The COVID HOME study research protocol: Prospective cohort study of non-hospitalised COVID-19 patients

Adriana Tami, Bernardina T F van der Gun, Karin I Wold, María F Vincenti-González, Alida C M Veloo, Marjolein Knoester, Valerie P R Harmsma, Gerolf C de Boer, Anke L W Huckriede, Daniele Pantano, Lilli Gard, Izabela A Rodenhuis-Zybert, Vinit Upasani, Jolanda Smit, Akkelies E Dijkstra, Jacco J de Haan, Jip M van Elst, Jossy van den Boogaard, Shennae O' Boyle, Luis Nacul, Hubert G M Niesters, Alex W Friedrich, Adriana Tami, Bernardina T F van der Gun, Karin I Wold, María F Vincenti-González, Alida C M Veloo, Marjolein Knoester, Valerie P R Harmsma, Gerolf C de Boer, Anke L W Huckriede, Daniele Pantano, Lilli Gard, Izabela A Rodenhuis-Zybert, Vinit Upasani, Jolanda Smit, Akkelies E Dijkstra, Jacco J de Haan, Jip M van Elst, Jossy van den Boogaard, Shennae O' Boyle, Luis Nacul, Hubert G M Niesters, Alex W Friedrich

Abstract

Background: Guidelines on COVID-19 management are developed as we learn from this pandemic. However, most research has been done on hospitalised patients and the impact of the disease on non-hospitalised and their role in transmission are not yet well understood. The COVID HOME study conducts research among COVID-19 patients and their family members who were not hospitalised during acute disease, to guide patient care and inform public health guidelines for infection prevention and control in the community and household.

Methods: An ongoing prospective longitudinal observational study of COVID-19 outpatients was established in March 2020 at the beginning of the COVID-19 pandemic in the Netherlands. Laboratory confirmed SARS-CoV-2 infected individuals of all ages that did not merit hospitalisation, and their household (HH) members, were enrolled after written informed consent. Enrolled participants were visited at home within 48 hours after initial diagnosis, and then weekly on days 7, 14 and 21 to obtain clinical data, a blood sample for biochemical parameters/cytokines and serological determination; and a nasopharyngeal/throat swab plus urine, stool and sperm or vaginal secretion (if consenting) to test for SARS-CoV-2 by RT-PCR (viral shedding) and for viral culturing. Weekly nasopharyngeal/throat swabs and stool samples, plus a blood sample on days 0 and 21 were also taken from HH members to determine whether and when they became infected. All participants were invited to continue follow-up at 3-, 6-, 12- and 18-months post-infection to assess long-term sequelae and immunological status.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Acute and long-term follow-up timeline…
Fig 1. Acute and long-term follow-up timeline of participants enrolled in the COVID HOME study.
Fig 2. Sampling flowchart for positive and…
Fig 2. Sampling flowchart for positive and negative SARS-CoV-2 participants.
NPT= nasopharyngeal/throat.
Fig 3. Case report forms (CRF) applied…
Fig 3. Case report forms (CRF) applied to study participants.
CRF-01 and CRF-03 are applied to all participants while CRF-10a is answered by non-infected individuals. All other CRFs are applied to SARS-CoV-2 infected individuals.

