Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge

Imanuel Lerman, Bryan Davis, Mingxiong Huang, Charles Huang, Linda Sorkin, James Proudfoot, Edward Zhong, Donald Kimball, Ramesh Rao, Bruce Simon, Andrea Spadoni, Irina Strigo, Dewleen G Baker, Alan N Simmons, Imanuel Lerman, Bryan Davis, Mingxiong Huang, Charles Huang, Linda Sorkin, James Proudfoot, Edward Zhong, Donald Kimball, Ramesh Rao, Bruce Simon, Andrea Spadoni, Irina Strigo, Dewleen G Baker, Alan N Simmons

Abstract

The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group × time × GSR analysis showed a significantly decreased response in the nVNS group (p < .0005) bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output.

Conflict of interest statement

Bruce Simon PhD has stock/shares in Electrocore LLC. Imanuel Lerman MD MSc carried out prior investigator initiated research that was funded by Electrocore LLC including investigating anti-inflammatory effects of nVNS and neural effects of nVNS measured with MEG. These prior studies do not overlap with this study and Electrocore had no part in this study funding or design. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Noninvasive vagus nerve stimulation study…
Fig 1. Noninvasive vagus nerve stimulation study design.
(a) Subjects were screened and randomized to either the sham treatment or nVNS group. Sham stimulation was carried out posteriolateral to the sternocleidomastoid. In the nVNS group, stimulation occurred anteromedial to the sternocleidomastoid and lateral to the trachea. In both the nVNS and sham treatments, a computational fixed, initial 30-second ramp-up period was followed by 90 seconds of peak stimulation. (b) Subjects were allowed to rest for 5 minutes before undergoing 2 minutes of nVNS (electrodes placed over carotid) or sham stimulation (electrodes placed far lateral to the sternocleidomastoid). Subjects then rested for an additional 5 minutes. Nine and a half minutes after either nVNS or sham stimulation, 5 successive noxious thermal stimuli were applied in bouts of 5 seconds each, up to 49.8°C. Each heat stimulus began 110 seconds after the start of the previous one. fMRI, and GSR acquisition were taken 9.5 to 16.8 minutes after nVNS or sham treatment.
Fig 2. nVNS vs sham autonomic measures…
Fig 2. nVNS vs sham autonomic measures of sympathetic tone galvanic skin response (GSR) with noxious thermal challenge.
(A) The time to peak galvanic skin response (GSR) measured in seconds after the application of each of the noxious thermal stimuli was significantly reduced in the nVNS group for noxious thermal stimuli 1 and 2 (T1 and T2) (**p < .05) compared with the sham group, and approached significance for T3 and T4 (δp < .09). Mixed-model regression showed that the combined (T1-T5) time to peak GSR in the nVNS group was significantly shorter compared with the sham group (p < .02). (B) The GSR slope (in microsiemens) from the baseline GSR (prior to the application of each noxious thermal stimulus) to the peak GSR (accompanying each noxious thermal stimulus) was measured in each group. The slope from the baseline GSR to the peak response decreased in both groups with each successively applied noxious thermal stimulus from T1 to T3. However, whereas the nVNS group showed a negative average slope to peak GSR of -0.0461 from T3 to T5, the sham group showed a positive average slope to peak GSR of 0.049 from T3 to T5. The between-group difference (group x time interaction = -0.09508) for T3 to T5 was significant at *p < .05. Red circles = nVNS group. Blue circles = sham group.
Fig 3. Group differences in the time…
Fig 3. Group differences in the time course of Blood Oxygen Level-Dependent (BOLD) responses over the entire course of the pain experience.
