Strategies to enhance rational use of antibiotics in hospital: a guideline by the German Society for Infectious Diseases

K de With, F Allerberger, S Amann, P Apfalter, H-R Brodt, T Eckmanns, M Fellhauer, H K Geiss, O Janata, R Krause, S Lemmen, E Meyer, H Mittermayer, U Porsche, E Presterl, S Reuter, B Sinha, R Strauß, A Wechsler-Fördös, C Wenisch, W V Kern, K de With, F Allerberger, S Amann, P Apfalter, H-R Brodt, T Eckmanns, M Fellhauer, H K Geiss, O Janata, R Krause, S Lemmen, E Meyer, H Mittermayer, U Porsche, E Presterl, S Reuter, B Sinha, R Strauß, A Wechsler-Fördös, C Wenisch, W V Kern

Abstract

Introduction: In the time of increasing resistance and paucity of new drug development there is a growing need for strategies to enhance rational use of antibiotics in German and Austrian hospitals. An evidence-based guideline on recommendations for implementation of antibiotic stewardship (ABS) programmes was developed by the German Society for Infectious Diseases in association with the following societies, associations and institutions: German Society of Hospital Pharmacists, German Society for Hygiene and Microbiology, Paul Ehrlich Society for Chemotherapy, The Austrian Association of Hospital Pharmacists, Austrian Society for Infectious Diseases and Tropical Medicine, Austrian Society for Antimicrobial Chemotherapy, Robert Koch Institute.

Materials and methods: A structured literature research was performed in the databases EMBASE, BIOSIS, MEDLINE and The Cochrane Library from January 2006 to November 2010 with an update to April 2012 (MEDLINE and The Cochrane Library). The grading of recommendations in relation to their evidence is according to the AWMF Guidance Manual and Rules for Guideline Development.

Conclusion: The guideline provides the grounds for rational use of antibiotics in hospital to counteract antimicrobial resistance and to improve the quality of care of patients with infections by maximising clinical outcomes while minimising toxicity. Requirements for a successful implementation of ABS programmes as well as core and supplemental ABS strategies are outlined. The German version of the guideline was published by the German Association of the Scientific Medical Societies (AWMF) in December 2013.

Keywords: ABS; Antibiotic stewardship; Antimicrobial resistance; Guideline; Quality of care; Rational use.

Figures

Fig. 1
Fig. 1
Graphical presentation of quarterly use density (RDD/100 patient-days) for different antibiotic classes

References

    1. MacDougall C, Polk RE. Antimicrobial stewardship programs in health care systems. Clin Microbiol Rev. 2005;18:638–656. doi: 10.1128/CMR.18.4.638-656.2005.
    1. Davey P, Brown E, Fenelon L, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2005;4:CD003543.
    1. Paterson DL. The role of antimicrobial management programs in optimizing antibiotic prescribing within hospitals. Clin Infect Dis. 2006;42:S90–S95. doi: 10.1086/499407.
    1. Fishman N. Antimicrobial stewardship. Am J Infect Control. 2006;34:S55–S63. doi: 10.1016/j.ajic.2006.05.237.
    1. Fishman N. Antimicrobial stewardship. Am J Med. 2006;119:S53–S61. doi: 10.1016/j.amjmed.2006.04.003.
    1. Dellit TH, Owens RC, McGowan JE, Jr, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44:159–177. doi: 10.1086/510393.
    1. Owens RC,, Jr Antimicrobial stewardship: concepts and strategies in the 21st century. Diagn Microbiol Infect Dis. 2008;61:110–128. doi: 10.1016/j.diagmicrobio.2008.02.012.
    1. Patel D, Lawson W, Guglielmo BJ. Antimicrobial stewardship programs: interventions and associated outcomes. Expert Rev Anti Infect Ther. 2008;6:209–222. doi: 10.1586/14787210.6.2.209.
    1. Gould IM. Antibiotic policies to control hospital-acquired infection. J Antimicrob Chemother. 2008;61:763–765. doi: 10.1093/jac/dkn039.
    1. Lesprit P, Brun-Buisson C. Hospital antibiotic stewardship. Curr Opin Infect Dis. 2008;21:344–349. doi: 10.1097/QCO.0b013e3283013959.
    1. Pagani L, Gyssens IC, Huttner B, Nathwani D, Harbarth S. Navigating the Web in search of resources on antimicrobial stewardship in health care institutions. Clin Infect Dis. 2009;48:626–632. doi: 10.1086/596762.