References

    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al.. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33. doi: 10.1056/NEJMoa2001017
    1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al.. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199–207. doi: 10.1056/NEJMoa2001316
    1. RIVM (National Institute for Public Health and the Environment). Patient with novel coronavirus COVID-19 in the Netherlands. 2020 [cited 27-02-2020]. .
    1. Coronavirus Dashboard—Deaths [Internet]. Rijksoverheid (Government of the Netherlands). 2022. .
    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al.. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. doi: 10.1056/NEJMoa2002032
    1. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al.. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama. 2020;323(20):2052–9. doi: 10.1001/jama.2020.6775
    1. World Health Organization. Tracking SARS-CoV-2 variants 2022 [updated 3 May 2022]. .
    1. Singanayagam A, Patel M, Charlett A, Lopez Bernal J, Saliba V, Ellis J, et al.. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill. 2020;25(32). doi: 10.2807/1560-7917.ES.2020.25.32.2001483
    1. Goncalves J, Torres-Franco A, Rodriguez E, Diaz I, Koritnik T, Silva PGD, et al.. Centralized and decentralized wastewater-based epidemiology to infer COVID-19 transmission—A brief review. One Health. 2022;15:100405. doi: 10.1016/j.onehlt.2022.100405
    1. Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843–51. doi: 10.1111/apt.15731
    1. Laszkowska M, Faye AS, Kim J, Truong H, Silver ER, Ingram M, et al.. Disease Course and Outcomes of COVID-19 Among Hospitalized Patients With Gastrointestinal Manifestations. Clin Gastroenterol Hepatol. 2021;19(7):1402–9 e1. doi: 10.1016/j.cgh.2020.09.037
    1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al.. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020;323(18):1843–4. doi: 10.1001/jama.2020.3786
    1. Aslan MM, Uslu Yuvaci H, Kose O, Toptan H, Akdemir N, Koroglu M, et al.. SARS-CoV-2 is not present in the vaginal fluid of pregnant women with COVID-19. J Matern Fetal Neonatal Med. 2022;35(15):2876–8. doi: 10.1080/14767058.2020.1793318
    1. Pike JFW, Polley EL, Pritchett DY, Lal A, Wynia BA, Roudebush WE, et al.. Comparative analysis of viral infection outcomes in human seminal fluid from prior viral epidemics and Sars-CoV-2 may offer trends for viral sexual transmissibility and long-term reproductive health implications. Reprod Health. 2021;18(1):123. doi: 10.1186/s12978-021-01172-1
    1. Khoiwal K, Kalita D, Kumari R, Dhundi D, Shankar R, Kumari R, et al.. Presence of SARS-CoV-2 in the lower genital tract of women with active COVID-19 infection: A prospective study. Int J Gynaecol Obstet. 2022;157(3):744–7. doi: 10.1002/ijgo.14153
    1. Curmei M, Ilyas A, Evans O, Steinhardt J. Constructing and adjusting estimates for household transmission of SARS-CoV-2 from prior studies, widespread-testing and contact-tracing data. Int J Epidemiol. 2021;50(5):1444–57. doi: 10.1093/ije/dyab108
    1. WHO. Working Group on the Clinical Characterisation Management of Covid-infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis. 2020;20(8):e192–e7.
    1. Sahanic S, Tymoszuk P, Ausserhofer D, Rass V, Pizzini A, Nordmeyer G, et al.. Phenotyping of acute and persistent COVID-19 features in the outpatient setting: exploratory analysis of an international cross-sectional online survey. Clin Infect Dis. 2021.
    1. da Silva JF, Hernandez-Romieu AC, Browning SD, Bruce BB, Natarajan P, Morris SB, et al.. COVID-19 Clinical Phenotypes: Presentation and Temporal Progression of Disease in a Cohort of Hospitalized Adults in Georgia, United States. Open Forum Infect Dis. 2021;8(1):ofaa596. doi: 10.1093/ofid/ofaa596
    1. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al.. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. Bmj. 2020;369:m1985. doi: 10.1136/bmj.m1985
    1. Gutierrez-Gutierrez B, Del Toro MD, Borobia AM, Carcas A, Jarrin I, Yllescas M, et al.. Identification and validation of clinical phenotypes with prognostic implications in patients admitted to hospital with COVID-19: a multicentre cohort study. Lancet Infect Dis. 2021;21(6):783–92. doi: 10.1016/S1473-3099(21)00019-0
    1. Porto LC, Costa CH, Nunes AS, Bouzas I, Ferreira TF, Porto VM, et al.. Clinical and laboratory characteristics in outpatient diagnosis of COVID-19 in healthcare professionals in Rio de Janeiro, Brazil. J Clin Pathol. 2022;75(3):185–92. doi: 10.1136/jclinpath-2020-206797
    1. ZonMw. Prospective cohort study of non-hospitalised COVID-19 patients: determining length of isolation and patient clinical development at home (COVID-HOME study): Netherlands Organisation for Health Research and Development (ZonMw) 2020 [].
    1. ORCHESTRA. Connecting European Cohorts to Increase Common and Effective Response to SARS-CoV-2 Pandemic: ORCHESTRA 2020 [].
    1. Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019. JAMA Netw Open. 2020;3(5):e208292. doi: 10.1001/jamanetworkopen.2020.8292
    1. Jeong HW, Kim SM, Kim HS, Kim YI, Kim JH, Cho JY, et al.. Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clin Microbiol Infect. 2020;26(11):1520–4. doi: 10.1016/j.cmi.2020.07.020
    1. van Kampen JJA, van de Vijver D, Fraaij PLA, Haagmans BL, Lamers MM, Okba N, et al.. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021;12(1):267. doi: 10.1038/s41467-020-20568-4
