Effect of Intravenous Lidocaine on Serum Interleukin-17 After Video-Assisted Thoracic Surgery for Non-Small-Cell Lung Cancer: A Randomized, Double-Blind, Placebo-Controlled Trial

Yong-Heng Hou, Wen-Cheng Shi, Shu Cai, Hong Liu, Zhong Zheng, Fu-Wei Qi, Chang Li, Xiao-Mei Feng, Ke Peng, Fu-Hai Ji, Yong-Heng Hou, Wen-Cheng Shi, Shu Cai, Hong Liu, Zhong Zheng, Fu-Wei Qi, Chang Li, Xiao-Mei Feng, Ke Peng, Fu-Hai Ji

Abstract

Purpose: Surgical stress promotes tumor metastasis. Interleukin (IL)-17 plays a pivotal role in cancer progression, and high IL-17 expression predicts poor prognosis of non-small-cell lung cancer (NSCLC). Lidocaine may exert tumor-inhibiting effects. We hypothesize that intravenous lidocaine attenuates surgical stress and reduces serum IL-17 levels during video-assisted thoracic surgery (VATS) for NSCLC.

Methods: This randomized, double-blind, placebo-controlled trial included 60 early-stage NSCLC patients undergoing VATS, into a lidocaine group (n = 30; intravenous lidocaine bolus 1.0 mg/kg, and 1.0 mg/kg/h until the end of surgery) or a normal saline control group (n = 30). The primary outcome was serum IL-17 level at 24 hours postoperatively. The secondary outcomes included serum IL-17 level at the time of post-anesthesia care unit (PACU) discharge, serum cortisol level at PACU discharge and postoperative 24 hours, pain scores (0-10) from PACU discharge to 48 hours postoperatively, incidences of postoperative nausea and vomiting, dizziness, and arrhythmia during 0-48 hours postoperatively, and 30-day mortality. Long-term outcomes included chemotherapy, cancer recurrence, and mortality.

Results: The lidocaine group had lower serum IL-17 at 24 hours postoperatively compared with the control group (23.0 ± 5.8 pg/mL vs 27.3 ± 8.2 pg/mL, difference [95% CI] = -4.3 [-8.4 to -0.2] pg/mL; P = 0.038). The lidocaine group also had reduced serum IL-17 (difference [95% CI] = -4.6 [-8.7 to -0.5] pg/mL), serum cortisol (difference [95% CI] = -37 [-73 to -2] ng/mL), and pain scores (difference [95% CI] = -0.7 [-1.3 to -0.1] points) at PACU discharge. During a median follow-up of 10 (IQR, 9-13) months, 2 patients in the lidocaine group and 6 patients in the control group received chemotherapy, one patient in the control group had cancer recurrence, and no death event occurred.

Conclusion: Intravenous lidocaine was associated with reduced serum IL-17 and cortisol following VATS procedures in early-stage NSCLC patients.

Trial registration: ChiCTR2000030629.

Keywords: interleukin-17; lidocaine; non-small-cell lung cancer; surgical stress; video-assisted thoracic surgery.

Conflict of interest statement

The authors reported no conflicts of interest for this work and declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

© 2021 Hou et al.

Figures

Figure 1
Figure 1
CONSORT flow diagram.
Figure 2
Figure 2
Perioperative heart rate and mean arterial pressure. (A) Heart rate. (B) Mean arterial pressure. Data are mean ± standard deviation. Green arrow indicates the infusion period of the study medication. P values between the lidocaine and control groups are shown.
Figure 3
Figure 3
Serum levels of IL-17 and cortisol. (A) Serum IL-17. (B) Serum cortisol. *P < 0.05, **P < 0.01 vs the baseline value. P values between the lidocaine and control groups are shown. Data are median (line within the box), interquartile range (box), and 5th–95th percentile values (whiskers).
Figure 4
Figure 4
Subgroup analysis. Subgroup analysis investigating the effect of intravenous lidocaine on serum IL-17 levels at postoperative 24 hours, according to age (≤ 50 y vs > 50 y), sex (female vs male), and cancer stage (T1-2 vs Tis).