    1. Drew RH. Antimicrobial stewardship programs: how to start and steer a successful program. J Manag Care Pharm. 2009;15:S18–S23.
    1. Owens RC., Jr Antimicrobial stewardship: application in the intensive care unit. Infect Dis Clin North Am. 2009;23:683–702. doi: 10.1016/j.idc.2009.04.015.
    1. Patel SJ, Saiman L. Principles and strategies of antimicrobial stewardship in the neonatal intensive care unit. Semin Perinatol. 2012;36:431–436. doi: 10.1053/j.semperi.2012.06.005.
    1. Kaki R, Elligsen M, Walker S, Simor A, Palmay L, Daneman N. Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemother. 2011;66:1223–1230. doi: 10.1093/jac/dkr137.
    1. Newland JG, Hersh AL. Purpose and design of antimicrobial stewardship programs in pediatrics. Pediatr Infect Dis J. 2010;29:862–863. doi: 10.1097/INF.0b013e3181ef2507.
    1. Hersh AL, Beekmann SE, Polgreen PM, Zaoutis TE, Newland JG. Antimicrobial stewardship programs in pediatrics. Infect Control Hosp Epidemiol. 2009;30:1211–1217. doi: 10.1086/648088.
    1. Patel SJ, Larson EL, Kubin CJ, Saiman L. A review of antimicrobial control strategies in hospitalized and ambulatory pediatric populations. Pediatr Infect Dis J. 2007;26:531–537. doi: 10.1097/INF.0b013e3180593170.
    1. Septimus EJ, Owens RC., Jr Need and potential of antimicrobial stewardship in community hospitals. Clin Infect Dis. 2011;53:S8–S14. doi: 10.1093/cid/cir363.
    1. Ohl CA, Dodds Ashley ES. Antimicrobial stewardship programs in community hospitals: the evidence base and case studies. Clin Infect Dis. 2011;53:S23–S28. doi: 10.1093/cid/cir365.
    1. Pate PG, Storey DF, Baum DL. Implementation of an antimicrobial stewardship program at a 60-bed long-term acute care hospital. Infect Control Hosp Epidemiol. 2012;33:405–408. doi: 10.1086/664760.
    1. Davey P, Brown E, Charani E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2013;4:CD003543.
    1. Standiford HC, Chan S, Tripoli M, Weekes E, Forrest GN. Antimicrobial stewardship at a large tertiary care academic medical center: cost analysis before, during, and after a 7-year program. Infect Control Hosp Epidemiol. 2012;33:338–345. doi: 10.1086/664909.
    1. Goldman MP, Nair R. Antibacterial treatment strategies in hospitalized patients: what role for pharmacoeconomics? Cleve Clin J Med. 2007;74:S38–S47. doi: 10.3949/ccjm.74.Suppl_4.S38.
    1. Davey P, Brown E, Fenelon L, et al. Systematic review of antimicrobial drug prescribing in hospitals. Emerg Infect Dis. 2006;12:211–216. doi: 10.3201/eid1202.050145.
    1. Knox K, Lawson W, Dean B, Holmes A. Multidisciplinary antimicrobial management and the role of the infectious diseases pharmacist—a UK perspective. J Hosp Infect. 2003;53:85–90. doi: 10.1053/jhin.2002.1350.
    1. Gums JG, Yancey RW, Jr, Hamilton CA, Kubilis PS. A randomized, prospective study measuring outcomes after antibiotic therapy intervention by a multidisciplinary consult team. Pharmacotherapy. 1999;19:1369–1377. doi: 10.1592/phco.19.18.1369.30898.
    1. Solomon DH, Van HL, Glynn RJ, et al. Academic detailing to improve use of broad-spectrum antibiotics at an academic medical center. Arch Intern Med. 2001;161:1897–1902. doi: 10.1001/archinte.161.15.1897.
    1. Carling P, Fung T, Killion A, Terrin N, Barza M. Favorable impact of a multidisciplinary antibiotic management program conducted during 7 years. Infect Control Hosp Epidemiol. 2003;24:699–706. doi: 10.1086/502278.
    1. Bantar C, Franco D, Heft C, et al. Does a reduction in antibiotic consumption always represent a favorable outcome from an intervention program on prescribing practice? Int J Infect Dis. 2006;10:231–235. doi: 10.1016/j.ijid.2005.05.012.