    1. Sohn Y, Jeong SJ, Chung WS, Hyun JH, Baek YJ, Cho Y, et al.. Assessing Viral Shedding and Infectivity of Asymptomatic or Mildly Symptomatic Patients with COVID-19 in a Later Phase. J Clin Med. 2020;9(9). doi: 10.3390/jcm9092924
    1. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al.. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20(5):565–74. doi: 10.1016/S1473-3099(20)30196-1
    1. Xiang F, Wang X, He X, Peng Z, Yang B, Zhang J, et al.. Antibody Detection and Dynamic Characteristics in Patients With Coronavirus Disease 2019. Clin Infect Dis. 2020;71(8):1930–4. doi: 10.1093/cid/ciaa461
    1. Rijkers G, Murk JL, Wintermans B, van Looy B, van den Berge M, Veenemans J, et al.. Differences in Antibody Kinetics and Functionality Between Severe and Mild Severe Acute Respiratory Syndrome Coronavirus 2 Infections. J Infect Dis. 2020;222(8):1265–9. doi: 10.1093/infdis/jiaa463
    1. Dellicour S, Durkin K, Hong SL, Vanmechelen B, Martí-Carreras J, Gill MS, et al.. A Phylodynamic Workflow to Rapidly Gain Insights into the Dispersal History and Dynamics of SARS-CoV-2 Lineages. Mol Biol Evol. 2021;38(4):1608–13. doi: 10.1093/molbev/msaa284
    1. Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V, Joy JB, et al.. The emergence of SARS-CoV-2 in Europe and North America. Science. 2020;370(6516):564–70. doi: 10.1126/science.abc8169
    1. Sikkema RS, Pas SD, Nieuwenhuijse DF, O’Toole A, Verweij J, van der Linden A, et al.. COVID-19 in health-care workers in three hospitals in the south of the Netherlands: a cross-sectional study. Lancet Infect Dis. 2020;20(11):1273–80. doi: 10.1016/S1473-3099(20)30527-2
    1. Rodríguez A, Ruiz-Botella M, Martín-Loeches I, Jimenez Herrera M, Solé-Violan J, Gómez J, et al.. Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain. Crit Care. 2021;25(1):63. doi: 10.1186/s13054-021-03487-8
    1. Hariyanto TI, Japar KV, Kwenandar F, Damay V, Siregar JI, Lugito NPH, et al.. Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: A systematic review and meta-analysis. Am J Emerg Med. 2021;41:110–9. doi: 10.1016/j.ajem.2020.12.076
    1. Long Fonds. Peiling onder groep met Long Covid: driekwart nog niet volledig aan het werk—2021 [cited 10-05-2021]. .
    1. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al.. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15. doi: 10.1038/s41591-021-01283-z
    1. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med. 1994;121(12):953–9. doi: 10.7326/0003-4819-121-12-199412150-00009
    1. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32. doi: 10.1016/j.cytogfr.2020.05.003
    1. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al.. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–30. doi: 10.1080/22221751.2020.1770129
    1. Fernandez-Castaneda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, et al.. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022;185(14):2452–68 e16. doi: 10.1016/j.cell.2022.06.008
    1. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al.. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177–9. doi: 10.1056/NEJMc2001737
    1. CBS. Statistics Netherlands. StatLine-Bevolking, huishoudens en bevolkingsontwikkeling; vanaf 1899. [updated 09-04-2021]. .
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81. doi: 10.1016/j.jbi.2008.08.010
    1. Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, et al.. More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chem Senses. 2020;45(7):609–22. doi: 10.1093/chemse/bjaa041
    1. Miwa T, Furukawa M, Tsukatani T, Costanzo RM, DiNardo LJ, Reiter ER. Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg. 2001;127(5):497–503. doi: 10.1001/archotol.127.5.497
    1. van Elst JM, NS IJ, Mathijssen RHJ, Steeghs N, Reyners AKL, de Haan JJ. Taste, smell and mouthfeel disturbances in patients with gastrointestinal stromal tumors treated with tyrosine-kinase inhibitors. Support Care Cancer. 2022;30(3):2307–15. doi: 10.1007/s00520-021-06658-z
    1. Gard L, Fliss MA, Bosma F, Ter Veen D, Niesters HGM. Validation and verification of the GeneFinder COVID-19 Plus RealAmp kit on the ELITe InGenius(R) instrument. J Virol Methods. 2022;300:114378.
    1. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al.. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3).
    1. Narasimhan M, Mahimainathan L, Araj E, Clark AE, Markantonis J, Green A, et al.. Clinical Evaluation of the Abbott Alinity SARS-CoV-2 Spike-Specific Quantitative IgG and IgM Assays among Infected, Recovered, and Vaccinated Groups. J Clin Microbiol. 2021;59(7):e0038821. doi: 10.1128/JCM.00388-21
    1. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. doi: 10.1093/molbev/mst010
    1. Chopra V, Flanders SA, O’Malley M, Malani AN, Prescott HC. Sixty-Day Outcomes Among Patients Hospitalized With COVID-19. Ann Intern Med. 2021;174(4):576–8. doi: 10.7326/M20-5661
    1. Garrigues E, Janvier P, Kherabi Y, Le Bot A, Hamon A, Gouze H, et al.. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81(6):e4–e6. doi: 10.1016/j.jinf.2020.08.029
    1. Coronavirus Dashboard. Number of confirmed cases. [Internet]. RIVM (National Institute for Public Health and the Environment). 2022. .
    1. Groff D, Sun A, Ssentongo AE, Ba DM, Parsons N, Poudel GR, et al.. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw Open. 2021;4(10):e2128568. doi: 10.1001/jamanetworkopen.2021.28568

Source: PubMed

3
Sottoscrivi