Nutrition in Chronic Liver Disease: Consensus Statement of the Indian National Association for Study of the Liver

Pankaj Puri, Radha K Dhiman, Sunil Taneja, Puneeta Tandon, Manuela Merli, Anil C Anand, Anil Arora, Subrat K Acharya, Jaya Benjamin, Yogesh K Chawla, Sunil Dadhich, Ajay Duseja, C E Eapan, Amit Goel, Naveen Kalra, Dharmesh Kapoor, Ashish Kumar, Kaushal Madan, Aabha Nagral, Gaurav Pandey, Padaki N Rao, Sanjiv Saigal, Neeraj Saraf, Vivek A Saraswat, Anoop Saraya, Shiv K Sarin, Praveen Sharma, Shalimar, Akash Shukla, Sandeep S Sidhu, Namrata Singh, Shivaram P Singh, Anshu Srivastava, Manav Wadhawan, Pankaj Puri, Radha K Dhiman, Sunil Taneja, Puneeta Tandon, Manuela Merli, Anil C Anand, Anil Arora, Subrat K Acharya, Jaya Benjamin, Yogesh K Chawla, Sunil Dadhich, Ajay Duseja, C E Eapan, Amit Goel, Naveen Kalra, Dharmesh Kapoor, Ashish Kumar, Kaushal Madan, Aabha Nagral, Gaurav Pandey, Padaki N Rao, Sanjiv Saigal, Neeraj Saraf, Vivek A Saraswat, Anoop Saraya, Shiv K Sarin, Praveen Sharma, Shalimar, Akash Shukla, Sandeep S Sidhu, Namrata Singh, Shivaram P Singh, Anshu Srivastava, Manav Wadhawan

Abstract

Malnutrition and sarcopenia are common in patients with chronic liver disease and are associated with increased risk of decompensation, infections, wait-list mortality and poorer outcomes after liver transplantation. Assessment of nutritional status and management of malnutrition are therefore essential to improve outcomes in patients with chronic liver disease. This consensus statement of the Indian National Association for Study of the Liver provides a comprehensive review of nutrition in chronic liver disease and gives recommendations for nutritional screening and treatment in specific clinical scenarios of malnutrition in cirrhosis in adults as well as children with chronic liver disease and metabolic disorders.

Keywords: ACLF, acute on chronic liver failure; ASM, appendicular skeletal muscle mass; BCAA, branched chain amino acids; BIA, bioimpedance analysis; BMD, bone mineral densitometry; BMI, body mass index; CLD, chronic liver disease; CS, corn-starch; CT, computed tomography; CTP, Child–Turcotte–Pugh; DEXA, dual-energy X-ray absorptiometry; EASL, European Association for the Study of the Liver; ESPEN, European society for Clinical Nutrition and Metabolism; GSD, glycogen storage disease; HGS, hand-grip strength; IBW, ideal body weight; IEM, inborn error of metabolism; INASL, Indian National Association for Study of the Liver; L3, third lumbar; LFI, Liver Frailty Index; MCT, medium-chain triglyceride; MELD, model for end-stage liver disease; MLD, metabolic liver disease; MRI, magnetic resonance imaging; RDA, recommended daily allowance; REE, NASH; RFH-NPT, Royal Free Hospital-Nutritional Prioritizing Tool; SMI, skeletal muscle index; Sarcopenia; TEE, total energy expenditure; chronic liver disease; cirrhosis; malnutrition; non-alcoholic liver disease, resting energy expenditure; nutrition.

© 2020 Indian National Association for Study of the Liver. Published by Elsevier B.V.

Figures

Figure 1
Figure 1
Royal Free Hospital-Nutritional Prioritizing Tool (RFH-NPT) for determining nutritional risk in cirrhosis (Reprinted with permission from Amodio P, Bemeur C, Butterworth R, Cordoba J, Kato A, Montagnese S, et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology. 2013;58(1):325-36.).

References

    1. Alveras-da-Silva M.R., Reverbel da Silveira T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition. 2005;21:113–117.
    1. European Association for the Study of the Liver EASL clinical practice guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70:172–193.
    1. Plauth M., Bernal W., Dasarathy S. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr. 2019;38:485–521.
    1. Mazurak V.C., Tandon P., Montano-Loza A.J. Nutrition and the transplant candidate. Liver Transplant. 2017;23:1451–1464.
    1. Menon P., Nguven P., Avula R., Mani S., Tran L., Victora C. A decade of progress on scaling up health and nutrition interventions in India: a countdown to 2030 case study (P04-115-19) Curr Dev Nutr. 2019;3 doi: 10.1093/cdn/nzz051.P04-115-19. pii: nzz051.P04-115-19.
    1. Ramachandran P. Vol. 37. 2016. India's nutritional challenges. (NFI Bulletin). Number 1. Available from:
    1. Vijayaraghavan K., Rao D.H. Diet & nutrition situation in rural India. Indian J Med Res. 1998;108:243–253.
    1. Tyrovolas S., Koyanagi A., Olaya B. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: a multi-continent study. J Cachexia Sarcopenia Muscle. 2016;7:312–321.
    1. Lear S.A., Kohli S., Bondy G.P., Tchernof A., Sniderman A.D. Ethnic variation in fat and lean body mass and the association with insulin resistance. J Clin Endocrinol Metab. 2009;94:4696–4702.
    1. Lau E.M., Lynn H.S., Woo J.W., Kwok T.C., Melton L.J. Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J Gerontol A Biol Sci Med Sci. 2005;60:213–216.
    1. Wu S.W., Wu S.F., Liang H.W., Wu Z.T., Huang S. Measuring factors affecting grip strength in a Taiwan Chinese population and a comparison with consolidated norms. Appl Ergon. 2009;40:811–815.
    1. Sidhu S., Saggar K., Goyal O., Kishore H., Sidhu S.S. Normative values of sarcopenia in the Indian population. Indian J Gastroenterol. 2018;37:A1–A137.
    1. Swaminathan S., Vaz M., Kurpad A.V. Protein intakes in India. Br J Nutr. 2012;108:S50–S58.
    1. Mijnarends D.M., Koster A., Schols J.M. Physical activity and incidence of sarcopenia: the population-based AGES-Reykjavik Study. Age Ageing. 2016;45:614–620.
    1. Anjana R.M., Ranjani H., Unnikrishnan R., Weber M.B., Mohan V., Narayan K.M. Exercise patterns and behaviour in Asian Indians: data from the baseline survey of the diabetes community lifestyle improvement program (D-CLIP) Diabetes Res Clin Pract. 2015;107:77–84.
    1. Guyatt G.H., Oxman A.D., Vist G.E., GRADE Working Group GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–926.
    1. Romiti A., Merli M., Martorano M. Malabsorption and nutritional abnormalities in patients with liver cirrhosis. Ital J Gastroenterol. 1990;22:118–123.
    1. Kalaitzakis E. Gastrointestinal dysfunction in liver cirrhosis. World J Gastroenterol. 2014;20:14686–14695.
    1. Quigley E.M., Stanton C., Murphy E.F. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol. 2013;58:1020–1027.
    1. Müller M.J., Böttcher J., Selberg O. Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr. 1999;69:1194–1201.
    1. Owen O.E., Trapp V.E., Reichard G.A. Nature and quantity of fuels consumed in patients with alcoholic cirrhosis. J Clin Invest. 1983;72:1821–1832.
    1. Merli M., Eriksson L.S., Hagenfeldt L., Wahren J. Splanchnic and leg exchange of free fatty acids in patients with liver cirrhosis. J Hepatol. 1986;3:348–355.
    1. Henkel A.S., Buchman A.L. Nutritional support in patients with chronic liver disease. Nat Clin Pract Gastroenterol Hepatol. 2006;3:202–209.
    1. Sinclair M., Gow P.J., Grossmann M., Angus P.W. Review article: sarcopenia in cirrhosis--aetiology, implications and potential therapeutic interventions. Aliment Pharmacol Ther. 2016;43:765–777.
    1. Drummond M.J., Dreyer H.C., Fry C.S., Glynn E.L., Rasmussen B.B. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signalling. J Appl Physiol Bethesda Md. 2009;1985106:1374–1384.
    1. Bamman M.M., Shipp J.R., Jiang J. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab. 2001;280:E383–E390.
    1. Matsumura T., Morinaga Y., Fujitani S., Takehana K., Nishitani S., Sonaka I. Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res. 2005;33:27–32.
    1. Beyer I., Mets T., Bautmans I. Chronic low-grade inflammation and age-related sarcopenia. Curr Opin Clin Nutr Metab Care. 2015;15:12–22.
    1. Tilg H., Wilmer A., Vogel W. Serum levels of cytokines in chronic liver diseases. Gastroenterology. 1992;103:264–274.
    1. Thapaliya S., Runkana A., McMullen M.R. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy. 2014;10:677–690.
    1. Hayashi F., Matsumoto Y., Momoki C. Physical inactivity and insufficient dietary intake are associated with the frequency of sarcopenia in patients with compensated viral liver cirrhosis. Hepatol Res. 2013;43:1264–1275.
    1. Qiu J., Tsien C., Thapalaya S. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab. 2012;303:E983–E993.
    1. Qiu J., Thapaliya S., Runkana A. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism. Proc Natl Acad Sci USA. 2013;110:18162–18167.
    1. McCullough A.J., Mullen K.D., Kalhan S.C. Measurements of total body and extracellular water in cirrhotic patients with and without ascites. Hepatol Baltim Md. 1991;14:1102–1111.
    1. Carias S., Castellanos A.L., Vilchez V. Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J Gastroenterol Hepatol. 2016;31:628–633.
    1. Morrison W.L., Bouchier I.A., Gibson J.N., Rennie M.J. Skeletal muscle and whole-body protein turnover in cirrhosis. Clin. Sci. Lond. Engl. 1990;197978:613–619.