Imaging of (a) the bilateral somatosensory cortex (SI), and (c) SII, (f) left dorsoposterior insula, (h) bilateral mediodorsal thalamus and dorsal anterior cingulate (area 24), and (k) right media frontal gyrus (orbitofrontal cortex; OFC). Differential hemodynamic response curves during the application of noxious thermal stimuli 10 to 15 minutes following VNS (turquoise) and sham treatments (pink) were generated with a group × time, linear mixed-effects analysis showed that (b) subjects in the sham group had greater activity in the bilateral postcentral gyrus (SI; p = .0006). Treatment with nVNS significantly decreased the response of the postcentral gyrus during and after the application of noxious thermal stimuli (5 seconds each), up to 12 seconds after cessation of the painful stimulus. Subjects in the sham group had greater activity in the bilateral SII (d, e) (mean and SE shown) (right p = .0009, left p = .0009)]. Subjects in the sham group had greater activity in the left posterior insula (g) (mean and SE shown; p = .0004), during and after the application of noxious thermal stimuli (5 seconds each). This result demonstrates blunting of the usual temporal dynamic response of the insula (as seen in the sham group) that is most evident during and up to 10 seconds after cessation of the painful stimulus. The sham group showed significantly greater activity in the medial thalamus and anterior cingulate (area 24) (i, j) (mean and SE shown; mediodorsal thalamus p = .0004, area 24 p = .0004), during and after the application of noxious thermal stimuli (5 seconds each). Subjects in the nVNS group had significantly decreased activity in right middle frontal gyrus (l), overlapping with the medial and lateral OFC (mean and SE shown; p = .0002) followed by an increase in OFC response (greater than sham) that was most evident at the 10 to 15 second mark.
Fig 4. Neural and autonomic measures taken…
Fig 4. Neural and autonomic measures taken during the application of thermal stimuli (mean GSR, measured from the peak after the application of the thermal stimulus for 15 seconds).
Group (nVNS vs sham) × linear time x GSR linear mixed-effects analysis. (A) Compared with subjects in the nVNS group, subjects who underwent sham treatment showed significantly greater activity in the bilateral somatosensory cortex. (B) Differential hemodynamics of pain following nVNS (turquoise) and sham (pink) treatment. (SI; mean and SE show; p = .0002). (C) Cerebellum/medullary brain stem measures taken during the application of thermal stimuli show (D). To assist in visual representation of this region of interest, the sham and nVNS groups were separated into high and low mean GSRs (using a group median of 16 microsiemens; the high group included 5 subjects who received sham treatment and 7 subjects who received nVNS treatment). (D) Only the high-GSR sham group (pink shade with blue line) demonstrated greater activity in the medulla/brain stem with the application of noxious thermal stimuli. At this medullary level (i.e. the level of the olive from the lower pons, spanning to the lower medulla) multiple afferent fibers enter the brainstem, including the vagus, glossopharyngeal, hypoglossal, and accessory nerves, that synapse on multiple brainstem nuclei [i.e. the nucleus tractus solitarius (NTS), nucleus ambiguous (NAmb), and dorsal motor nucleus of the vagus nerve (DMNX)]. Other brainstem nuclei important for nociception [i.e. the rostral ventrolateral medulla (RVLM), rostral ventromedial medulla (RVM), and nucleus reticularis (Rt)] are also found at this level.

References

    1. Jänig W. Integrative action of the autonomic nervous system: Neurobiology of homeostasis: Cambridge University Press; 2008.
    1. Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51(1):48–55. Epub 1998/07/23. .
    1. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, et al. Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry. 2000;47(4):276–86. Epub 2000/02/25. .
    1. Nierenberg AA, Alpert JE, Gardner-Schuster EE, Seay S, Mischoulon D. Vagus nerve stimulation: 2-year outcomes for bipolar versus unipolar treatment-resistant depression. Biol Psychiatry. 2008;64(6):455–60. Epub 2008/06/24. 10.1016/j.biopsych.2008.04.036 .
    1. Sackeim HA, Brannan SK, Rush AJ, George MS, Marangell LB, Allen J. Durability of antidepressant response to vagus nerve stimulation (VNS). Int J Neuropsychopharmacol. 2007;10(6):817–26. Epub 2007/02/10. 10.1017/S1461145706007425 .
    1. Cristancho P, Cristancho MA, Baltuch GH, Thase ME, OReardon JP. Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. The Journal of clinical psychiatry. 2011;72(10):1376–82. 10.4088/JCP.09m05888blu
    1. Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache. 2016;56(2):259–66. Epub 2015/09/19. 10.1111/head.12650 .
    1. Stefan H, Kreiselmeyer G, Kerling F, Kurzbuch K, Rauch C, Heers M, et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012;53(7):e115–8. Epub 2012/05/05. 10.1111/j.1528-1167.2012.03492.x .
    1. Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm (Vienna). 2013;120(5):821–7. Epub 2012/11/03. 10.1007/s00702-012-0908-6 .