    1. Bevilacqua S, Demore B, Erpelding ML, et al. Effects of an operational multidisciplinary team on hospital antibiotic use and cost in France: a cluster controlled trial. Int J Clin Pharm. 2011;33:521–528. doi: 10.1007/s11096-011-9499-9.
    1. Danaher PJ, Milazzo NA, Kerr KJ, Lagasse CA, Lane JW. The antibiotic support team—a successful educational approach to antibiotic stewardship. Mil Med. 2009;174:201–205. doi: 10.7205/MILMED-D-00-1408.
    1. Diamantis S, Rioux C, Bonnal C, et al. Evaluation of initial antibiotic therapy for bacteremia and role of an antibiotic management team for antibiotic stewardship. Med Mal Infect. 2010;40:637–643. doi: 10.1016/j.medmal.2010.06.002.
    1. Gendrin V, Letranchant L, Henard S, et al. Impact of corrective measures on fluoroquinolones prescriptions for urinary tract infections during a 2-round relevance study. Presse Med. 2012;41:e10–e14. doi: 10.1016/j.lpm.2011.05.013.
    1. Bauer S, Bouldouyre MA, Oufella A, et al. Impact of a multidisciplinary staff meeting on the quality of antibiotherapy prescription for bone and joint infections in orthopedic surgery. Med Mal Infect. 2012;42:603–607. doi: 10.1016/j.medmal.2012.09.005.
    1. Byl B, Clevenbergh P, Jacobs F, et al. Impact of infectious diseases specialists and microbiological data on the appropriateness of antimicrobial therapy for bacteremia. Clin Infect Dis. 1999;29:60–66. doi: 10.1086/520182.
    1. Dranitsaris G, Spizzirri D, Pitre M, McGeer A. A randomized trial to measure the optimal role of the pharmacist in promoting evidence-based antibiotic use in acute care hospitals. Int J Technol Assess Health Care. 2001;17:171–180. doi: 10.1017/S0266462300105033.
    1. Bailey TC, Ritchie DJ, McMullin ST, et al. A randomized, prospective evaluation of an interventional program to discontinue intravenous antibiotics at two tertiary care teaching institutions. Pharmacotherapy. 1997;17:277–281.
    1. Dunn K, O’Reilly A, Silke B, Rogers T, Bergin C. Implementing a pharmacist-led sequential antimicrobial therapy strategy: a controlled before-and-after study. Int J Clin Pharm. 2011;33:208–214. doi: 10.1007/s11096-010-9475-9.
    1. Walker SE. Physicians’ acceptance of a preformatted pharmacy intervention chart note in a community hospital antibiotic step-down program. J Pharm Technol. 1998;14:141–145.
    1. Wazana A. Physicians and the pharmaceutical industry: is a gift ever just a gift? JAMA. 2000;283:373–380. doi: 10.1001/jama.283.3.373.
    1. Zipkin DA, Steinman MA. Interactions between pharmaceutical representatives and doctors in training. A thematic review. J Gen Intern Med. 2005;20:777–786. doi: 10.1111/j.1525-1497.2005.0134.x.
    1. Cruickshank M, Duguid M. Antimicrobial stewardship in Australian hospitals 2011. Sydney: Australian Commission on Safety & Quality in Health Care; 2011(IV).
    1. Petrak RM, Sexton DJ, Butera ML, et al. The value of an infectious diseases specialist. Clin Infect Dis. 2003;36:1013–7. doi: 10.1086/374245.
    1. Fluckiger U, Zimmerli W, Sax H, Frei R, Widmer AF. Clinical impact of an infectious disease service on the management of bloodstream infection. Eur J Clin Microbiol Infect Dis. 2000;19:493–500. doi: 10.1007/s100960000306.
    1. Kern WV. Management of Staphylococcus aureus bacteremia and endocarditis: progresses and challenges. Curr Opin Infect Dis. 2010;23:346–358. doi: 10.1097/QCO.0b013e32833bcc8a.
    1. Honda H, Krauss MJ, Jones JC, Olsen MA, Warren DK. The value of infectious diseases consultation in Staphylococcus aureus bacteremia. Am J Med. 2010;123:631–637. doi: 10.1016/j.amjmed.2010.01.015.
    1. Gros H, Aslangul E, Lesprit P, Mainardi JL. Positive blood culture in hospital: notification methods and impact of recommendations by an infectious disease specialist. Med Mal Infect. 2012;42:76–79. doi: 10.1016/j.medmal.2011.05.003.