    1. Dunlop D.S., Kaufman H., Zanchin G., Lajtha A. Protein synthesis rates in rats with portacaval shunts. J Neurochem. 1984;43:1487–1489.
    1. Dam G., Sørensen M., Buhl M. Muscle metabolism and whole blood amino acid profile in patients with liver disease. Scand J Clin Lab Invest. 2015;75:674–680.
    1. Dejong C.H.C., van de Poll M.C.G., Soeters P.B., Jalan R., Olde Damink S.W.M. Aromatic amino acid metabolism during liver failure. J Nutr. 2007;137:1579S–1585S.
    1. Holecek M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition. 2015;31:14–20.
    1. Handelsman D.J., Strasser S., McDonald J.A., Conway A.J., McCaughan G.W. Hypothalamic-pituitary-testicular function in end-stage non-alcoholic liver disease before and after liver transplantation. Clin Endocrinol (Oxf) 1995;43:331–337.
    1. Grossmann M., Hoermann R., Gani L. Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin Endocrinol. 2012;77:323–328.
    1. Sinclair M., Grossmann M., Angus P.W. Low testosterone as a better predictor of mortality than sarcopenia in men with advanced liver disease. J Gastroenterol Hepatol. 2016;31:661–667.
    1. Khoshnood A., Nasiri Toosi M., Faravash M.J. A survey of correlation between insulin-like growth factor-I (igf-I) levels and severity of liver cirrhosis. Hepat Mon. 2013;13
    1. Assy N., Pruzansky Y., Gaitini D., Shen Orr Z., Hochberg Z., Baruch Y. Growth hormone-stimulated IGF-1 generation in cirrhosis reflects hepatocellular dysfunction. J Hepatol. 2008;49:34–42.
    1. Barbu E.C., Chiu-Tiu C.E., Lazăr M. Hepatic osteodystrophy: a global (Re)view of the problem. Acta Clin Croat. 2017;56:512–525.
    1. Bihari C., Lal D., Thakur M. Suboptimal level of bone-forming cells in advanced cirrhosis are associated with hepatic osteodystrophy. Hepatol Commun. 2018;2:1095–1110.
    1. Kim G., Kang S.H., Kim M.Y., Baik S.K. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One. 2017;12
    1. Maharshi S., Sharma B.C., Srivastava S. Malnutrition in cirrhosis increases morbidity and mortality. J Gastroenterol Hepatol. 2015;30:1507–1513.
    1. Kalal C.R., Benjamin J., Shashthry V., Joshi Y., Sarin S. No consensus among nutritional assessment tools for identification of malnutrition in patients with alcoholic liver disease. J Hepatol. 2017;66:S346.
    1. Panackel C., Balan S., Rommel S. Prevalence, risk factors and prognostic significance of sarcopenia in liver cirrhosis in Indian population. Indian J Gastroenterol. 2018;37:A85.
    1. Surakshit T.K., Kumar M., Ranjan P., Ghuman S., Arora A. Sarcopenia in cirrhosis: a risk factor for hospitalizations and short term mortality. Gut. 2019;68:A159–A160.
    1. Choudhary N.S., Saigal S., Saraf N. Sarcopenic obesity with metabolic syndrome: a newly recognized entity following living donor liver transplantation. Clin Transplant. 2015;29:211–215.
    1. Gajula U.N.M. Assessment of sarcopenia in patients with chronic liver disease. J Clin Expl Hepatol. 2018;8:S67.
    1. Montano-Loza A.J., Duarte-Rojo A., Meza-Junco J. Inclusion of sarcopenia within MELD (MELD Sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol. 2015;6:e102.
    1. Merli M., Riggio O., Dally L. Does malnutrition affect survival in cirrhosis? PINC (policentrica italiana nutrizione cirrosi) Hepatology. 1996;23:1041–1046.
    1. Kang S.H., Jeong W.K., Baik S.K., Cha S.H., Kim M.Y. Impact of sarcopenia on prognostic value of cirrhosis: going beyond the hepatic venous pressure gradient and MELD score. J Cachexia Sarcopenia Muscle. 2018;9:860–870.
    1. Chang K.V., Chen J.D., Wu W.T., Huang K.C., Lin H.Y., Han D.S. Is sarcopenia associated with hepatic encephalopathy in liver cirrhosis? A systematic review and meta-analysis. J Formos Med Assoc. 2019;118:833–842.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J. Writing group for the European working group on sarcopenia in older people 2 (EWGSOP2), and the extended group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31.
    1. van Vugt J.L.A., Alferink L.J.M., Buettner S. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: a competing risk analysis in a national cohort. J Hepatol. 2018;68:707–714.
    1. Kim G., Kang S.H., Kim M.Y., Baik S.K. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One. 2017;12
    1. Montano-Loza A.J., Meza-Junco J., Prado C.M. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10:166–173.
    1. Yu R., Shi Q., Liu L., Chen L. Relationship of sarcopenia with steatohepatitis and advanced liver fibrosis in non-alcoholic fatty liver disease: a meta-analysis. BMC Gastroenterol. 2018;18:51.
    1. Merli M., Giusto M., Lucidi C. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28:281–284.
    1. Praktiknjo M., Clees C., Pigliacelli A. Sarcopenia is associated with development of acute-on-chronic liver failure in decompensated liver cirrhosis receiving transjugular intrahepatic portosystemic shunt. Clin Transl Gastroenterol. 2019;10
    1. Tsien C., Shah S.N., McCullough A.J., Dasarathy S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol. 2013;25:85–93.
    1. Chang K., Chen J., Wu W., Huang K., Hsu C., Han D. Association between loss of skeletal muscle mass and mortality and tumor recurrence in hepatocellular carcinoma: a systematic review and meta-analysis. Liver Cancer. 2018;7:90–103.
    1. Tandon P., Ney M., Irwin I. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transplant. 2012;18 1209-16.
    1. Kalafateli M., Mantzoukis K., Choi Yau Y. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. J Cachexia Sarcopenia Muscle. 2017;8:113–121.
    1. Merli M., Giusto M., Gentili F. Nutritional status: its influence on the outcome of patients undergoing liver transplantation. Liver Int. 2010;30:208–214.
    1. Englesbe M.J., Patel S.P., He K. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–278.
    1. Shirai H., Kaido T., Hamaguchi Y. Preoperative low muscle mass has a strong negative effect on pulmonary function in patients undergoing living donor liver transplantation. Nutrition. 2018;45:1–10.
    1. Jeon J.Y., Wang H.J., Ock S.Y. Newly developed sarcopenia as a prognostic factor for survival in patients who underwent liver transplantation. PLoS One. 2015 Nov 30;10
    1. Dasarathy S. Posttransplant sarcopenia: an underrecognized early consequence of liver transplantation. Dig Dis Sci. 2013;58:3103–3111.
    1. Tsien C., Garber A., Narayanan A. Post-liver transplantation sarcopenia in cirrhosis: a prospective evaluation. J Gastroenterol Hepatol. 2014;29:1250–1257.
    1. Bergerson J.T., Lee J.-G., Furian A. Liver transplantation arrests and reverses muscle wasting. Clin Transplant. 2015;29:216–221.
    1. Bhanji R.A., Takahashi N., Moynagh M.R. The evolution and impact of sarcopenia pre- and post- liver transplantation. Aliment Pharmacol Ther. 2019;49:807–813.
    1. Plank L.D., Metzger D.J., McCall J.L. Sequential changes in the metabolic response to orthotopic liver transplantation during the first year after surgery. Ann Surg. 2001;234:245e55.
    1. Polyzos S.A., Kountouras J., Mantzoros C.S. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016;65:1062–1079.
    1. Romeo S., Kozlitina J., Xing C. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–1465.
    1. Hagström H., Stål P., Hultcrantz R., Hemmingsson T., Andreasson A. Overweight in late adolescence predicts development of severe liver disease later in life: a 39 years follow-up study. J Hepatol. 2016;65:363–368.
    1. Duseja A., Sharma B., Kumar A. Nonalcoholic fatty liver in a developing country is responsible for significant liver disease. Hepatology. 2010;52:2248–2249.
    1. Mehta M., Satsangi S., Duseja A., Taneja S., Dhiman R.K., Chawla Y. Can alcoholic liver disease and nonalcoholic fatty liver disease Co-exist? J Clin Exp Hepatol. 2017;7:121–126.
    1. Periyalwar P., Dasarathy S. Malnutrition in cirrhosis: contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis. 2012;16:95–131.
    1. Hong H.C., Hwang S.Y., Choi H.Y. Relationship between sarcopenia and nonalcoholic fatty liver disease: the Korean Sarcopenic Obesity Study. Hepatology. 2014;59:1772–1778.
    1. Berzigotti A., Garcia-Tsao G., Bosch J. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology. 2011;54:555–561.
    1. Raynard B., Balian A., Fallik D. Risk factors of fibrosis in alcohol-induced liver disease. Hepatology. 2002;35:635–638.
    1. Ortiz V., Berenguer M., Rayón J.M., Carrasco D., Berenguer J. Contribution of obesity to hepatitis C-related fibrosis progression. Am J Gastroenterol. 2002;97:2408–2414.
    1. Bellentani S., Saccoccio G., Masutti F. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med. 2000;132:112–117.
    1. Ekstedt M., Franzén L.E., Holmqvist M. Alcohol consumption is associated with progression of hepatic fibrosis in non-alcoholic fatty liver disease. Scand J Gastroenterol. 2009;44:366–374.
    1. Liu B., Balkwill A., Reeves G., Beral V. Million Women Study Collaborators. Body mass index and risk of liver cirrhosis in middle aged UK women: prospective study. BMJ. 2010;340:c912.