    1. Busch V, Zeman F, Heckel A, Menne F, Ellrich J, Eichhammer P. The effect of transcutaneous vagus nerve stimulation on pain perception—an experimental study. Brain Stimul. 2013;6(2):202–9. Epub 2012/05/25. 10.1016/j.brs.2012.04.006 .
    1. Mourdoukoutas AP, Truong DQ, Adair DK, Simon BJ, Bikson M. High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation. Neuromodulation. 2017. Epub 2017/10/28. 10.1111/ner.12706 .
    1. Goadsby PJ, Grosberg BM, Mauskop A, Cady R, Simmons KA. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia. 2014;34(12):986–93. Epub 2014/03/13. 10.1177/0333102414524494 .
    1. Grazzi L, Egeo G, Calhoun AH, McClure CK, Liebler E, Barbanti P. Non-invasive Vagus Nerve Stimulation (nVNS) as mini-prophylaxis for menstrual/menstrually related migraine: an open-label study. J Headache Pain. 2016;17(1):91 Epub 2016/10/05. 10.1186/s10194-016-0684-z
    1. Silberstein SD, Mechtler LL, Kudrow DB, Calhoun AH, McClure C, Saper JR, et al. Non-Invasive Vagus Nerve Stimulation for the ACute Treatment of Cluster Headache: Findings From the Randomized, Double-Blind, Sham-Controlled ACT1 Study. Headache. 2016;56(8):1317–32. Epub 2016/09/07. 10.1111/head.12896
    1. Gaul C, Diener HC, Silver N, Magis D, Reuter U, Andersson A, et al. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): A randomised controlled study. Cephalalgia. 2016;36(6):534–46. Epub 2015/09/24. 10.1177/0333102415607070
    1. Yuan H, Silberstein SD. Vagus Nerve Stimulation and Headache. Headache. 2017;57 Suppl 1:29–33. Epub 2015/10/17. 10.1111/head.12721 .
    1. Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part III. Headache. 2016;56(3):479–90. Epub 2015/09/15. 10.1111/head.12649 .
    1. Nonis R, D’Ostilio K, Schoenen J, Magis D. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: An electrophysiological study in healthy volunteers. Cephalalgia. 2017;37(13):1285–93. 10.1177/0333102417717470
    1. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–84. Epub 2005/06/28. 10.1016/j.ejpain.2004.11.001 .
    1. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–91. Epub 2007/08/07. 10.1016/j.neuron.2007.07.012 .
    1. Treister R, Kliger M, Zuckerman G, Goor Aryeh I, Eisenberg E. Differentiating between heat pain intensities: the combined effect of multiple autonomic parameters. Pain. 2012;153(9):1807–14. Epub 2012/06/01. 10.1016/j.pain.2012.04.008 .
    1. Cowen R, Stasiowska MK, Laycock H, Bantel C. Assessing pain objectively: the use of physiological markers. Anaesthesia. 2015;70(7):828–47. Epub 2015/03/17. 10.1111/anae.13018 .
    1. Ben-Israel N, Kliger M, Zuckerman G, Katz Y, Edry R. Monitoring the nociception level: a multi-parameter approach. J Clin Monit Comput. 2013;27(6):659–68. Epub 2013/07/10. 10.1007/s10877-013-9487-9 .
    1. Loggia ML, Juneau M, Bushnell MC. Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain. 2011;152(3):592–8. Epub 2011/01/11. 10.1016/j.pain.2010.11.032 .
    1. Maihofner C, Seifert F, Decol R. Activation of central sympathetic networks during innocuous and noxious somatosensory stimulation. Neuroimage. 2011;55(1):216–24. Epub 2010/12/04. 10.1016/j.neuroimage.2010.11.061 .
    1. Seifert F, Schuberth N, De Col R, Peltz E, Nickel FT, Maihofner C. Brain activity during sympathetic response in anticipation and experience of pain. Hum Brain Mapp. 2013;34(8):1768–82. Epub 2012/03/23. 10.1002/hbm.22035 .
    1. Dube AA, Duquette M, Roy M, Lepore F, Duncan G, Rainville P. Brain activity associated with the electrodermal reactivity to acute heat pain. Neuroimage. 2009;45(1):169–80. Epub 2008/11/26. 10.1016/j.neuroimage.2008.10.024 .