    1. Schmitt S, McQuillen DP, Nahass R, et al. Infectious diseases specialty intervention is associated with decreased mortality and lower healthcare costs. Clin Infect Dis. 2014;58:22–28 (III).
    1. Raineri E, Pan A, Mondello P, Acquarolo A, Candiani A, Crema L. Role of the infectious diseases specialist consultant on the appropriateness of antimicrobial therapy prescription in an intensive care unit. Am J Infect Control. 2008;36:283–290. doi: 10.1016/j.ajic.2007.06.009.
    1. Borer A, Gilad J, Meydan N, Schlaeffer P, Riesenberg K, Schlaeffer F. Impact of regular attendance by infectious disease specialists on the management of hospitalised adults with community-acquired febrile syndromes. Clin Microbiol Infect. 2004;10:911–916. doi: 10.1111/j.1469-0691.2004.00964.x.
    1. Della LP, Gherardi V, Pellegrino F, Cocchi I, Esposito R, Kiren V. Improving the appropriateness of antibiotic prescription in hospitals: a pilot study assessing the effectiveness of an infectious diseases specialist’s consultation programme. Int J Antimicrob Agents. 2008;31:488–489. doi: 10.1016/j.ijantimicag.2007.12.012.
    1. Camins BC, King MD, Wells JB, et al. Impact of an antimicrobial utilization program on antimicrobial use at a large teaching hospital: a randomized controlled trial. Infect Control Hosp Epidemiol. 2009;30:931–938. doi: 10.1086/605924.
    1. Kawanami GH, Fortaleza CM. Factors predictive of inappropriateness in requests for parenteral antimicrobials for therapeutic purposes: a study in a small teaching hospital in Brazil. Scand J Infect Dis. 2011;43:528–535. doi: 10.3109/00365548.2011.565795.
    1. Pastel DA, Chang S, Nessim S, Shane R, Morgan MA. Department of pharmacy-initiated program for streamlining empirical antibiotic therapy. Hosp Pharm 1992;27:596–603, 614 (I).
    1. von Gunten V, Reymond JP, Beney J. Clinical and economic outcomes of pharmaceutical services related to antibiotic use: a literature review. Pharm World Sci. 2007;29:146–163. doi: 10.1007/s11096-006-9042-6.
    1. Toth NR, Chambers RM, Davis SL. Implementation of a care bundle for antimicrobial stewardship. Am J Health Syst Pharm. 2010;67:746–749. doi: 10.2146/ajhp090259.
    1. De RT, Willems L, Simoens S. Economic effects of clinical pharmacy interventions: a literature review. Am J Health Syst Pharm. 2008;65:1161–1172. doi: 10.2146/ajhp070506.
    1. Ng CK, Wu TC, Chan WM, et al. Clinical and economic impact of an antibiotics stewardship programme in a regional hospital in Hong Kong. Qual Saf Health Care. 2008;17:387–392. doi: 10.1136/qshc.2007.023267.
    1. Tonna AP, Stewart D, West B, Gould I, McCaig D. Antimicrobial optimisation in secondary care: the pharmacist as part of a multidisciplinary antimicrobial programme—a literature review. Int J Antimicrob Agents. 2008;31:511–517. doi: 10.1016/j.ijantimicag.2008.01.018.
    1. McLaughlin CM, Bodasing N, Boyter AC, Fenelon C, Fox JG, Seaton RA. Pharmacy-implemented guidelines on switching from intravenous to oral antibiotics: an intervention study. QJM. 2005;98:745–752. doi: 10.1093/qjmed/hci114.
    1. Weber A, Schneider C, Grill E, Strobl R, Vetter-Kerkhoff C, Jauch KW. Interventions by clinical pharmacists on surgical wards—impact on antibiotic therapy. Zentralbl Chir. 2011;136:66–73. doi: 10.1055/s-0030-1247469.
    1. Grill E, Weber A, Lohmann S, Vetter-Kerkhoff C, Strobl R, Jauch KW. Effects of pharmaceutical counselling on antimicrobial use in surgical wards: intervention study with historical control group. Pharmacoepidemiol Drug Saf. 2011;20:739–746. doi: 10.1002/pds.2126.
    1. Yen YH, Chen HY, Wuan-Jin L, Lin YM, Shen WC, Cheng KJ. Clinical and economic impact of a pharmacist-managed i.v.-to-p.o. conversion service for levofloxacin in Taiwan. Int J Clin Pharmacol Ther. 2012;50:136–141. doi: 10.5414/CP201579.