    1. Everhart J.E., Lok A.S., Kim H.Y., HALT-C Trial Group Weight related effects on disease progression in the hepatitis C antiviral long-term treatment against cirrhosis trial. Gastroenterology. 2009;137:549–557.
    1. Sundaram V., Kaung A., Rajaram A. Obesity is independently associated with infection in hospitalised patients with end-stage liver disease. Aliment Pharmacol Ther. 2015;42:1271–1280.
    1. Berzigotti A., Albillos A., Villanueva C., Ciberehd SportDiet Collaborative Group Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology. 2017;65:1293–1305.
    1. Kardashian A.A., Dodge J.L., Roberts J., Brandman D. Weighing the risks: morbid obesity and diabetes are associated with increased risk of death on the liver transplant waiting list. Liver Int. 2018;38:553–563.
    1. Aguilar M., Liu B., Holt E.W., Bhuket T., Wong R.J. Impact of obesity and diabetes on waitlist survival, probability of liver transplantation and post-transplant survival among chronic hepatitis C virus patients. Liver Int. 2016;36:1167–1175.
    1. Schlansky B., Naugler W.E., Orloff S.L., Enestvedt C.K. Higher mortality and survival benefit in obese patients awaiting liver transplantation. Transplantation. 2016;100:2648–2655.
    1. Ahirwar R., Mondal P.R. Prevalence of obesity in India: a systematic review. Diabetes Metab Syndr. 2019;13:318–321.
    1. Vidot H., Kline K., Cheng R. The relationship of obesity, nutritional status and muscle wasting in patients assessed for liver transplantation. Nutrients. 2019 Sep 4;11 pii: E2097.
    1. Greco A.V., Mingrone G., Benedetti G., Capristo E., Tataranni P.A., Gasbarrini G. Daily energy and substrate metabolism in patients with cirrhosis. Hepatology. 1998;27:346–350.
    1. Eslamparast T., Vandermeer B., Raman M. Are predictive energy expenditure equations accurate in cirrhosis? Nutrients. 2019;11
    1. Tandon P., Raman M., Mourtzakis M., Merli M. A practical approach to nutritional screening and assessment in cirrhosis. Hepatology. 2017;65:1044–1057.
    1. Glass C., Hipskind P., Cole D., Lopez R., Dasarathy S. Handheld calorimeter is a valid instrument to quantify resting energy expenditure in hospitalized cirrhotic patients: a prospective study. Nutr Clin Pract. 2012;27:677–688.
    1. Hipskind P., Glass C., Charlton D., Nowak D., Dasarathy S. Do handheld calorimeters have a role in assessment of nutrition needs in hospitalized patients? A systematic review of literature. Nutr Clin Pract. 2011;26:426–433.
    1. Indian Council of Medical Research . National Institute of Nutrition; Hyderabad: 2010. Nutrient Requirements and Recommended Dietary Allowances for Indians: A Report of the Expert Group of the Indian Council of Medical Research.
    1. Swart G.R., van den Berg J.W., van Vuure J.K., Rietveld T., Wattimena D.L., Frenkel M. Minimum protein requirements in liver cirrhosis determined by nitrogen balance measurements at three levels of protein intake. Clin Nutr. 1989;8:329–336.
    1. Dietary Guidelines for Indians: A Manual. National Institute of Nutrition; Hyderabad, India: 2011.
    1. McFarlane M., Hammond C., Roper T. Comparing assessment tools for detecting undernutrition in patients with liver cirrhosis. Clin Nutr ESPEN. 2018;23:156–161.
    1. Booi A.N., Menendez J., Norton H.J., Anderson W.E., Ellis A.C. Validation of a screening tool to identify undernutrition in Ambulatory patients with liver cirrhosis. Nutr Clin Pract. 2015;30:683–689.
    1. Borhofen S.M., Gerner C., Lehmann J. The royal free hospital-nutritional prioritizing tool is an independent predictor of deterioration of liver function and survival in cirrhosis. Dig Dis Sci. 2016;61:1735–1743.
    1. Mitsiopoulos N., Baumgartner R.N., Heymsfield S.B., Lyons W., Gallagher D., Ross R. Cadaveric validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998;85:115–122.
    1. Mourtzakia M., Prado C.M., Lieffers J.R., Reiman T., McCargar L.J., Baracos V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metabol. 2008;33:997–1006.
    1. Carey E.J., Lai J.C., Wang C.W. Fitness, Life Enhancement, and Exercise in Liver Transplantation Consortium. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transplant. 2017;23:625–633.
    1. Baumgartner R.N., Koehler K.M., Gallagher D., Romero L., Heymsfield S.B., Ross R.R. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–763.
    1. Lau E.M., Lynn H.S., Woo J.W., Kwok T.C., Melton L.J., 3rd Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J Gerontol A Biol Sci Med Sci. 2005;60:213–216.
    1. Nishikawa H., Shiraki M., Hiramatsu A., Moriya K., Hino K., Nishiguchi S. Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol Res. 1st ed. Vol. 46. 2016. Japan society of hepatology guidelines for sarcopenia in liver disease; pp. 951–963.
    1. Ebadi M., Wang C.W., Lai J.C. From the Fitness, Life Enhancement, and Exercise in Liver Transplantation (FLEXIT) Consortium. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J Cachexia Sarcopenia Muscle. 2018;9:1053–1062.
    1. Durand F., Buyse S., Francoz C. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol. 2014;60:1151–1157.
    1. Gu D.H., Kim M.Y., Seo Y.S. Clinical usefulness of psoas muscle thickness for the diagnosis of sarcopenia in patients with liver cirrhosis. Clin Mol Hepatol. 2018;24:319–330.
    1. Tandon P., Low G., Mourtzakis M. A model to identify sarcopenia in patients with cirrhosis. Clin Gastroenterol Hepatol. 2016;14:1473–1480.
    1. Montano-Loza A.J., Angulo P., Meza-Junco J. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle. 2016;7:126–135.
    1. Montano-Loza A.J. Clinical relevance of sarcopenia in patients with cirrhosis. World J Gastroenterol. 2014;20:8061–8071.
    1. Giusta M., Lattanzi B., Albanese C. Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastroenterol Hepatol. 2015;27:328–334.
    1. Kim K.M., Jang H.C., Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Intern Med (Engl Ed) 2016;31:643–650.
    1. Chen L.K., Liu L.K., Woo J. Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.
    1. Nishikawa H., Enomoto H., Iwata Y., Nishimura T., Iijima H., Nishiguchi S. Clinical utility of bioimpedance analysis in liver cirrhosis. J Hepatobiliary Pancreat Sci. 2017;24:409–416.
    1. Carias S., Castellanos A.L., Vilchez V. Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J Gastroenterol Hepatol. 2016;31:628–633.
    1. Gallagher D., Kuznia P., Heshka S. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr. 2005;81:903–910.
    1. Polyzos S.A., Margioris A.N. Sarcopenic obesity. Hormones (Basel) 2018;17:321–331.
    1. Eslamparast T., Montano-Loza A.J., Raman M., Tandon P. Sarcopenic obesity in cirrhosis—the confluence of 2 prognostic titans. Liver Int. 2018;38:1706–1717.
    1. Lee D.C., Shook R.P., Drenowatz C., Blair S.N. Physical activity and sarcopenic obesity: definition, assessment, prevalence and mechanism. Future Sci OA. 2016;2:FSO127.
    1. Lai J.C., Sonnenday C.J., Tapper E.B. Frailty in liver transplantation: an expert opinion statement from the American society of transplantation liver and intestinal community of practice. Am J Transplant. 2019;19:1896–1906.
    1. Lai J.C., Feng S., Terrault N.A., Lizaola B., Hayssen H., Covinsky K. Frailty predicts waitlist mortality in liver transplant candidates. Am J Transplant. 2014;14:1870–1879.
    1. Lai J.C., Covinsky K.E., Dodge J.L. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology. 2017;66:564–574.
    1. Ney M., Haykowsky M.J., Vandermeer B., Shah A., Ow M., Tandon P. Systematic review: pre- and post-operative prognostic value of cardiopulmonary exercise testing in liver transplant candidates. Aliment Pharmacol Ther. 2016;44:796–806.
    1. Sundaram V., Lim J., Tholey D.M. The Braden Scale, A standard tool for assessing pressure ulcer risk, predicts early outcomes after liver transplantation. Liver Transplant. 2017;23:1153–1160.
    1. Tandon P., Reddy K.R., O'Leary J.G. North American Consortium for the Study of End-Stage Liver Disease. A Karnofsky performance status-based score predicts death after hospital discharge in patients with cirrhosis. Hepatology. 2017;65:217–224.
    1. Orman E.S., Ghabril M., Chalasani N. Poor performance status is associated with increased mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2016;14:1189–1195.e1.
    1. Tandon P., Tangri N., Thomas L. A rapid bedside screen to predict unplanned hospitalization and death in outpatients with cirrhosis: a prospective evaluation of the clinical frailty scale. Am J Gastroenterol. 2016;111:1759–1767.
    1. Dunn M.A., Josbeno D.A., Tevar A.D. Frailty as tested by gait speed is an independent risk factor for cirrhosis complications that require hospitalization. Am J Gastroenterol. 2016;111:1768–1775.
    1. Carey E.J., Steidley D.E., Aqel B.A. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transplant. 2010;16:1373–1378.
    1. Tapper E.B., Finkelstein D., Mittleman M.A., Piatkowski G., Lai M. Standard assessments of frailty are validated predictors of mortality in hospitalized patients with cirrhosis. Hepatology. 2015;62:584–590.
    1. Lai J.C., Rahimi R.S., Verna E.C. Frailty associated with waitlist mortality independent of ascites and hepatic encephalopathy in a multicenter study. Gastroenterology. 2019;56:1675–1682.