    1. Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Stoermer R, et al. Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimuli—a fMRI/EEG study. Neuroimage. 2009;44(3):1081–92. Epub 2008/10/14. 10.1016/j.neuroimage.2008.09.004 .
    1. Piche M, Arsenault M, Rainville P. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation. Pain. 2010;149(3):453–62. Epub 2010/04/27. 10.1016/j.pain.2010.01.005 .
    1. Chen SL, Wu XY, Cao ZJ, Fan J, Wang M, Owyang C, et al. Subdiaphragmatic vagal afferent nerves modulate visceral pain. Am J Physiol Gastrointest Liver Physiol. 2008;294(6):G1441–9. Epub 2008/04/19. 10.1152/ajpgi.00588.2007
    1. Bohotin C, Scholsem M, Multon S, Martin D, Bohotin V, Schoenen J. Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus caudalis. Pain. 2003;101(1–2):3–12. Epub 2003/01/01. 10.1016/s0304-3959(02)00301-9 .
    1. Randich A, Ren K, Gebhart GF. Electrical stimulation of cervical vagal afferents. II. Central relays for behavioral antinociception and arterial blood pressure decreases. J Neurophysiol. 1990;64(4):1115–24. Epub 1990/10/01. 10.1152/jn.1990.64.4.1115 .
    1. Randich A, Aicher SA. Medullary substrates mediating antinociception produced by electrical stimulation of the vagus. Brain Res. 1988;445(1):68–76. Epub 1988/03/29. .
    1. Nishikawa Y, Koyama N, Yoshida Y, Yokota T. Activation of ascending antinociceptive system by vagal afferent input as revealed in the nucleus ventralis posteromedialis. Brain Res. 1999;833(1):108–11. Epub 1999/06/22. .
    1. Ren K, Randich A, Gebhart GF. Effects of electrical stimulation of vagal afferents on spinothalamic tract cells in the rat. Pain. 1991;44(3):311–9. Epub 1991/03/01. .
    1. Sedan O, Sprecher E, Yarnitsky D. Vagal stomach afferents inhibit somatic pain perception. Pain. 2005;113(3):354–9. Epub 2005/01/22. 10.1016/j.pain.2004.11.012 .
    1. Usichenko T, Laqua R, Leutzow B, Lotze M. Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain. Brain Imaging Behav. 2017;11(1):30–7. Epub 2016/01/20. 10.1007/s11682-015-9502-5 .
    1. Multon S, Schoenen J. Pain control by vagus nerve stimulation: from animal to man …and back. Acta Neurol Belg. 2005;105(2):62–7. Epub 2005/08/04. .
    1. Lange G, Janal MN, Maniker A, Fitzgibbons J, Fobler M, Cook D, et al. Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med. 2011;12(9):1406–13. Epub 2011/08/05. 10.1111/j.1526-4637.2011.01203.x
    1. Kirchner A, Birklein F, Stefan H, Handwerker HO. Left vagus nerve stimulation suppresses experimentally induced pain. Neurology. 2000;55(8):1167–71. Epub 2000/11/09. .
    1. Dietrich S, Smith J, Scherzinger C, Hofmann-Preiss K, Freitag T, Eisenkolb A, et al. [A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI]. Biomed Tech (Berl). 2008;53(3):104–11. Epub 2008/07/08. 10.1515/BMT.2008.022 .
    1. Kraus T, Hosl K, Kiess O, Schanze A, Kornhuber J, Forster C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J Neural Transm (Vienna). 2007;114(11):1485–93. Epub 2007/06/15. 10.1007/s00702-007-0755-z .
    1. Frangos E, Ellrich J, Komisaruk BR. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul. 2015;8(3):624–36. Epub 2015/01/13. 10.1016/j.brs.2014.11.018
    1. Frangos E, Komisaruk BR. Access to Vagal Projections via Cutaneous Electrical Stimulation of the Neck: fMRI Evidence in Healthy Humans. Brain Stimul. 2017;10(1):19–27. Epub 2017/01/21. 10.1016/j.brs.2016.10.008 .
    1. Ness TJ, Fillingim RB, Randich A, Backensto EM, Faught E. Low intensity vagal nerve stimulation lowers human thermal pain thresholds. Pain. 2000;86(1–2):81–5. Epub 2000/04/26. .