    1. Van GE, Costers M, Peetermans WE, Struelens MJ. Nationwide implementation of antibiotic management teams in Belgian hospitals: a self-reporting survey. J Antimicrob Chemother. 2010;65:576–580. doi: 10.1093/jac/dkp470.
    1. O’Neill E, Humphreys H, Smyth E. Impact of recommendations by clinical microbiologists on antimicrobial treatment in the intensive care units of a Dublin teaching hospital. Clin Infect Dis. 2005;40:636–637. doi: 10.1086/427756.
    1. Kothari A, Sagar V, Panigrahi B, Selot N. Controlling costs in the intensive-care unit: role of daily microbiologist rounds in an Indian hospital. Clin Microbiol Infect. 2008;14:1187–1188. doi: 10.1111/j.1469-0691.2008.02109.x.
    1. Fraser GL, Stogsdill P, Dickens JD, Jr, Wennberg DE, Smith RP, Jr, Prato BS. Antibiotic optimization. An evaluation of patient safety and economic outcomes. Arch Intern Med. 1997;157:1689–1694. doi: 10.1001/archinte.1997.00440360105012.
    1. Philmon C, Smith T, Williamson S, Goodman E. Controlling use of antimicrobials in a community teaching hospital. Infect Control Hosp Epidemiol. 2006;27:239–244. doi: 10.1086/500419.
    1. Uckay I, Vernaz-Hegi N, Harbarth S, et al. Activity and impact on antibiotic use and costs of a dedicated infectious diseases consultant on a septic orthopaedic unit. J Infect. 2009;58:205–212. doi: 10.1016/j.jinf.2009.01.012.
    1. Beovic B, Kreft S, Seme K, Cizman M. The impact of total control of antibiotic prescribing by infectious disease specialist on antibiotic consumption and cost. J Chemother. 2009;21:46–51. doi: 10.1179/joc.2009.21.1.46.
    1. Larosa LA, Fishman NO, Lautenbach E, Koppel RJ, Morales KH, Linkin DR. Evaluation of antimicrobial therapy orders circumventing an antimicrobial stewardship program: investigating the strategy of “stealth dosing”. Infect Control Hosp Epidemiol. 2007;28:551–556. doi: 10.1086/513535.
    1. Valiquette L, Cossette B, Garant MP, Diab H, Pepin J. Impact of a reduction in the use of high-risk antibiotics on the course of an epidemic of Clostridium difficile-associated disease caused by the hypervirulent NAP1/027 strain. Clin Infect Dis. 2007;45:S112–S121. doi: 10.1086/519258.
    1. Allerberger F, Frank A, Gareis R. Antibiotic stewardship through the EU project “ABS International”. Wien Klin Wochenschr. 2008;120:256–263. doi: 10.1007/s00508-008-0966-9.
    1. Richards MJ, Robertson MB, Dartnell JG, et al. Impact of a web-based antimicrobial approval system on broad-spectrum cephalosporin use at a teaching hospital. Med J Aust. 2003;178:386–390.
    1. Schwartzberg E, Rubinovich S, Hassin D, et al. Developing and implementing a model for changing physicians’ prescribing habits—the role of clinical pharmacy in leading the change. J Clin Pharm Ther. 2006;31:179–185. doi: 10.1111/j.1365-2710.2006.00724.x.
    1. Wickens HJ, Jacklin A. Impact of the Hospital Pharmacy Initiative for promoting prudent use of antibiotics in hospitals in England. J Antimicrob Chemother. 2006;58:1230–1237. doi: 10.1093/jac/dkl405.
    1. Biswal S, Mishra P, Malhotra S, Puri GD, Pandhi P. Drug utilization pattern in the intensive care unit of a tertiary care hospital. J Clin Pharmacol. 2006;46:945–951. doi: 10.1177/0091270006289845.
    1. Burgmann H, Janata O, Allerberger F, Frank A. Hospital antibiotic management in Austria—results of the ABS maturity survey of the ABS International group. Wien Klin Wochenschr. 2008;120:280–283. doi: 10.1007/s00508-008-0968-7.
    1. Dumpis U, Gulbinovic J, Struwe J, Lagergren A, Griskevicius L, Bergman U. Differences in antibiotic prescribing in three university hospitals in the Baltic region revealed by a simple protocol for quality assessment of therapeutic indications. Int J Clin Pharmacol Ther. 2007;45:568–576. doi: 10.5414/CPP45568.