    1. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1–129.
    1. Fogelman I., Blake G.M. Different approaches to bone densitometry. J Nucl Med. 2000;41:2015–2025.
    1. Collier J.D., Ninkovic M., Compston J.E. Guidelines on the management of osteoporosis associated with chronic liver disease. Gut. 2002;50:i1–i9.
    1. Pares A., Guanabens N. Treatment of bone disorders in liver disease. J Hepatol. 2006;45:445–453.
    1. Labio E.D., Del Rosario D.B., Strasser S.I., McCaughan G.W., Crawford B.A. Effect of ascites on bone density measurement in cirrhosis. J Clin Densitom. 2007;10:391–394.
    1. Guañabens N., Monegal A., Muxi A. Patients with cirrhosis and ascites have false values of bone density: implications for the diagnosis of osteoporosis. Osteoporos Int. 2012;23:1481–1487.
    1. Monegal A., Navasa M., Peris P. Bone disease in patients awaiting liver transplantation. Has the situation improved in the last two decades? Calcif Tissue Int. 2013;93:571–576.
    1. Soulsby C.T., Morgan M.Y. Dietary management of hepatic encephalopathy in cirrhotic patients: survey of current practice in United Kingdom. BMJ. 1999;318:1391.
    1. Phillips G.B., Schwartz R., Gabuzda G.J., Davidson C.S. The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N Engl J Med. 1952;247:239–246.
    1. Riordan S.M., Williams R. Treatment of hepatic encephalopathy. N Engl J Med. 1997;337:413–419.
    1. Seymour C.A., Whelan K. Dietary management of hepatic encephalopathy. BMJ. 1999;318:1364–1365.
    1. Córdoba J., López-Hellín J., Planas M. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. J Hepatol. 2004;41:38–43.
    1. Les I., Planas M., Cardenas G. Effects of the proteins of the diet in patientswith cirrhosis and a prior episode of hepatic encephalopathy. A long-term randomized study (#24) Hepatology. 2009;50:313A.
    1. Anand A.C. Nutrition and muscle in cirrhosis. J Clin Exp Hepatol. 2017;7:340–357.
    1. Merli M., Eriksson L.S., Hagenfeldt L., Wahren J. Splanchnic and leg exchange of free fatty acids in patients with liver cirrhosis. J Hepatol. 1986;3:348–355.
    1. Chen X., Iqbal N., Boden G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J Clin Invest. 1999;103:365–372.
    1. The Lancet Gastroenterology Hepatology Herbal assault: liver toxicity of herbal and dietary supplements. Lancet Gastroenterol Hepatol. 2018;3:141.
    1. Gunsar F., Raimondo M.L., Jones S. Nutritional status and prognosis in cirrhotic patients. Aliment Pharmacol Ther. 2006;24:563–572.
    1. Ebadi M., Tandon P., Moctezuma-Velazquez C. Low subcutaneous adiposity Associates with higher mortality in female patients with cirrhosis. J Hepatol. 2018;69:608–616.
    1. Huisman E.J., Trip E.J., Siersema P.D., van Hoek B., van Erpecum K.J. Protein energy malnutrition predicts complications in liver cirrhosis. Eur J Gastroenterol Hepatol. 2011;23:982–989.
    1. Sasidharan M., Nistala S., Narendhran R.T., Murugesh M., Bhatia S.J., Rathi P.M. Nutritional status and prognosis in cirrhotic patients. Trop Gastroenterol. 2012;33:257–264.
    1. Lucidi C., Lattanzi B., Di Gregorio V. A low muscle mass increases mortality in compensated cirrhotic patients with sepsis. Liver Int. 2018;38:851–857.
    1. Alavinejad P., Hajiani E., Danyaee B., Morvaridi M. The effect of nutritional education and continuous monitoring on clinical symptoms, knowledge, and quality of life in patients with cirrhosis. Gastroenterol Hepatol Bed Bench. 2019 Winter;12:17–24.
    1. Chaney A.J., Heckman M.G. The benefit of supplemental nutrition education for severely malnourished patients awaiting liver transplant. Prog Transplant. 2018;28:390–393.
    1. Iwasa M., Iwata K., Hara N. Nutrition therapy using a multidisciplinary team improves survival rates in patients with liver cirrhosis. Nutrition. 2013;29:1418–1421.
    1. Gottschall C.B., Pereira T.G., Rabito E.I., Álvares-Da-Silva M.R. Nutritional Status and dietary intake in non-cirrhotic adult chronic hepatitis C patients. Arq Gastroenterol. 2015;52:204–209.
    1. Roongpisuthipong C., Sobhonlidsuk A., Nantiruj K., Songchitsomboon S. Nutritional assessment in various stages of liver cirrhosis. Nutrition. 2001;17:761–765.
    1. Mathur S., Peng S., Gane E.J., McCall J.L., Plank L.D. Hypermetabolism predicts reduced transplant-free survival independent of MELD and Child-Pugh scores in liver cirrhosis. Nutrition. 2007;23:398–403.
    1. Madden A.M., Morgan M.Y. Resting energy expenditure should be measured in patients with cirrhosis, not predicted. Hepatology. 1999;30:655–664.
    1. Plank L.D., Gane E.J., Peng S. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology. 2008;48:557–566.
    1. Tsien C.D., McCullough A.J., Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012;27:430–441.
    1. Berzigotti A., Albillos A., Villanueva C. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology. 2017;65:1293–1305.
    1. Dasarathy S., Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65:1232–1244.
    1. Amodio P., Bemeur C., Butterworth R. The nutritional management of hepatic encephalopathy in patients with cirrhosis: international society for hepatic encephalopathy and nitrogen metabolism consensus. Hepatology. 2013;58:325–336.
    1. Marchesini G., Bianchi G., Merli M. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124:1792–1801.
    1. Matsuoka S., Tamura A., Nakagawara H., Moriyama M. Improvement in the nutritional status and clinical conditions of patients with liver failure using a liver diet combined with a branched chain amino acids-enriched elemental diet. Hepato-Gastroenterology. 2014;61:1308–1312.
    1. Gu X.B., Yang X.J., Zhu H.Y., Xu B.Y. Effect of a diet with unrestricted sodium on ascites in patients with hepatic cirrhosis. Gut Liver. 2012;6:355–361.
    1. Morando F., Rosi S., Gola E. Adherence to a moderate sodium restriction diet in outpatients with cirrhosis and ascites: a real-life cross-sectional study. Liver Int. 2015;35:1508–1515.
    1. Kumar R., Kumar P., Saxena K.N. Vitamin D status in patients with cirrhosis of the liver and their relatives-A case control study from North India. Indian J Gastroenterol. 2017;36:50–55.
    1. Choudhary N.S., Tomar M., Chawla Y.K. Hepatic osteodystrophy is common in patients with noncholestatic liver disease. Dig Dis Sci. 2011;56:3323–3327.
    1. Jha A.K., Jha S.K., Kumar A., Dayal V.M., Jha S.K. Effect of replenishment of vitamin D on survival in patients with decompensated liver cirrhosis: a prospective study. World J Gastrointest Pathophysiol. 2017;8:133–141.
    1. Kril J.J., Butterworth R.F. Diencephalic and cerebellar pathology in alcoholic and nonalcoholic patients with end-stage liver disease. Hepatology. 1997;26:837–841.
    1. Thomson A.D., Cook C.C., Touquet R., Henry J.A. Royal College of physicians, london. The royal College of physicians report on alcohol: guidelines for managing wernicke's encephalopathy in the accident and emergency department. Alcohol Alcohol. 2002;37:513–521.
    1. Ambrose M.L., Bowden S.C., Whelan G. Thiamin treatment and working memory function of alcohol-dependent people: preliminary findings. Alcohol Clin Exp Res. 2001;25:112–116.
    1. Chacko R.T., Chacko A. Serum & muscle magnesium in Indians with cirrhosis of liver. Indian J Med Res. 1997;106:469–474.
    1. Marchesini G., Fabbri A., Bianchi G., Brizi M., Zoli M. Zinc supplementation and amino acid-nitrogen metabolism in patients with advanced cirrhosis. Hepatology. 1996;23:1084–1092.
    1. Ney M., Vandermeer B., van Zanten S.J., Ma M.M., Gramlich L., Tandon P. Meta-analysis: oral or enteral nutritional supplementation in cirrhosis. Aliment Pharmacol Ther. 2013;37:672–679.
    1. Koretz R.L., Avenell A., Lipman T.O. Nutritional support for liver disease. Cochrane Database Syst Rev. 2012;16 doi: 10.1002/14651858.CD008344.pub2. CD008344 .
    1. Antar R., Wong P., Ghali P. A meta-analysis of nutritional supplementation for management of hospitalized alcoholic hepatitis. Can J Gastroenterol. 2012;26:463–467.
    1. Wicks C., Routley D., Williams R. Comparison of enteral feeding and total parenteral nutrition after liver transplantation. Lancet. 1994;344:837–840.
    1. Hasse J.M., Blue L.S., Liepa G.U. Early enteral nutrition support in patients undergoing liver transplantation. J Parenter Enteral Nutr. 1995;19:437–443.
    1. de Ledinghen V., Beau P., Mannant P.R. Early feeding or enteral nutrition in patients with cirrhosis after bleeding from esophageal varices? A randomized controlled study. Dig Dis Sci. 1997;42:536–541.
    1. McClave S.A., Chang W.K. When to feed the patient with gastrointestinal bleeding. Nutr Clin Pract. 2005;20:544–550.
    1. Carey E.J., Lai J.C., Sonnenday C. A North American expert opinion statement on sarcopenia in liver transplantation. Hepatology. 2019;70:1816–1829.
    1. Kondrup J., Muller M.J. Energy and protein requirements of patients with chronic liver disease. J Hepatol. 1997;27:239–247.