    1. Borckardt JJ, Anderson B, Andrew Kozel F, Nahas Z, Richard Smith A, Jackson Thomas K, et al. Acute and long-term VNS effects on pain perception in a case of treatment-resistant depression. Neurocase. 2006;12(4):216–20. Epub 2006/09/27. 10.1080/13554790600788094 .
    1. Lewine JD, Paulson K, Bangera N, Simon BJ. Exploration of the Impact of Brief Noninvasive Vagal Nerve Stimulation on EEG and Event‐Related Potentials. Neuromodulation: Technology at the Neural Interface. 2018.
    1. Lerman I, Davis BA, Bertram TM, Proudfoot J, Hauger RL, Coe CL, et al. Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology. 2016;73:99–108. Epub 2016/08/05. 10.1016/j.psyneuen.2016.07.202 .
    1. Kahl C, Cleland JA. Visual analogue scale, numeric pain rating scale and the McGill Pain Questionnaire: an overview of psychometric properties. Physical therapy reviews. 2005;10(2):123–8.
    1. R Core Team. R: A language and environment for statistical computing: R Foundation for Statistical Computing; 2017. [cited 2017 29 May 2017]. Available from: .
    1. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73. Epub 1996/06/01. .
    1. Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM. Duvernoys Atlas of the Human Brain Stem and Cerebellum. Vienna: Springer-Verlag; 2009.
    1. Beissner F, Schumann A, Brunn F, Eisentrager D, Bar KJ. Advances in functional magnetic resonance imaging of the human brainstem. Neuroimage. 2014;86:91–8. Epub 2013/08/13. 10.1016/j.neuroimage.2013.07.081 .
    1. Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp. 2013;34(1):109–49. Epub 2011/12/02. 10.1002/hbm.21416 .
    1. Bingel U, Lorenz J, Glauche V, Knab R, Glascher J, Weiller C, et al. Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage. 2004;23(1):224–32. Epub 2004/08/25. 10.1016/j.neuroimage.2004.05.021 .
    1. Bingel U, Rose M, Glascher J, Buchel C. fMRI reveals how pain modulates visual object processing in the ventral visual stream. Neuron. 2007;55(1):157–67. Epub 2007/07/06. 10.1016/j.neuron.2007.05.032 .
    1. Bingel U, Schoell E, Herken W, Buchel C, May A. Habituation to painful stimulation involves the antinociceptive system. Pain. 2007;131(1–2):21–30. Epub 2007/01/30. 10.1016/j.pain.2006.12.005 .
    1. Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A. 2007;104(29):12187–92. Epub 2007/07/10. 10.1073/pnas.0611404104
    1. Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain. 2002;125(Pt 6):1326–36. Epub 2002/05/23. .
    1. Buchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci. 2002;22(3):970–6. Epub 2002/02/05. .
    1. Bingel U, Quante M, Knab R, Bromm B, Weiller C, Buchel C. Single trial fMRI reveals significant contralateral bias in responses to laser pain within thalamus and somatosensory cortices. Neuroimage. 2003;18(3):740–8. Epub 2003/04/02. .
    1. Cole LJ, Farrell MJ, Gibson SJ, Egan GF. Age-related differences in pain sensitivity and regional brain activity evoked by noxious pressure. Neurobiol Aging. 2010;31(3):494–503. Epub 2008/06/03. 10.1016/j.neurobiolaging.2008.04.012 .
    1. Straube T, Schmidt S, Weiss T, Mentzel HJ, Miltner WH. Sex differences in brain activation to anticipated and experienced pain in the medial prefrontal cortex. Hum Brain Mapp. 2009;30(2):689–98. Epub 2008/01/26. 10.1002/hbm.20536 .
    1. Hua le H, Strigo IA, Baxter LC, Johnson SC, Craig AD. Anteroposterior somatotopy of innocuous cooling activation focus in human dorsal posterior insular cortex. Am J Physiol Regul Integr Comp Physiol. 2005;289(2):R319–R25. Epub 2005/04/05. 10.1152/ajpregu.00123.2005 .
    1. Henderson LA, Gandevia SC, Macefield VG. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain. 2007;128(1–2):20–30. Epub 2006/10/03. 10.1016/j.pain.2006.08.013 .