    1. McNeil V, Cruickshank M, Duguid M. Safer use of antimicrobials in hospitals: the value of antimicrobial usage data. Med J Aust. 2010;193:S114–S117.
    1. Schweickert B, Kern WV, de WK, et al. Surveillance of antibiotic consumption: clarification of the “definition of data on the nature and extent of antibiotic consumption in hospitals according to section sign 23 paragraph 4 sentence 2 of the IfSG”. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2013;56:903–912. doi: 10.1007/s00103-013-1764-8.
    1. de WK, Maier L, Steib-Bauert M, Kern P, Kern WV. Trends in antibiotic use at a university hospital: defined or prescribed daily doses? Patient days or admissions as denominator? Infection. 2006;34:91–94. doi: 10.1007/s15010-006-5085-9.
    1. Cusini A, Rampini SK, Bansal V, et al. Different patterns of inappropriate antimicrobial use in surgical and medical units at a tertiary care hospital in Switzerland: a prevalence survey. PLoS One. 2010;5:e14011. doi: 10.1371/journal.pone.0014011.
    1. Zarb P, Goossens H. European Surveillance of Antimicrobial Consumption (ESAC): value of a point-prevalence survey of antimicrobial use across Europe. Drugs. 2011;71:745–755. doi: 10.2165/11591180-000000000-00000.
    1. Zarb P, Amadeo B, Muller A, et al. Identification of targets for quality improvement in antimicrobial prescribing: the web-based ESAC Point Prevalence Survey 2009. J Antimicrob Chemother. 2011;66:443–449. doi: 10.1093/jac/dkq430.
    1. Ansari F, Erntell M, Goossens H, Davey P. The European surveillance of antimicrobial consumption (ESAC) point-prevalence survey of antibacterial use in 20 European hospitals in 2006. Clin Infect Dis. 2009;49:1496–1504. doi: 10.1086/644617.
    1. Pulver LK, Tett SE, Coombes J. The Queensland experience of participation in a national drug use evaluation project, community-acquired pneumonia towards improving outcomes nationally (CAPTION) BMC Pulm Med. 2009;9:38. doi: 10.1186/1471-2466-9-38.
    1. Lomas J, Anderson GM, Domnick-Pierre K, Vayda E, Enkin MW, Hannah WJ. Do practice guidelines guide practice? The effect of a consensus statement on the practice of physicians. N Engl J Med. 1989;321:1306–1311. doi: 10.1056/NEJM198911093211906.
    1. Martinez R, Reyes S, Lorenzo MJ, Menendez R. Impact of guidelines on outcome: the evidence. Semin Respir Crit Care Med. 2009;30:172–178. doi: 10.1055/s-0029-1202936.
    1. Bassi GL, Ferrer M, Saucedo LM, Torres A. Do guidelines change outcomes in ventilator-associated pneumonia? Curr Opin Infect Dis. 2010;23:171–177. doi: 10.1097/QCO.0b013e328337241a.
    1. Dempsey CL. Nursing home-acquired pneumonia: outcomes from a clinical process improvement program. Pharmacotherapy. 1995;15:33S–38S.
    1. Marrie TJ, Lau CY, Wheeler SL, Wong CJ, Vandervoort MK, Feagan BG, CAPITAL Study Investigators A controlled trial of a critical pathway for treatment of community-acquired pneumonia. Community-acquired pneumonia intervention trial assessing levofloxacin. JAMA. 2000;283:749–755. doi: 10.1001/jama.283.6.749.
    1. Dean NC, Silver MP, Bateman KA, James B, Hadlock CJ, Hale D. Decreased mortality after implementation of a treatment guideline for community-acquired pneumonia. Am J Med. 2001;110:451–457. doi: 10.1016/S0002-9343(00)00744-0.
    1. Dean NC, Bateman KA, Donnelly SM, Silver MP, Snow GL, Hale D. Improved clinical outcomes with utilization of a community-acquired pneumonia guideline. Chest. 2006;130:794–799. doi: 10.1378/chest.130.3.794.
    1. Price J, Ekleberry A, Grover A, et al. Evaluation of clinical practice guidelines on outcome of infection in patients in the surgical intensive care unit. Crit Care Med. 1999;27:2118–2124. doi: 10.1097/00003246-199910000-00007.
    1. Ibrahim EH, Ward S, Sherman G, Schaiff R, Fraser VJ, Kollef MH. Experience with a clinical guideline for the treatment of ventilator-associated pneumonia. Crit Care Med. 2001;29:1109–1115. doi: 10.1097/00003246-200106000-00003.