    1. Peng S., Plank L.D., McCall J.L., Gillanders L.K., McIlroy K., Gane E.J. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr. 2007;85:1257–1266.
    1. Tsien C., Davuluri G., Singh D. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61:2018–2029.
    1. Nielsen K., Kondrup J., Martinsen L. Longterm oral refeeding of patients with cirrhosis of the liver. Br J Nutr. 1995;74:557–567.
    1. Scott D., Blizzard L., Fell J., Ding C., Winzenberg T., Jones G. A prospective study of the associations between 25-hydroxyvitamin D, sarcopenia progression and physical activity in older adults. Clin Endocrinol. 2010;73:581–587.
    1. Verreijen A.M., Verlaan S., Engberink M.F., Swinkels S., de Vogel-van den Bosch J., Weijs P.J. A high whey protein–, leucine-, and vitamin D–enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;101:279–286.
    1. Liberman K., Njemini R., Luiking Y. Thirteen weeks of supplementation of vitamin D and leucine-enriched whey protein nutritional supplement attenuates chronic low-grade inflammation in sarcopenic older adults: the PROVIDE study. Aging Clin Exp Res. 2019;31:845–854.
    1. Dasarathy A., Davuluri G., Silva R.N.E. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65:2045–2058.
    1. Kumar A., Davuluri G., Silva R.N.E. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65:2045–2058.
    1. Tsien C., Davuluri G., Singh D. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61:2018–2029.
    1. Davuluri G., Krokowski D., Guan B.J. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol. 2016;65:929–937.
    1. Hiramatsu A., Aikata H., Uchikawa S. Levocarnitine use is associated with improvement in sarcopenia in patients with liver cirrhosis. Hepatol Commun. 2019;3:348–355.
    1. Sinclair M., Gow P.J., Grossmann M., Shannon A., Hoermann R., Angus P.W. Low serum testosterone is associated with adverse outcome in men with cirrhosis independent of the model for end-stage liver disease score. Liver Transplant. 2016;22:1482–1490.
    1. Sinclair M., Grossmann M., Hoermann R., Angus P.W., Gow P.J. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol. 2016;65:906–913.
    1. Calder P.C. Immunonutrition in surgical and critically ill patients. Br J Nutr. 2007;98:S133–S139.
    1. Annetta M.G., Pittiruti M., Vecchiarelli P., Silvestri D., Caricato A., Antonelli M. Immunonutrients in critically ill patients: an analysis of the most recent literature. Minerva Anestesiol. 2016;82:320–331.
    1. Ney M., Haykowsky M.J., Vandermeer B., Shah A., Ow M., Tandon P. Systematic review: pre- and post-operative prognostic value of cardiopulmonary exercise testing in liver transplant candidates. Aliment Pharmacol Ther. 2016;44:796–806.
    1. Dunn M.A., Josbeno D.A., Schmotzer A.R. The gap between clinically assessed physical performance and objective physical activity in liver transplant candidates. Liver Transplant. 2016;22:1324–1332.
    1. Tandon P., Ismond K.P., Riess K. Exercise in cirrhosis: translating evidence and experience to practice. J Hepatol. 2018;69:1164–1177.
    1. Bandi J.C., García-Pagán J.C., Escorsell A. Effects of propranolol on the hepatic hemodynamic response to physical exercise in patients with cirrhosis. Hepatology. 1998;28:677–682.
    1. Garcia-Pagan J.C., Santos C., Barbera J.A. Physical exercise increases portal pressure in patients with cirrhosis and portal hypertension. Gastroenterology. 1996;111:1300–1306.
    1. Dietrich R., Bachmann C., Lauterburg B.H. Exercise-induced hyperammonemia in patients with compensated chronic liver disease. Scand J Gastroenterol. 1990;25:329–334.
    1. Duarte-Rojo A., Ruiz-Margain A., Montano-Loza A.J., Macias-Rodriguez R.U., Ferrando A., Kim W.R. Exercise and physical activity for patients with end-stage liver disease: improving functional status and sarcopenia while on the transplant waiting list. Liver Transplant. 2018;24:122–139.
    1. Keating S.E., Hackett D.A., George J., Johnson L.A. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;57:157–166.
    1. Katsagoni C.N., Georgoulis M., Papatheodoridis G.V., Panagiotakos D.B., Kontogianni M.D. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: a meta-analysis. Metabolism. 2017;68:119–132.
    1. Orci L.A., Gariani K., Oldani G., Delaune V., Morel P., Toso C. Exercise-based interventions for nonalcoholic fatty liver disease: a meta-analysis and meta-regression. Clin Gastroenterol Hepatol. 2016;14:1398–1411.
    1. Hiraoka A., Michitaka K., Kiguchi D. Efficacy of branched-chain amino acid supplementation and walking exercise for preventing sarcopenia in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29:1416–1423.
    1. Román E., García-Galcerán C., Torrades T. Effects of an exercise programme on functional capacity, body composition and risk of falls in patients with cirrhosis: a randomized clinical trial. PLoS One. 2016;11
    1. Zenith L., Meena N., Ramadi A. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12:1920–1926.e2.
    1. Kruger C., McNeely M.L., Bailey R.J. Home exercise training improves exercise capacity in cirrhosis patients: role of exercise adherence. Sci Rep. 2018;8:99.
    1. Macías-Rodríguez R.U., Ilarraza-Lomelí H., Ruiz-Margáin A. Changes in hepatic venous pressure gradient induced by physical exercise in cirrhosis: results of a pilot randomized open clinical trial. Clin Transl Gastroenterol. 2016;7
    1. Berzigotti A., Albillos A., Villanueva C. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology. 2017;65:1293–1305.
    1. Debette-Gratien M., Tabouret T., Antonini M.T. Personalized adapted physical activity before liver transplantation: acceptability and results. Transplantation. 2015;99:145–150.
    1. Williams F.R., Vallance A., Faulkner T. Home-based exercise in patients awaiting liver transplantation: a feasibility study. Liver Transplant. 2019;25:995–1006.
    1. Aamann L., Dam G., Rinnov A.R., Vilstrup H., Gluud L.L. Physical exercise for people with cirrhosis. Cochrane Database Syst Rev. 2018 Dec 21;12:CD012678.
    1. Mathur S., Janaudis-Ferreira T., Wickerson L. Meeting report: consensus recommendations for a research agenda in exercise in solid organ transplantation. Am J Transplant. 2014;14:2235–2245.
    1. Brown B., Roehl K., Betz M. Enteral nutrition formula selection: current evidence and implications for practice. Nutr Clin Pract. 2015;30:72–85.
    1. Zadak Z., Kent-Smith L. Basics in clinical nutrition: commercially prepared formulas. E-SPN. the European e-Journal of Clinical Nutrition and Metabolism. 2009;4:e212–e215.
    1. Escuro A.A., Hummell A.C. Enteral formulas in nutrition support practice: is there a better choice for your patient? Nutr Clin Pract. 2016;31:709–722.
    1. Malone A. Enteral formula selection: a review of selected product categories. In: Nutrition Issues in Gastroenterology 2005, June Series #28. Ed: Parish CR, Shugar Publishing NY.
    1. Davidson P., Kwiatkowski C.A., Wien M. Management of hyperglycemia and enteral nutrition in the hospitalized patient. Nutr Clin Pract. 2015;30:652–659.
    1. Huisman E.J., Trip E.J., Siersema P.D., van Hoek B., van Erpecum K.J. Protein energy malnutrition predicts complications in liver cirrhosis. Eur J Gastroenterol Hepatol. 2011;23:982–989.
    1. Merli M., Giusto M., Lucidi C. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28:281–284.
    1. Montano-Loza A.J. Clinical relevance of sarcopenia in patients with cirrhosis. World J Gastroenterol. 2014;20:8061–8071.
    1. Maharshi S., Sharma B.C., Sachdeva S., Srivastava S., Sharma P. Efficacy of nutritional therapy for patients with cirrhosis and minimal hepatic encephalopathy in a randomized trial. Clin Gastroenterol Hepatol. 2016;14:454–460.e3.
    1. Vaisman N., Katzman H., Carmiel-Haggai M., Lusthaus M., Niv E. Breakfast improves cognitive function in cirrhotic patients with cognitive impairment. Am J Clin Nutr. 2010;92:137–140.
    1. Córdoba J., López-Hellín J., Planas M. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. J Hepatol. 2004;41:38–43.
    1. Nielsen K., Kondrup J., Martinsen L. Long-term oral refeeding of patients with cirrhosis of the liver. Br J Nutr. 1995;74:557–567.
    1. Campollo O., Sprengers D., Dam G., Vilstrup H., McIntyre N. Protein tolerance to standard and high protein meals in patients with liver cirrhosis. World J Hepatol. 2017;9:667–676.
    1. Keshavarzian A., Meek J., Sutton C., Emery V.M., Hughes E.A., Hodgson H.J. Dietary protein supplementation from vegetable sources in the management of chronic portal systemic encephalopathy. Am J Gastroenterol. 1984;79:945–949.
    1. Bianchi G.P., Marchesini G., Fabbri A. Vegetable versus animal protein diet in cirrhotic patients with chronic encephalopathy. A randomized cross-over comparison. J Intern Med. 1993;233:385–392.
    1. Gheorghe L., Iacob R., Vădan R., Iacob S., Gheorghe C. Improvement of hepatic encephalopathy using a modified high-calorie high-protein diet. Rom J Gastroenterol. 2005;14:231–238.
    1. Uribe M., Dibildox M., Malpica S. Beneficial effect of vegetable protein diet supplemented with psyllium plantago in patients with hepatic encephalopathy and diabetes mellitus. Gastroenterology. 1985;88:901–907.