    1. Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat. 2005;207(1):19–33. Epub 2005/07/14. 10.1111/j.1469-7580.2005.00428.x
    1. Bjornsdotter M, Loken L, Olausson H, Vallbo A, Wessberg J. Somatotopic organization of gentle touch processing in the posterior insular cortex. J Neurosci. 2009;29(29):9314–20. Epub 2009/07/25. 10.1523/JNEUROSCI.0400-09.2009 .
    1. Craig AD. The sentient self. Brain Struct Funct. 2010;214(5–6):563–77. Epub 2010/06/01. 10.1007/s00429-010-0248-y .
    1. Vogel H, Port JD, Lenz FA, Solaiyappan M, Krauss G, Treede R-D. Dipole source analysis of laser-evoked subdural potentials recorded from parasylvian cortex in humans. Journal of neurophysiology. 2003;89(6):3051–60. 10.1152/jn.00772.2002
    1. Mazzola L, Isnard J, Peyron R, Guenot M, Mauguiere F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain. 2009;146(1–2):99–104. Epub 2009/08/12. 10.1016/j.pain.2009.07.014 .
    1. Biemond A. The conduction of pain above the level of the thalamus opticus. AMA Arch Neurol Psychiatry. 1956;75(3):231–44. Epub 1956/03/01. .
    1. Schmahmann JD, Leifer D. Parietal pseudothalamic pain syndrome: clinical features and anatomic correlates. Archives of Neurology. 1992;49(10):1032–7.
    1. Bassetti C, Bogousslavsky J, Regli F. Sensory syndromes in parietal stroke. Neurology. 1993;43(10):1942–9. Epub 1993/10/01. .
    1. Greenspan JD, Lee RR, Lenz FA. Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain. 1999;81(3):273–82. Epub 1999/08/04. .
    1. Birklein F, Rolke R, Muller-Forell W. Isolated insular infarction eliminates contralateral cold, cold pain, and pinprick perception. Neurology. 2005;65(9):1381 Epub 2005/11/09. 10.1212/01.wnl.0000181351.82772.b3 .
    1. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nature reviews neuroscience. 2002;3(8):655–66. 10.1038/nrn894
    1. Craig AD. A new view of pain as a homeostatic emotion. Trends Neurosci. 2003;26(6):303–7. Epub 2003/06/12. 10.1016/S0166-2236(03)00123-1 .
    1. Craig AD. How do you feel now? the anterior insula and human awareness. Nature reviews neuroscience. 2009;10(1).
    1. Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002;59(6 Suppl 4):S3–14. Epub 2002/09/25. .
    1. Henry TR, Bakay RA, Pennell PB, Epstein CM, Votaw JR. Brain Blood-flow Alterations Induced by Therapeutic Vagus Nerve Stimulation in Partial Epilepsy: II. Prolonged Effects at High and Low Levels of Stimulation. Epilepsia. 2004;45(9):1064–70. 10.1111/j.0013-9580.2004.03104.x
    1. Mu Q, Bohning DE, Nahas Z, Walker J, Anderson B, Johnson KA, et al. Acute vagus nerve stimulation using different pulse widths produces varying brain effects. Biol Psychiatry. 2004;55(8):816–25. Epub 2004/03/31. 10.1016/j.biopsych.2003.12.004 .
    1. Conway CR, Sheline YI, Chibnall JT, George MS, Fletcher JW, Mintun MA. Cerebral blood flow changes during vagus nerve stimulation for depression. Psychiatry Res. 2006;146(2):179–84. Epub 2006/03/03. 10.1016/j.pscychresns.2005.12.007 .
    1. Nahas Z, Teneback C, Chae JH, Mu Q, Molnar C, Kozel FA, et al. Serial vagus nerve stimulation functional MRI in treatment-resistant depression. Neuropsychopharmacology. 2007;32(8):1649–60. Epub 2007/01/05. 10.1038/sj.npp.1301288 .
    1. Kosel M, Brockmann H, Frick C, Zobel A, Schlaepfer TE. Chronic vagus nerve stimulation for treatment-resistant depression increases regional cerebral blood flow in the dorsolateral prefrontal cortex. Psychiatry Res. 2011;191(3):153–9. Epub 2011/02/11. 10.1016/j.pscychresns.2010.11.004 .
    1. Derbyshire SW, Jones AK, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997;73(3):431–45. Epub 1998/02/20. .
    1. Jeanmonod D, Magnin M, Morel A. Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain. 1996;119 (Pt 2):363–75. Epub 1996/04/01. .
