End-Tidal Carbon Dioxide Monitoring for Spontaneous Pneumothorax

Gyeong Min Lee, Yong Won Kim, Sanghun Lee, Han Ho Do, Jun Seok Seo, Jeong Hun Lee, Gyeong Min Lee, Yong Won Kim, Sanghun Lee, Han Ho Do, Jun Seok Seo, Jeong Hun Lee

Abstract

Background: Spontaneous pneumothorax should be classified as primary spontaneous pneumothorax (PSP) or secondary spontaneous pneumothorax (SSP) because treatment strategies may differ depending on underlying lung conditions and clinical course. The pulmonary dysfunction can lead to changes in end-tidal carbon dioxide (ETCO2). The aim of this study was to investigate the difference in ETCO2 between PSP and SSP.

Methods: This retrospective observational study included adult patients diagnosed with spontaneous pneumothorax in the emergency room from April 2019 to September 2020. We divided patients into PSP and SSP groups and compared ETCO2 variables between the two groups.

Results: There were 33 (66%) patients in the PSP group and 17 (34%) patients in the SSP group. Initial ETCO2 was lower in the SSP group than in the PSP group (30 (23-33) vs. 35 (33-38) mmHg, p=0.002). Multivariate analysis revealed that respiratory gas associated with SSP was initial ETCO2 (OR: 0.824; 95% CI: 0.697-0.974, p=0.023). The optimal cutoff for initial ETCO2 to detection of SSP was 32 mmHg (area under curve, 0.754), with 76.5% sensitivity and 72.7% specificity.

Conclusion: ETCO2 monitoring is a reliable noninvasive indicator of differentiating between PSP and SSP. Initial ETCO2 lower than 32 mmHg is a predictor of SSP.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2021 Gyeong Min Lee et al.

Figures

Figure 1
Figure 1
Receiver operating characteristic (ROC) curve of the initial ETCO2 for the detection of SSP. ETCO2, end-tidal carbon dioxide; SSP, secondary spontaneous pneumothorax.

References

    1. Onuki T., Ueda S., Yamaoka M., et al. Primary and secondary spontaneous pneumothorax: prevalence, clinical features, and in-hospital mortality. Canadian Respiratory Journal. 2017;2017:8. doi: 10.1155/2017/6014967.6014967
    1. MacDuff A., Arnold A., Harvey J. Management of spontaneous pneumothorax: British thoracic society pleural disease guideline 2010. Thorax. 2010;65(S2):p. ii18. doi: 10.1136/thx.2010.136986.
    1. Bintcliffe O. J., Hallifax R. J., Edey A., et al. Spontaneous pneumothorax: time to rethink management? The Lancet Respiratory Medicine. 2015;3(7):578–588. doi: 10.1016/s2213-2600(15)00220-9.
    1. Stock M. C. Capnography for adults. Critical Care Clinics. 1995;11(1):219–232. doi: 10.1016/s0749-0704(18)30093-9.
    1. Yousuf T., Brinton T., Murtaza G., et al. Establishing a gradient between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide in patients with acute respiratory distress syndrome. Journal of Investigative Medicine. 2017;65(2):338–341. doi: 10.1136/jim-2016-000253.
    1. Ornato J. P., Garnett A. R., Glauser F. L. Relationship between cardiac output and the end-trial carbon dioxide tension. Annals of Emergency Medicine. 1990;19(10):1104–1106. doi: 10.1016/s0196-0644(05)81512-4.
    1. Fletcher R. Invasive and noninvasive measurement of the respiratory deadspace in anesthetized children with cardiac disease. Anesthesia & Analgesia. 1988;67(5):442–447. doi: 10.1213/00000539-198805000-00004.
    1. Choi B. G., Park S. H., Yun E. H., Chae K. O., Shinn K. S. Pneumothorax size: correlation of supine anteroposterior with erect posteroanterior chest radiographs. Radiology. 1998;209(2):567–569. doi: 10.1148/radiology.209.2.9807591.
    1. Rhea J. T., DeLuca S. A., Greene R. E. Determining the size of pneumothorax in the upright patient. Radiology. 1982;144(4):733–736. doi: 10.1148/radiology.144.4.7111716.
    1. Phillips G. D., Trotman-Dickenson B., Hodson M. E., Geddes D. M. Role of CT in the management of pneumothorax in patients with complex cystic lung disease. Chest. 1997;112(1):275–278. doi: 10.1378/chest.112.1.275.
    1. Baumann M. H., Strange C., Heffner J. E., et al. Management of spontaneous pneumothorax. Chest. 2001;119(2):590–602. doi: 10.1378/chest.119.2.590.
    1. Choi W.-I. Pneumothorax. Tuberculosis and Respiratory Diseases. 2014;76(3):99–104. doi: 10.4046/trd.2014.76.3.99.
    1. Norris R. M., Jones J. G., Bishop J. M. Respiratory gas exchange in patients with spontaneous pneumothorax. Thorax. 1968;23(4):427–433. doi: 10.1136/thx.23.4.427.
    1. Chen Y.-L., Chen C.-Y., Cheng J.-K. Delayed tension pneumothorax during surgery. Journal of the Chinese Medical Association. 2005;68(10):491–494. doi: 10.1016/s1726-4901(09)70081-4.
    1. Bohr C. Ueber die lungenathmung1. Skandinavisches Archiv Für Physiologie. 1891;2(1):236–268. doi: 10.1111/j.1748-1716.1891.tb00581.x.
    1. Yamanaka M. K., Sue D. Y. Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest. 1987;92(5):832–835. doi: 10.1378/chest.92.5.832.
    1. Moran J. F., Jones R. H., Wolfe W. G. Regional pulmonary function during experimental unilateral pneumothorax in the awake state. The Journal of Thoracic and Cardiovascular Surgery. 1977;74(3):396–402. doi: 10.1016/s0022-5223(19)41353-6.
    1. Touma O., Davies M. The prognostic value of end tidal carbon dioxide during cardiac arrest: a systematic review. Resuscitation. 2013;84(11):1470–1479. doi: 10.1016/j.resuscitation.2013.07.011.
    1. Shetty A. L., Lai K. H., Byth K. The CO2 GAP Project—CO2 GAP as a prognostic tool in emergency departments. Emergency Medicine Australasia. 2010;22(6):524–531. doi: 10.1111/j.1742-6723.2010.01349.x.
    1. Higgins D., Hayes M., Denman W., Wilkinson D. J. Effectiveness of using end tidal carbon dioxide concentration to monitor cardiopulmonary resuscitation. BMJ. 1990;300(6724):p. 581. doi: 10.1136/bmj.300.6724.581.

Source: PubMed

3
Sottoscrivi