    1. Amodio P., Caregaro L., Pattenò E., Marcon M., Del Piccolo F., Gatta A. Vegetarian diets in hepatic encephalopathy: facts or fantasies? Dig Liver Dis. 2001;33:492–500.
    1. Eghtesad S., Poustchi H., Malekzadeh R. Malnutrition in liver cirrhosis: the influence of protein and sodium. Middle East J Dig Dis. 2013;5:65–75.
    1. Tsien C., Davuluri G., Singh D. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61:2018–2029.
    1. Gluud L.L., Dam G., Les I. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017 May 18;5:CD001939. doi: 10.1002/14651858.CD001939.pub4.
    1. Kohno M., Fuji T., Hirayama C. [15N] glycine metabolism in normal and cirrhotic subjects. Biochem Med Metab Biol. 1990;43:201–213.
    1. Glass C., Hipskind P., Tsein C. Sarcopenia and a physiologically low respiratory quotient in patients with cirrhosis: a prospective controlled study. J Appl Physiol. 1985;2013:559–565.
    1. McClave S.A., Taylor B.E., Martindale R.G. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN) JPEN - J Parenter Enter Nutr. 2016;40:159–211.
    1. Balarmino G., Singer P., Gonzales M.C. Prognostic value of energy expenditure and respiratory quotient measuring in patients with liver cirrhosis. Clin Nutr. 2019;38:1899–1904.
    1. Mendenhall C.L., Anderson S., Weesner R.E., Goldberg S.J., Crolic K.A. Protein-calorie malnutrition associated with alcoholic hepatitis. Veterans administration cooperative study group on alcoholic hepatitis. Am J Med. 1984;76:211–222.
    1. Sonika U., Jadaun S., Ranjan G. Alcohol-related acute-on-chronic liver failure-Comparison of various prognostic scores in predicting outcome. Indian J Gastroenterol. 2018;37:50–57.
    1. Mendenhall C., Roselle G.A., Gartside P., Moritz T. Relationship of protein calorie malnutrition to alcoholic liver disease: a reexamination of data from two Veterans Administration Cooperative Studies. Alcohol Clin Exp Res. 1995;19:635–641.
    1. Shalimar, Rout G., Jadaun S.S., Ranjan G., Kedia S., Gunjan D. Prevalence, predictors and impact of bacterial infection in acute on chronic liver failure patients. Dig Liver Dis. 2018;50:1225–1231.
    1. Shalimar, Kumar D., Vadiraja P.K., Nayak B., Thakur B., Das P. Acute on chronic liver failure because of acute hepatic insults: etiologies, course, extrahepatic organ failure and predictors of mortality. J Gastroenterol Hepatol. 2016;31:856–864.
    1. Thursz M.R., Richardson P., Allison M. Prednisolone or pentoxifylline for alcoholic hepatitis. N Engl J Med. 2015;372:1619–1628.
    1. Moreno C., Deltenre P., Senterre C. Intensive enteral nutrition is ineffective for patients with severe alcoholic hepatitis treated with corticosteroids. Gastroenterology. 2016;150:903–910. e8.
    1. Cabré E., Rodríguez-Iglesias P., Caballería J. Short- and long-term outcome of severe alcohol-induced hepatitis treated with steroids or enteral nutrition: a multicenter randomized trial. Hepatology. 2000;32:36–42.
    1. Antar R., Wong P., Ghali P. A meta-analysis of nutritional supplementation for management of hospitalized alcoholic hepatitis. Can J Gastroenterol. 2012;26:463–467.
    1. McClave S.A., Chang W.K. When to feed the patient with gastrointestinal bleeding. Nutr Clin Pract. 2005;20:544–550.
    1. Hébuterne X., Vanbiervliet G. Feeding the patients with upper gastrointestinal bleeding. Curr Opin Clin Nutr Metab Care. 2011;14:197–201.
    1. De Ledinghen V., Beau P., Mannant P.R. Early feeding or enteral nutrition in patients with cirrhosis after bleeding from esophageal varices? A randomized controlled study. Dig Dis Sci. 1997;42:536–541.
    1. Dudley F.J. Pathophysiology of ascites formation. Gastroenterol Clin N Am. 1992;21 215-35.
    1. Cheung K., Lee S.S., Raman M. Prevalence and mechanisms of malnutrition in patients with advanced liver disease, and nutrition management strategies. Clin Gastroenterol Hepatol. 2012;10:117–125.
    1. Gauthier A., Levy V.G., Quinton A. Salt or no salt in the treatment of cirrhotic ascites: a randomised study. Gut. 1986;27:705–709.
    1. Gu X.B., Yang X.J., Zhu H.Y., Xu B.Y. Effect of a diet with unrestricted sodium on ascites in patients with hepatic cirrhosis. Gut Liv. 2012;6:35.
    1. Coolsen M.M., Wong-Lun-Hing E.M., Dam R.M. A systematic review of outcomes in patients undergoing liver surgery in an enhanced recovery after surgery pathways. HPB. 2013;15:245–251.
    1. García-Pagàn J.C., Santos C., Barberá J.A. Physical exercise increases portal pressure in patients with cirrhosis and portal hypertension. Gastroenterology. 1996;111:1300–1306.
    1. Macías-Rodríguez R.U., Ilarraza-Lomelí H., Ruiz-Margáin A. Changes in hepatic venous pressure gradient induced by physical exercise in cirrhosis: results of a pilot randomized open clinical trial. Clin Transl Gastroenterol. 2016;7
    1. Shimizu H., Phuong V., Maia M. Bariatric surgery in patients with liver cirrhosis. Surg Obes Relat Dis. 2013;9:1–6.
    1. Clapp B., Wynn M., Martyn C., Foster C., O'Dell M., Tyroch A. Long term (7 or more years) outcomes of the sleeve gastrectomy: a meta-analysis. Surg Obes Relat Dis. 2018;14:741–747.
    1. Rebibo L., Gerin O., Verhaeghe P., Dhahri A., Cosse C., Regimbeau J.M. Laparoscopic sleeve gastrectomy in patients with NASH-related cirrhosis: a case-matched study. Surg Obes Relat Dis. 2014;10:405–410.
    1. Sharpton S.R., Terrault N.A., Posselt A.M. Outcomes of sleeve gastrectomy in obese liver transplant candidates. Liver Transplant. 2019 Apr;25:538–544.
    1. Gutierrez J.A., Landaverde C., Wells J.T., Poordad F. Lorcaserin use in the management of morbid obesity in a pre-liver transplant patient. Hepatology. 2016;64:301–302.
    1. Choudhary N.S., Puri R., Saraf N. Intragastric balloon as a novel modality for weight loss in patients with cirrhosis and morbid obesity awaiting liver transplantation. Indian J Gastroenterol. 2016;35:113–116.
    1. Mosko J.D., Nguyen G.C. Increased perioperative mortality following bariatric surgery among patients with cirrhosis. Clin Gastroenterol Hepatol. 2011;9:897–901.
    1. Cazzo E., Gestic M.A., Utrini M.P. Bariatric surgery in individuals with liver cirrhosis: a narrative review. Rev Assoc Med Bras. 2017;63:190–194.
    1. Takata M.C., Campos G.M., Ciovica R. Laparoscopic bariatric surgery improves candidacy in morbidly obese patients awaiting transplantation. Surg Obes Relat Dis. 2008;4:159–164.
    1. Lin M.Y., Tavakol M.M., Sarin A. Laparoscopic sleeve gastrectomy is safe and efficacious for pretransplant candidates. Surg Obes Relat Dis. 2013;9:653–658.
    1. Lin M.Y., Tavakol M.M., Sarin A. Safety and feasibility of sleeve gastrectomy in morbidly obese patients following liver transplantation. Surg Endosc. 2013;27:81–85.
    1. Nesher E., Mor E., Shlomai A. Simultaneous liver transplantation and sleeve gastrectomy: prohibitive combination or a necessity? Obes Surg. 2017;27:1387–1390.
    1. Trovato F.M., Catalano D., Martines G.F., Pace P., Trovato G.M. Mediterranean diet and non-alcoholic fatty liver disease: the need of extended and comprehensive interventions. Clin Nutr. 2015;34:86–88.
    1. Turati F., Trichopoulos D., Polesel J. Mediterranean diet and hepatocellular carcinoma. J Hepatol. 2014;60:606–611.
    1. Promrat K., Kleiner D.E., Niemeier H.M. Randomized controlled trial testing the effects of weight loss on non-alcoholic steatohepatitis. Hepatology. 2010;51:121–129.
    1. Sultan M.I., Leon C.D., Biank V.F. Role of nutrition in pediatric chronic liver disease. Nutr Clin Pract. 2011;26:401–408.
    1. Carter-Kent C., Radhakrishnan K., Feldstein A.E. Increasing calories, decreasing morbidity and mortality: is improved nutrition the answer to better outcomes in patients with biliary atresia? Hepatology. 2007;46:1329–1331.
    1. Zemel B.S., Riley E.M., Stallings V.A. Evaluation of methodology for nutritional assessment in children: anthropometry, body composition, and energy expenditure. Annu Rev Nutr. 1997;17:211–235.
    1. Khadilkar V., Yadav S., Agrawal K.K. Revised IAP growth charts for height, weight and body mass index for 5- to 18-year- old Indian children. Indian Pediatr. 2015;52:47–55.
    1. Gorstein J., Sullivan K., Yip R. Issues in the assessment of nutritional status using anthropometry. Bull World Health Organ. 1994;72:273–283.
    1. Tanner J.M. Normal growth and techniques of growth assessment. Clin Endocrinol Metabol. 1986;15:411–451.
    1. Trowbridge F.L., Sommer A. Nutritional anthropometry and mortality risk. Am J Clin Nutr. 1981;34:2591–2592.
    1. Briend A., Dykewicz C., Graven K., Mazumder R.N., Wojtyniak B., Bennish M. Usefulness of nutritional indices and classifications in predicting death of malnourished children. Br Med J. 1986;293:373–375.