    1. Metzger CD, Eckert U, Steiner J, Sartorius A, Buchmann JE, Stadler J, et al. High field FMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei. Front Neuroanat. 2010;4:138 Epub 2010/11/23. 10.3389/fnana.2010.00138
    1. Rainville P, Duncan GH, Price DD, Carrier Bi, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277(5328):968–71.
    1. Ploner M, Freund H-J, Schnitzler A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain. 1999;81(1):211–4.
    1. Vogt BA, Rosene DL, Pandya DN. Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science. 1979;204(4389):205–7. Epub 1979/04/13. .
    1. Goldman-Rakic PS, Porrino LJ. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol. 1985;242(4):535–60. Epub 1985/12/22. 10.1002/cne.902420406 .
    1. Vogt BA, Paxinos G. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct. 2014;219(1):185–92. Epub 2012/12/12. 10.1007/s00429-012-0493-3 .
    1. Jaggi AS, Singh N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res. 2011;1381:187–201. Epub 2011/01/18. 10.1016/j.brainres.2011.01.002 .
    1. Kupers RC, Vos BP, Gybels JM. Stimulation of the nucleus paraventricularis thalami suppresses scratching and biting behaviour of arthritic rats and exerts a powerful effect on tests for acute pain. Pain. 1988;32(1):115–25. Epub 1988/01/01. .
    1. Jang SH, Yeo SS. Thalamocortical connections between the mediodorsal nucleus of the thalamus and prefrontal cortex in the human brain: a diffusion tensor tractographic study. Yonsei Med J. 2014;55(3):709–14. Epub 2014/04/11. 10.3349/ymj.2014.55.3.709
    1. Klein JC, Rushworth MF, Behrens TE, Mackay CE, de Crespigny AJ, D'Arceuil H, et al. Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage. 2010;51(2):555–64. Epub 2010/03/09. 10.1016/j.neuroimage.2010.02.062
    1. Eickhoff SB, Laird AR, Fox PT, Bzdok D, Hensel L. Functional Segregation of the Human Dorsomedial Prefrontal Cortex. Cereb Cortex. 2016;26(1):304–21. Epub 2014/10/22. 10.1093/cercor/bhu250
    1. Sakagami M, Pan X. Functional role of the ventrolateral prefrontal cortex in decision making. Curr Opin Neurobiol. 2007;17(2):228–33. Epub 2007/03/14. 10.1016/j.conb.2007.02.008 .
    1. Eisenberger NI, Lieberman MD, Williams KD. Does rejection hurt? An FMRI study of social exclusion. Science. 2003;302(5643):290–2. Epub 2003/10/11. 10.1126/science.1089134 .
    1. Lorenz J, Cross DJ, Minoshima S, Morrow TJ, Paulson PE, Casey KL. A unique representation of heat allodynia in the human brain. Neuron. 2002;35(2):383–93. Epub 2002/08/06. .
    1. Schoenbaum G, Takahashi Y, Liu T-L, McDannald MA. Does the orbitofrontal cortex signal value? Annals of the New York Academy of Sciences. 2011;1239(1):87–99.
    1. Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011;15(2):56–67. Epub 2011/01/11. 10.1016/j.tics.2010.12.004 .
    1. Winston JS, Vlaev I, Seymour B, Chater N, Dolan RJ. Relative valuation of pain in human orbitofrontal cortex. J Neurosci. 2014;34(44):14526–35. Epub 2014/10/31. 10.1523/JNEUROSCI.1706-14.2014
    1. Lomarev M, Denslow S, Nahas Z, Chae J-H, George MS, Bohning DE. Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects. Journal of Psychiatric Research. 2002;36(4):219–27. 10.1016/s0022-3956(02)00013-4
    1. Conway CR, Sheline YI, Chibnall JT, Bucholz RD, Price JL, Gangwani S, et al. Brain blood-flow change with acute vagus nerve stimulation in treatment-refractory major depressive disorder. Brain Stimul. 2012;5(2):163–71. Epub 2011/11/01. 10.1016/j.brs.2011.03.001
    1. Bohning DE, Lomarev MP, Denslow S, Nahas Z, Shastri A, George MS. Feasibility of vagus nerve stimulation-synchronized blood oxygenation level-dependent functional MRI. Invest Radiol. 2001;36(8):470–9. Epub 2001/08/14. .