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
    1. Yang CJ, Kumar A, Klapper JA, et al. A national analysis of long-term survival following thoracoscopic versus open lobectomy for stage I non-small-cell lung cancer. Ann Surg. 2019;269(1):163–171. doi:10.1097/SLA.0000000000002342
    1. Chen Z, Zhang P, Xu Y, et al. Surgical stress and cancer progression: the twisted tango. Mol Cancer. 2019;18(1):132. doi:10.1186/s12943-019-1058-3
    1. Hogan BV, Peter MB, Shenoy HG, Horgan K, Hughes TA. Surgery induced immunosuppression. Surgeon. 2011;9(1):38–43. doi:10.1016/j.surge.2010.07.011
    1. Finnerty CC, Mabvuure NT, Ali A, Kozar RA, Herndon DN. The surgically induced stress response. JPEN J Parenter Enteral Nutr. 2013;37(5 Suppl):21S–29S. doi:10.1177/0148607113496117
    1. Wu F, Xu J, Huang Q, et al. The role of interleukin-17 in lung cancer. Mediators Inflamm. 2016;2016:8494079. doi:10.1155/2016/8494079
    1. Chen X, Wan J, Liu J, et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer. 2010;69(3):348–354. doi:10.1016/j.lungcan.2009.11.013
    1. Xu C, Hao K, Yu L, Zhang X. Serum interleukin-17 as a diagnostic and prognostic marker for non-small cell lung cancer. Biomarkers. 2014;19(4):287–290. doi:10.3109/1354750X.2014.908954
    1. Wang XF, Zhu YT, Wang JJ, et al. The prognostic value of interleukin-17 in lung cancer: a systematic review with meta-analysis based on Chinese patients. PLoS One. 2017;12(9):e0185168. doi:10.1371/journal.pone.0185168
    1. Lii TR, Aggarwal AK. Comparison of intravenous lidocaine versus epidural anesthesia for traumatic rib fracture pain: a retrospective cohort study. Reg Anesth Pain Med. 2020;45(8):628–633. doi:10.1136/rapm-2019-101120
    1. Kim YC, Castaneda AM, Lee CS, Jin HS, Park KS, Moon JY. Efficacy and safety of lidocaine infusion treatment for neuropathic pain: a randomized, double-blind, and placebo-controlled study. Reg Anesth Pain Med. 2018;43(4):415–424. doi:10.1097/AAP.0000000000000741
    1. Beaussier M, Delbos A, Maurice-Szamburski A, Ecoffey C, Mercadal L. Perioperative use of intravenous lidocaine. Drugs. 2018;78(12):1229–1246. doi:10.1007/s40265-018-0955-x
    1. Yang SS, Wang NN, Postonogova T, et al. Intravenous lidocaine to prevent postoperative airway complications in adults: a systematic review and meta-analysis. Br J Anaesth. 2020;124(3):314–323. doi:10.1016/j.bja.2019.11.033
    1. Chamaraux-Tran TN, Piegeler T. The amide local anesthetic lidocaine in cancer surgery-potential antimetastatic effects and preservation of immune cell function? A narrative review. Front Med. 2017;4:235. doi:10.3389/fmed.2017.00235
    1. Ramirez MF, Tran P, Cata JP. The effect of clinically therapeutic plasma concentrations of lidocaine on natural killer cell cytotoxicity. Reg Anesth Pain Med. 2015;40(1):43–48. doi:10.1097/AAP.0000000000000191
    1. Zhang H, Yang L, Zhu X, et al. Association between intraoperative intravenous lidocaine infusion and survival in patients undergoing pancreatectomy for pancreatic cancer: a retrospective study. Br J Anaesth. 2020;125(2):141–148. doi:10.1016/j.bja.2020.03.034
    1. Gruenewald M, Willms S, Broch O, Kott M, Steinfath M, Bein B. Sufentanil administration guided by surgical pleth index vs standard practice during sevoflurane anaesthesia: a randomized controlled pilot study. Br J Anaesth. 2014;112(5):898–905. doi:10.1093/bja/aet485
    1. Ryu KH, Kim JA, Ko DC, Lee SH, Choi WJ. Desflurane reduces intraoperative remifentanil requirements more than sevoflurane: comparison using surgical pleth index-guided analgesia. Br J Anaesth. 2018;121(5):1115–1122. doi:10.1016/j.bja.2018.05.064
