous beading: Secondary analysis of the CLARITY study. Ophthalmol Retina (2020) 4:689–94. doi: 10.1016/j.oret.2020.02.003
    1. Regula JT, Lundh von Leithner P, Foxton R, Barathi VA, Cheung CMG, Bo Tun SB, et al. . Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol Med (2016) 8:1265–88. doi: 10.15252/emmm.201505889
    1. Wykoff CC, Abreu F, Adamis AP, Basu K, Eichenbaum DA, Haskova Z, et al. . Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet (2022) 399:741–55. doi: 10.1016/S0140-6736(22)00018-6
    1. Brown DM. Evaluation of 8 mg intravitreal aflibercept injection for neovascular age-related macular degeneration: Results from the phase 2 CANDELA study . Investigative Ophthalmology Visual Sci (2022) 63:1345–F0179.
    1. Holekamp NM, Campochiaro PA, Chang MA, Miller D, Pieramici D, Adamis AP, et al. . Archway randomized phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmology (2022) 129:295–307. doi: 10.1016/j.ophtha.2021.09.016
    1. Tan T-E, Fenner BJ, Barathi VA, Tun SBB, Wey YS, Tsai ASH, et al. . Gene-based therapeutics for acquired retinal disease: Opportunities and progress. Front Genet (2021) 12:795010. doi: 10.3389/fgene.2021.795010
    1. Xu D, Khan MA, Ho AC. Creating an ocular biofactory: Surgical approaches in gene therapy for acquired retinal diseases. Asia Pac J Ophthalmol (Phila) (2021) 10:5–11. doi: 10.1097/APO.0000000000000362
    1. Blinder KJ, Dugel PU, Chen S, Jumper JM, Walt JG, Hollander DA, et al. . Anti-VEGF treatment of diabetic macular edema in clinical practice: Effectiveness and patterns of use (ECHO study report 1). Clin Ophthalmol (2017) 11:393–401. doi: 10.2147/OPTH.S128509
    1. Mitchell P, Sheidow TG, Farah ME, Mahmood S, Minnella AM, Eter N, et al. . Effectiveness and safety of ranibizumab 0.5 mg in treatment-naïve patients with diabetic macular edema: Results from the real-world global LUMINOUS study. PloS One (2020) 15:e0233595. doi: 10.1371/journal.pone.0233595
    1. Van Aken E, Favreau M, Ramboer E, Denhaerynck K, MacDonald K, Abraham I, et al. . Real-world outcomes in patients with diabetic macular edema treated long term with ranibizumab (VISION study). Clin Ophthalmol (2020) 14:4173–85. doi: 10.2147/OPTH.S281501
    1. Ciulla TA, Pollack JS, Williams DF. Visual acuity outcomes and anti-VEGF therapy intensity in diabetic macular oedema: A real-world analysis of 28 658 patient eyes. Br J Ophthalmol (2021) 105:216–21. doi: 10.1136/bjophthalmol-2020-315933
    1. Sun JK, Gardner TW, Abramoff MD, Aiello LP, Colhoun H, Glassman AR, et al. . Updating the diabetic retinal disease staging system through the restoring vision moonshot™. Invest Ophthalmol Visual Sci (2022) 63:2207–F0270.
    1. Early Treatment Diabetic Retinopathy Study Research Group . Grading diabetic retinopathy from stereoscopic color fundus photographs–an extension of the modified airlie house classification. ETDRS report number 10. Ophthalmology (1991) 98:786–806.

Source: PubMed

3
Sottoscrivi