    1. Sokol R.J., Stall C. Anthropometric evaluation of children with chronic liver disease. Am J Clin Nutr. 1990;52:203–208.
    1. Wasserman D., Zemel B.S., Mulberg A.E. Growth, nutritional status, body composition, and energy expenditure in prepubertal children with Alagille syndrome. J Pediatr. 1999;134:172–177.
    1. Rezende I.F.B., Conceição-Machado M.E.P., Souza V.S., Santos E.M.D., Silva L.R. Sarcopenia in children and adolescents with chronic liver disease. J Pediatr. 2019;S0021–7557:31087–31088.
    1. Young S., Kwarta E., Azzam R., Sentongo T. Nutrition assessment and support in children with end-stage liver disease. Nutr Clin Pract. 2013;28:317–329.
    1. Moukarzel A.A., Najm I., Vargas J., McDiarmid S.V., Busuttil R.W., Ament M.E. Effect of nutritional status on outcome of orthotopic liver transplantation in pediatric patients. Transplant Proc. 1990;22:1560–1563.
    1. Hume R., Burchell A., Williams F.L., Koh D.K. Glucose homeostasis in the newborn. Early Hum Dev. 2005;81:95–101.
    1. Ooi P.H., Gilmour S.M., Yap J., Mager D.R. Effects of branched chain amino acid supplementation on patient care outcomes in adults and children with liver cirrhosis: a systematic review. Clin Nutr ESPEN. 2018;28:41–51.
    1. Chin S.E., Shepherd R.W., Thomas B.J. Nutritional support in children with end-stage liver disease: a randomized crossover trial of a branched- chain amino acid supplement. Am J Clin Nutr. 1992;56:158–163.
    1. Shen Y.M., Wu J.F., Hsu H.Y. Oral absorbable fat-soluble vitamin formulation in pediatric patients with cholestasis. J Pediatr Gastroenterol Nutr. 2012;55:587–591.
    1. Shneider B.L., Magee J.C., Bezerra J.A. Efficacy of fat-soluble vitamin supplementation in infants with biliary atresia. Pediatrics. 2012;130:e607–e614.
    1. Thebaut A., Nemeth A., Le Mouhaer J. Oral tocofersolan corrects or prevents vitamin E deficiency in children with chronic cholestasis. J Pediatr Gastroenterol Nutr. 2016;63:610–615.
    1. Bancroft J., Cohen M.B. Intracranial hemorrhage due to vitamin K deficiency in breast-fed infants with cholestasis. J Pediatr Gastroenterol Nutr. 1993;16:78–80.
    1. Strople J., Lovell G., Heubi J. Prevalence of subclinical vitamin K deficiency in cholestatic liver disease. J Pediatr Gastroenterol Nutr. 2009;49:78–84.
    1. Pettei M.J., Daftary S., Levine J.J. Essential fatty acid deficiency associated with the use of a medium-chain-triglyceride infant formula in pediatric hepatobiliary disease. Am J Clin Nutr. 1991;53:1217–1221.
    1. Chin S.E., Shepherd R.W., Thomas B.J. The nature of malnutrition in children with end-stage liver disease awaiting orthotopic liver transplantation. Am J Clin Nutr. 1992;56:164–168.
    1. Goksu N., Ozsoylu S. Hepatic and serum levels of zinc, copper, and magnesium in childhood cirrhois. J Pediatr Gastroenterol Nutr. 1986;5:459–462.
    1. National Institute of Nutrition . National Institute of Nutrition; Hyderabad: 2010. Recommended Dietary Allowances.
    1. Moreno L.A., Gottrand F., Hoden S., Turck D., Loeuille G.A., Farriaux J.P. Improvement of nutritional status in cholestatic children with supplemental nocturnal enteral nutrition. J Pediatr Gastroenterol Nutr. 1991;12:213–216.
    1. Bes D.F., Fernandez M.C., Malla I. Pathophysiology, diagnostic evaluation, hospitalization criteria, treatment, nutritional management. Arch Argent Pediatr. 2017;115:385–390.
    1. R Glidden D., Roberts J.P., Rosenthal P. Overweight and obesity in pediatric liver transplant recipients: prevalence and predictors before and after transplant, United Network for Organ Sharing Data, 1987- 2010. Pediatr Transplant. 2012;16:41–49.
    1. Alam S., Sood V. Metabolic liver disease: when to suspect and how to diagnose? Indian J Pediatr. 2016;83:1321–1333.
    1. Ferreira C.R., Cassiman D., Blau N. Clinical and biochemical footprints of inherited metabolic diseases. II. Metabolic liver diseases. Mol Genet Metabol. 2019;127:117–121.
    1. Boyer S.W., Barclay L.J., Burrage L.C. Inherited metabolic disorders: aspects of chronic nutritional management. Nutr Clin Pract. 2015;30:502–510.
    1. Longvah T, Ananthan R, Bhaskarachary K, Venkaiah K. Indian Food Composition Tables 2017. Publisher National Institute of Nutrition, ICMR, Department of Health Research Hyderabad, India.
    1. Hopfer U. Membrane transport mechanisms for hexoses and amino acids in the small intestine. In: Johnson L.R., Christensen J., Jackson M.J., editors. Physiology of the Gastrointestinal Tract. 2nd ed. Raven Press; New York: 1987. pp. 1499–1526.
    1. Holton J.B., Gillett M.G., MacFaul R., Young R. Galactosemia: a new severe variant due to uridine diphosphate galactose-4-epimerase deficiency. Arch Dis Child. 1981;56:885–887.
    1. Van Calcar S.C., Bernstein L.E., Rohr F.J., Scaman C.H., Yannicelli S., Berry G.T. A re-evaluation of life-long severe galactose restriction for the nutrition management of classic galactosemia. Mol Genet Metabol. 2014;112:191–197.
    1. Portnoi P.A., Macdonald A. The lactose and galactose content of cheese suitable for galactosaemia: new analysis. JIMD Rep. 2016;29:85–87.
    1. Van Calcar S.C., Bernstein L.E., Rohr F.J., Yannicelli S., Berry G.T., Scaman C.H. Galactose content of legumes, caseinates, and some hard cheeses: implications for diet treatment of classic galactosemia. J Agric Food Chem. 2014;62:1397–1402.
    1. Berry G.T., Palmieri M., Gross K.C. The effect of dietary fruits and vegetables on urinary galactitol excretion in galactose-1-phosphate uridyl transferase deficiency. J Inherit Metab Dis. 1993;16:91–100.
    1. Walter J.H., Collins J.E., Leonard J.V. Recommendations for the management of galactosaemia. UK galactosaemia steering group. Arch Dis Child. 1999;80:93–96.
    1. Welling L., Bernstein L.E., Berry G.T. International clinical guideline for the management of classical galactosemia: diagnosis, treatment, and follow-up. On behalf of the Galactosemia Network (GalNet) J Inherit Metab Dis. 2017;40:171–176.
    1. Fridovich-Keil J., Bean L., He M., Schroer R. Epimerase deficiency galactosemia. 2011 Jan 25. In: Adam M.P., Ardinger H.H., Pagon R.A., editors. GeneReviews®. University of Washington, Seattle; Seattle (WA): 1993-2019. updated 2016 Jun 16. internet. Available from:
    1. Demirbas D., Brucker W.J., Berry G.T. Inborn errors of metabolism with hepatopathy. Metabolism defects of galactose, fructose, and tyrosine. Pediatr Clin. 2018;65:337–352.
    1. Baker P., II, Ayres L., Gaughan S., Weisfeld-Adams J. Hereditary fructose intolerance. In: Adam M.P., Ardinger H.H., Pagon R.A., editors. GeneReviews®. University of Washington, Seattle; Seattle (WA): 1993-2019. Internet. Available from:
    1. Steinmann B., Gitzelmann R., Van den Berghe G. Disorders of fructose metabolism. In: Valle D., Beaudet A.L., Vogelstein B., editors. The Online Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill; New York: 2014.
    1. Endres W., Sierck T., Shin Y.S. Clinical course of hereditary fructose intolerance in 56 patients. Acta Paediatr Jpn. 1988;30:452–456.
    1. Valayannopoulos V., Romano S., Mention K. What's new in metabolic and genetic hypoglycaemias: diagnosis and management. Eur J Pediatr. 2008;167:257–265.
    1. Tran C. Inborn errors of fructose metabolism. What can we learn from them? Nutrients. 2017;9:E356. pii.
    1. Chen Y.-T., Kishnani P.S., Koeberl D. Glycogen storage diseases. In: Valle D., Beaudet A.L., Vogelstein B., Kinzler K.W., Antonarakis S.E., Ballabio A., editors. The Online Metabolic and Molecular Bases of Inherited Disease. The McGraw-Hill Companies, Inc.; New York: 2013.
    1. Burda P., Hochuli M. Hepatic glycogen storage disorders: what have we learned in recent years? Curr Opin Clin Nutr Metab Care. 2015;18:415–421.
    1. Chou J.Y., Jun H.S., Mansfield B.C. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes. J Inherit Metab Dis. 2015;38:511–519.
    1. Kishnani P.S., Austin S.L., Abdenur J.E. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med. 2014;16:e1.
    1. Correia C.E., Bhattacharya K., Lee P.J. Use of modified corn-starch therapy to extend fasting in glycogen storage disease types Ia and Ib. Am J Clin Nutr. 2008;88:1272–1276.
    1. Chen Y.T., Cornblath M., Sidbury J.B. Cornstarch therapy in type I glycogen storage disease. N Engl J Med. 1984;310:171–175.