    1. Barlow G, Nathwani D, Williams F, et al. Reducing door-to-antibiotic time in community-acquired pneumonia: controlled before-and-after evaluation and cost-effectiveness analysis. Thorax. 2007;62:67–74. doi: 10.1136/thx.2005.056689.
    1. Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115:462–474. doi: 10.1378/chest.115.2.462.
    1. Fagon JY, Chastre J, Wolff M, et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med. 2000;132:621–630. doi: 10.7326/0003-4819-132-8-200004180-00004.
    1. Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588–2598. doi: 10.1001/jama.290.19.2588.
    1. Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med. 2000;162:505–511. doi: 10.1164/ajrccm.162.2.9909095.
    1. Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB. Impact of clinical guidelines in the management of severe hospital-acquired pneumonia. Chest. 2005;128:2778–2787. doi: 10.1378/chest.128.4.2778.
    1. Botelho-Nevers E, Thuny F, Casalta JP, et al. Dramatic reduction in infective endocarditis-related mortality with a management-based approach. Arch Intern Med. 2009;169:1290–1298. doi: 10.1001/archinternmed.2009.192.
    1. Schouten JA, Hulscher ME, Trap-Liefers J, et al. Tailored interventions to improve antibiotic use for lower respiratory tract infections in hospitals: a cluster-randomized, controlled trial. Clin Infect Dis. 2007;44:931–941. doi: 10.1086/512193.
    1. Jenkins TC, Knepper BC, Sabel AL, et al. Decreased antibiotic utilization after implementation of a guideline for inpatient cellulitis and cutaneous abscess. Arch Intern Med. 2011;171:1072–1079.
    1. Grenier C, Pepin J, Nault V, et al. Impact of guideline-consistent therapy on outcome of patients with healthcare-associated and community-acquired pneumonia. J Antimicrob Chemother. 2011;66:1617–1624. doi: 10.1093/jac/dkr176.
    1. Thornhill MH, Dayer MJ, Forde JM, et al. Impact of the NICE guideline recommending cessation of antibiotic prophylaxis for prevention of infective endocarditis: before and after study. BMJ. 2011;342:d2392. doi: 10.1136/bmj.d2392.
    1. Westphal JF, Jehl F, Javelot H, Nonnenmacher C. Enhanced physician adherence to antibiotic use guidelines through increased availability of guidelines at the time of drug ordering in hospital setting. Pharmacoepidemiol Drug Saf. 2011;20:162–168. doi: 10.1002/pds.2078.
    1. Schnoor M, Meyer T, Suttorp N, Raspe H, Welte T, Schafer T. Development and evaluation of an implementation strategy for the German guideline on community-acquired pneumonia. Qual Saf Health Care. 2010;19:498–502.
    1. Lancaster JW, Lawrence KR, Fong JJ, et al. Impact of an institution-specific hospital-acquired pneumonia protocol on the appropriateness of antibiotic therapy and patient outcomes. Pharmacotherapy. 2008;28:852–862. doi: 10.1592/phco.28.7.852.
    1. McIntosh KA, Maxwell DJ, Pulver LK, et al. A quality improvement initiative to improve adherence to national guidelines for empiric management of community-acquired pneumonia in emergency departments. Int J Qual Health Care. 2011;23:142–150. doi: 10.1093/intqhc/mzq077.
    1. Chalmers JD, Singanayagam A, Akram AR, Choudhury G, Mandal P, Hill AT. Safety and efficacy of CURB65-guided antibiotic therapy in community-acquired pneumonia. J Antimicrob Chemother. 2011;66:416–423. doi: 10.1093/jac/dkq426.
    1. Mol PG, Wieringa JE, Nannanpanday PV, et al. Improving compliance with hospital antibiotic guidelines: a time-series intervention analysis. J Antimicrob Chemother. 2005;55:550–557. doi: 10.1093/jac/dki037.
    1. Willemsen I, van den BR, Bijsterveldt T, et al. A standardized protocol for perioperative antibiotic prophylaxis is associated with improvement of timing and reduction of costs. J Hosp Infect. 2007;67:156–160. doi: 10.1016/j.jhin.2007.07.025.
    1. Winters BD, Thiemann DR, Brotman DJ. Impact of a restrictive antimicrobial policy on the process and timing of antimicrobial administration. J Hosp Med. 2010;5:E41–E45. doi: 10.1002/jhm.561.