    1. Funcke S, Pinnschmidt HO, Wesseler S, et al. Guiding opioid administration by 3 different analgesia nociception monitoring indices during general anesthesia alters intraoperative sufentanil consumption and stress hormone release: a randomized controlled pilot study. Anesth Analg. 2020;130(5):1264–1273. doi:10.1213/ANE.0000000000004388
    1. Vigneault L, Turgeon AF, Cote D, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a meta-analysis of randomized controlled trials. Can J Anaesth. 2011;58(1):22–37. doi:10.1007/s12630-010-9407-0
    1. Kaba A, Laurent SR, Detroz BJ, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106(1):11–18;discussion 15–16. doi:10.1097/00000542-200701000-00007
    1. Hans GA, Lauwick SM, Kaba A, et al. Intravenous lidocaine infusion reduces bispectral index-guided requirements of propofol only during surgical stimulation. Br J Anaesth. 2010;105(4):471–479. doi:10.1093/bja/aeq189
    1. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest. 2017;151(1):193–203. doi:10.1016/j.chest.2016.10.010
    1. Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15(9):563–572. doi:10.1038/nrc3978
    1. Kim R. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence. J Transl Med. 2018;16(1):8. doi:10.1186/s12967-018-1389-7
    1. Duan MC, Zhong XN, Liu GN, Wei JR. The Treg/Th17 paradigm in lung cancer. J Immunol Res. 2014;2014:730380. doi:10.1155/2014/730380
    1. Akbay EA, Koyama S, Liu Y, et al. Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J Thorac Oncol. 2017;12(8):1268–1279. doi:10.1016/j.jtho.2017.04.017
    1. Yang Q, Zhang Z, Xu H, Ma C. Lidocaine alleviates cytotoxicity-resistance in lung cancer A549/DDP cells via down-regulation of miR-21. Mol Cell Biochem. 2019;456(1–2):63–72. doi:10.1007/s11010-018-3490-x
    1. Zhang L, Hu R, Cheng Y, et al. Lidocaine inhibits the proliferation of lung cancer by regulating the expression of GOLT1A. Cell Prolif. 2017;50(5):e12364. doi:10.1111/cpr.12364
    1. Freeman J, Crowley PD, Foley AG, et al. Effect of perioperative lidocaine, propofol and steroids on pulmonary metastasis in a murine model of breast cancer surgery. Cancers. 2019;11(5):613. doi:10.3390/cancers11050613
    1. Galos EV, Tat TF, Popa R, et al. Neutrophil extracellular trapping and angiogenesis biomarkers after intravenous or inhalation anaesthesia with or without intravenous lidocaine for breast cancer surgery: a prospective, randomised trial. Br J Anaesth. 2020;125(5):712–721. doi:10.1016/j.bja.2020.05.003
    1. Grigoras A, Lee P, Sattar F, Shorten G. Perioperative intravenous lidocaine decreases the incidence of persistent pain after breast surgery. Clin J Pain. 2012;28(7):567–572. doi:10.1097/AJP.0b013e31823b9cc8
    1. Weibel S, Jelting Y, Pace NL, et al. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev. 2018;6:CD009642.
    1. Dewinter G, Moens P, Fieuws S, Vanaudenaerde B, Van de Velde M, Rex S. Systemic lidocaine fails to improve postoperative morphine consumption, postoperative recovery and quality of life in patients undergoing posterior spinal arthrodesis. A double-blind, randomized, placebo-controlled trial. Br J Anaesth. 2017;118(4):576–585. doi:10.1093/bja/aex038
    1. Terkawi AS, Durieux ME, Gottschalk A, Brenin D, Tiouririne M. Effect of intravenous lidocaine on postoperative recovery of patients undergoing mastectomy: a double-blind, placebo-controlled randomized trial. Reg Anesth Pain Med. 2014;39(6):472–477. doi:10.1097/AAP.0000000000000140
    1. Dworkin RH, Turk DC, Wyrwich KW, et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J Pain. 2008;9(2):105–121. doi:10.1016/j.jpain.2007.09.005
    1. Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. PLoS Med. 2010;7(3):e1000251.

Source: PubMed

3
Sottoscrivi