    1. Conway CR, Chibnall JT, Gangwani S, Mintun MA, Price JL, Hershey T, et al. Pretreatment cerebral metabolic activity correlates with antidepressant efficacy of vagus nerve stimulation in treatment-resistant major depression: a potential marker for response? J Affect Disord. 2012;139(3):283–90. Epub 2012/03/09. 10.1016/j.jad.2012.02.007
    1. Zobel A, Joe A, Freymann N, Clusmann H, Schramm J, Reinhardt M, et al. Changes in regional cerebral blood flow by therapeutic vagus nerve stimulation in depression: an exploratory approach. Psychiatry Res. 2005;139(3):165–79. Epub 2005/07/27. 10.1016/j.pscychresns.2005.02.010 .
    1. Sclocco R, Beissner F, Desbordes G, Polimeni JR, Wald LL, Kettner NW, et al. Neuroimaging brainstem circuitry supporting cardiovagal response to pain: a combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study. Philos Trans A Math Phys Eng Sci. 2016;374(2067):20150189 Epub 2016/04/06. 10.1098/rsta.2015.0189
    1. Martins I, Carvalho P, de Vries MG, Teixeira-Pinto A, Wilson SP, Westerink BH, et al. GABA acting on GABAB receptors located in a medullary pain facilitatory area enhances nociceptive behaviors evoked by intraplantar formalin injection. Pain. 2015;156(8):1555–65. Epub 2015/05/02. 10.1097/j.pain.0000000000000203 .
    1. Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci. 2002;25:433–69. Epub 2002/06/08. 10.1146/annurev.neuro.25.032502.111311 .
    1. Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493(1):154–66. Epub 2005/10/29. 10.1002/cne.20749 .
    1. Silva M, Amorim D, Almeida A, Tavares I, Pinto-Ribeiro F, Morgado C. Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat. Brain Res Bull. 2013;96:39–44. Epub 2013/05/07. 10.1016/j.brainresbull.2013.04.008 .
    1. Heinricher MM, Barbaro NM, Fields HL. Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: firing of on-and off-cells is related to nociceptive responsiveness. Somatosensory & motor research. 1989;6(4):427–39.
    1. Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33(25):10503–11. Epub 2013/06/21. 10.1523/JNEUROSCI.1103-13.2013
    1. Urry HL, van Reekum CM, Johnstone T, Davidson RJ. Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion. Neuroimage. 2009;47(3):852–63. Epub 2009/06/03. 10.1016/j.neuroimage.2009.05.069
    1. Vonck K, Boon P, Van Laere K, D'Have M, Vandekerckhove T, O'Connor S, et al. Acute single photon emission computed tomographic study of vagus nerve stimulation in refractory epilepsy. Epilepsia. 2000;41(5):601–9. Epub 2000/05/10. .
    1. Ness TJ, Randich A, Fillingim R, Faught RE, Backensto EM. Neurology. Left vagus nerve stimulation suppresses experimentally induced pain. United States 2001. p. 985–6.
    1. Wallace MS, Barger D, Schulteis G. The effect of chronic oral desipramine on capsaicin-induced allodynia and hyperalgesia: a double-blinded, placebo-controlled, crossover study. Anesth Analg. 2002;95(4):973–8, table of contents. Epub 2002/09/28. .
    1. Wallace MS, Laitin S, Licht D, Yaksh TL. Concentration-effect relations for intravenous lidocaine infusions in human volunteers: effects on acute sensory thresholds and capsaicin-evoked hyperpathia. Anesthesiology. 1997;86(6):1262–72. Epub 1997/06/01. .
    1. Park KM, Max MB, Robinovitz E, Gracely RH, Bennett GJ. Effects of intravenous ketamine, alfentanil, or placebo on pain, pinprick hyperalgesia, and allodynia produced by intradermal capsaicin in human subjects. Pain. 1995;63(2):163–72. Epub 1995/11/01. .
    1. Wallace M, Schulteis G, Atkinson JH, Wolfson T, Lazzaretto D, Bentley H, et al. Dose-dependent effects of smoked cannabis on capsaicin-induced pain and hyperalgesia in healthy volunteers. Anesthesiology. 2007;107(5):785–96. Epub 2007/12/13. 10.1097/01.anes.0000286986.92475.b7 .

Source: PubMed

3
Sottoscrivi