    1. Rake J.P., Visser G., Labrune J.V., Ullrich K., Smit G.P.A. Guidelines for management of glycogen storage disease type I-European study on glycogen storage disease type I (ESGSD I) Eur J Pediatr. 2002;161:S112–S119.
    1. Kishnani P.S., Austin S.L., Arn P. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12:446–463.
    1. Slonim A.E., Coleman R.A., Moses W.S. Myopathy and growth failure in debrancher enzyme deficiency: improvement with high-protein nocturnal enteral therapy. J Pediatr. 1984;105:906–911.
    1. Slonim A.E., Weisberg C., Benke P., Evans O.B., Burr I.M. Reversal of debrancher deficiency myopathy by the use of high-protein nutrition. Ann Neurol. 1982;11:420–422.
    1. Mayorandan S., Meyer U., Hartmann H., Das A.M. Glycogen storage disease type III: modified Atkins diet improves myopathy. Orphanet J Rare Dis. 2014;9:196.
    1. Sentner C.P., Caliskan K., Vletter W.B., Smit G.P. Heart failure due to severe hypertrophic cardiomyopathy reversed by low calorie, high protein dietary adjustments in a glycogen storage disease type IIIa patient. JIMD Rep. 2012;5:13–16.
    1. Goldberg T., Slonim A.E. Nutrition therapy for hepatic glycogen storage diseases. J Am Diet Assoc. 1993;93:1423–1430.
    1. Borowitz S.M., Greene H.L. Cornstarch therapy in a patient with type III glycogen storage disease. J Pediatr Gastroenterol Nutr. 1987;6:631–634.
    1. Derks T.G., Smit G.P. Dietary management in glycogen storage disease type III: what is the evidence? J Inherit Metab Dis. 2015;38:545–550.
    1. Chen Y.T., Kishnani P.S., Koeberl D. Glycogen storage diseases. In: Valle D., Beaudet A., Vogelstein B., editors. Scriver's Online Metabolic & Molecular Bases of Inherited Disease. McGraw-Hill; New York: 2016.
    1. Dagli A., Weinstein D.A. Glycogen storage disease type VI. In: Adam M.P., Ardinger H.H., Pagon R.A., editors. GeneReviews. University of Washington, Seattle; Seattle, WA: 1993. pp. 2009–2019. (updated 2011)
    1. Herbert M., Goldstein J.L., Rehder C., Austin S., Kishnani P.S., Bali D.S. Phosphorylase kinase deficiency. In: Adam M.P., Ardinger H.H., Pagon R.A., editors. GeneReviews. University of Washington–Seattle; Seattle, WA: 1993–2018. p. 2011. (updated 2018)
    1. Kishnani P.S., Goldstein J., Austin S.L. Diagnosis and management of glycogen storage diseases type VI and IX: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG) Genet Med. 2019;21:772–789.
    1. De Laet C., Dionisi-Vici C., Leonard J.V. Recommendations for the management of tyrosinaemia type 1. Orphanet Rare Dis. 2013;8:8.
    1. De Jesus V.R., Adam B.W., Mandel D., Cuthbert C.D., Matern D. Succinylacetone as primary marker to detect tyrosinemia type I in new-borns and its measurement by new-born screening programs. Mol Genet Metabol. 2014;113:67–75.
    1. Lindstedt S., Holme E., Lock E.A., Hjalmarson O., Strandvik B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992;340:813–817.
    1. Rampini S., Vollmin J.A., Bosshard H.R., Muller M., Curtius H.C. Aromatic acids in urine of healthy infants, persistent hyperphenylalaninemia, and phenylketonuria, before and after phenylalanine load. Pediatr Res. 1974;8:704–709.
    1. Otten J., Hellwig J., Meyers L. National Academies Press; Washington, DC: 2006. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements.
    1. Acosta P.B., Matalon K.M. Nutrition management of patients with inherited disorders of aromatic amino acid metabolism. In: Acosta P.B., editor. Nutrition Management of Patients with Inherited Metabolic Disorders. Jones and Bartlett; Sudbury, MA: 2010. pp. 119–174.
    1. van Spronsen F.J., van Rijn M., Meyer U., Das A.M. Dietary considerations in tyrosinemia type I. In: Tanguar R., editor. Vol. 959. Springer; Cham: 2017. p. 197. (Hereditary Tyrosinemia. Advances in Experimental Medicine and Biology).
    1. Daly A., Gokmen-Ozel H., MacDonald A. Diurnal variation of phenylalanine concentrations in tyrosinaemia type 1: should we be concerned? J Hum Nutr Diet. 2012;25:111–116.
    1. Wilson C.J., Van Wyk K.G., Leonard J.V., Clayton P.T. Phenylalanine supplementation improves the phenylalanine profile in tyrosinaemia. J Inherit Metab Dis. 2000;23:677–683.
    1. Socha P., Janczyk W., Dhawan A. Wilson's disease in children: a position paper by the hepatology committee of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2018;66:334–344.
    1. Nagral A., Sarma M.S., Matthai J. Wilson's disease: clinical practice guidelines of the Indian national association for study of the liver, the Indian society of pediatric gastroenterology, hepatology and nutrition, and the movement disorders society of India. J Clin Exp Hepatol. 2019;9:74–98.
    1. European association for the study of the liver. EASL clinical practice guidelines: Wilson's disease. J Hepatol. 2012;56:671–685.
    1. Roberts E.A., Schilsky M.L. American association for study of liver disease (AASLD). Diagnosis and treatment of Wilson disease: an update. Hepatology. 2008;47:2089–2111.
    1. Turnlund J.R., Keyes W.R., Anderson H.L., Acord L.L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr. 1989;49:870–878.
    1. EFSA Panel on Dietetic Products, Nutrition and Allergies Scientific opinion on dietary reference values for copper. EFSA J. 2015;13:4253. doi: 10.2903/j.efsa.2015.4253.
    1. Lurie D.G., Holden J.M., Schubert A. The copper content of foods based on a critical evaluation of published analytical data. J Food Compos Anal. 1989;2:298–316.
    1. Russel K., Gillanders L.K., Orr D.W., Plank L.D. Dietary restriction in Wilson's disease. Eur J Clin Nutr. 2018;72:326–331.
    1. Pandit A., Bhave S. Present interpretation of the role of copper in Indian childhood cirrhosis. Am J Clin Nutr. 1996;63 830S–5S.
    1. Spiekerkoetter U., Lindner M., Santer R. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis. 2009;32:498–505.
    1. Saudubray J.M., Martin D., De Lonlay P. Recognition and management of fatty acid oxidation defects: a series of 107 patients. J Inherit Metab Dis. 1999;22:488–502.
    1. Spiekerkoetter U., Lindner M., Santer R. Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis. 2009;32:488–497.
    1. Spiekerkoetter U., Bastin J., Gillingham M., Morris A., Wijburg F., Wilcken B. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis. 2010;33:555–561.
    1. Gillingham M.B., Connor W.E., Matern D. Optimal dietary therapy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Mol Genet Metabol. 2003;79:114–123.
    1. Waisbren S., Gropman A., Members of U.D.C.C., Batshaw M. Improving long term outcomes in urea cycle disorders-Report from the urea cycle disorders consortium. J Inherit Metab Dis. 2016;39:573–584.
    1. Häberle J., Burlina A., Chakrapani A. Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision. J Inherit Metab Dis. 2019;42:1192–1230.
    1. Dixon M. Clinical Pediatric Dietetics. Shaw; Lawson: 2007. Disorders of amino acid metabolism, organic acidemias and urea cycle defects. Organic acidemias and urea cycle disorders; pp. 357–389.
    1. Singh R.H. Nutrition management of patients with inherited disorders of urea cycle enzymes. In: Acosta P.B., editor. Nutrition Management of Patients with Inherited Metabolic Disorders. Jones & Bartlett Learning; Sudbury: 2009. pp. 405–429.
    1. WHO Technical Report Series . Report of a Joint WHO/FAO/UNU Expert Consultation Series. Vol. 935. 2007. Protein and amino acid requirement in human nutrition.
    1. Adam S., Champion H., Daly A. British Inherited Metabolic Diseases Group (BIMDG) Dietitian's Group. Dietary management of urea cycle disorders: UK practice. J Hum Nutr Diet. 2012;25:398–404.
    1. Dixon M, White F, Leonard J. Breast feeding in metabolic disease: how successful is this? Compilation of Papers Presented at the Fifth Dietitians Meeting at the VIII International Congress of Inborn Errors of Metabolism. Pp 4-8. Cambridge: ICIEM.
    1. Huner G., Baykal T., Demir F., Demirkol M. Breastfeeding experience in inborn errors of metabolism other than phenylketonuria. J Inherit Metab Dis. 2005;28:457–465.
    1. Saheki T., Kobayashi K., Iijima M. Pathogenesis and pathophysiology of citrin (a mitochondrial aspartate glutamate carrier) deficiency. Metab Brain Dis. 2002;17:335–346.
    1. Saheki T., Song Y.Z. Citrin deficiency. In: Adam M.P., Ardinger H.H., Pagon R.A., editors. GeneReviews®. University of Washington, Seattle; Seattle (WA): 2005 Sep 16. pp. 1993–2019. Updated 2017 Aug 10. Internet.
    1. Mutoh K., Kurokawa K., Kobayashi K., Saheki T. Treatment of a citrin-deficient patient at the early stage of adult-onset type II citrullinaemia with arginine and sodium pyruvate. J Inherit Metab Dis. 2008;31:S343–S347.
    1. Reuter B., Shaw J., Hanson J., Tatee V., Acharya C., Bajaj J.S. Nutritional assessment in inpatients with cirrhosis can be improved after training and is associated with lower readmissions. Liver Transplant. 2019;25:1790–1799.

Source: PubMed

3
Sottoscrivi