    1. Madaras-Kelly KJ, Remington RE, Lewis PG, Stevens DL. Evaluation of an intervention designed to decrease the rate of nosocomial methicillin-resistant Staphylococcus aureus infection by encouraging decreased fluoroquinolone use. Infect Control Hosp Epidemiol. 2006;27:155–169. doi: 10.1086/500060.
    1. Church EC, Mauldin PD, Bosso JA. Antibiotic resistance in Pseudomonas aeruginosa related to quinolone formulary changes: an interrupted time series analysis. Infect Control Hosp Epidemiol. 2011;32:400–402. doi: 10.1086/659157.
    1. Bassetti M, Righi E, Ansaldi F, et al. Impact of limited cephalosporin use on prevalence of methicillin-resistant Staphylococcus aureus in the intensive care unit. J Chemother. 2009;21:633–638. doi: 10.1179/joc.2009.21.6.633.
    1. Britton HL, Schwinghammer TL, Romano MJ. Cost containment through restriction of cephalosporins. Am J Hosp Pharm. 1981;38:1897–1900.
    1. Hayman JN, Sbravati EC. Controlling cephalosporin and aminoglycoside costs through pharmacy and therapeutics committee restrictions. Am J Hosp Pharm. 1985;42:1343–1347.
    1. Woodward RS, Medoff G, Smith MD, Gray JL., III Antibiotic cost savings from formulary restrictions and physician monitoring in a medical-school-affiliated hospital. Am J Med. 1987;83:817–823. doi: 10.1016/0002-9343(87)90636-X.
    1. Maswoswe JJ, Okpara AU. Enforcing a policy for restricting antimicrobial drug use. Am J Health Syst Pharm. 1995;52:1433–1435.
    1. White AC, Atmar RL, Wilson J, Cate TR, Stager CE, Greenberg SB. Effects of requiring prior authorization for selected antimicrobials: expenditures, susceptibilities, and clinical outcomes. Clin Infect Dis. 1997;25:230–239. doi: 10.1086/514545.
    1. Siddiqui S, Hussein K, Manasia R, et al. Impact of antibiotic restriction on broad spectrum antibiotic usage in the ICU of a developing country. J Pak Med Assoc. 2007;57:484–487.
    1. Tunger O, Karakaya Y, Cetin CB, Dinc G, Borand H. Rational antibiotic use. J Infect Dev Ctries. 2009;3:88–93. doi: 10.3855/jidc.54.
    1. Altunsoy A, Aypak C, Azap A, Ergonul O, Balik I. The impact of a nationwide antibiotic restriction program on antibiotic usage and resistance against nosocomial pathogens in Turkey. Int J Med Sci. 2011;8:339–344. doi: 10.7150/ijms.8.339.
    1. Gomez MI, Acosta-Gnass SI, Mosqueda-Barboza L, Basualdo JA. Reduction in surgical antibiotic prophylaxis expenditure and the rate of surgical site infection by means of a protocol that controls the use of prophylaxis. Infect Control Hosp Epidemiol. 2006;27:1358–1365. doi: 10.1086/509845.
    1. Hermsen ED, Smith SS, Puumala SE, Rupp ME. Improvement in prescribing habits and economic outcomes associated with the introduction of a standardized approach for surgical antimicrobial prophylaxis. Infect Control Hosp Epidemiol. 2008;29:457–461. doi: 10.1086/587811.
    1. Parker BM, Henderson JM, Vitagliano S, et al. Six sigma methodology can be used to improve adherence for antibiotic prophylaxis in patients undergoing noncardiac surgery. Anesth Analg. 2007;104:140–146. doi: 10.1213/01.ane.0000250371.76725.2e.
    1. Perez A, Dennis RJ, Rodriguez B, et al. An interrupted time series analysis of parenteral antibiotic use in Colombia. J Clin Epidemiol. 2003;56:1013–1020. doi: 10.1016/S0895-4356(03)00163-X.
    1. Salama S, Rotstein C, Mandell L. A multidisciplinary hospital-based antimicrobial use program: impact on hospital pharmacy expenditures and drug use. Can J Infect Dis. 1996;7:104–109. doi: 10.1155/1996/685704.
    1. Belliveau PP, Rothman AL, Maday CE. Limiting vancomycin use to combat vancomycin-resistant Enterococcus faecium. Am J Health Syst Pharm. 1996;53:1570–1575.
    1. Marra AR, de Almeida SM, Correa L, et al. The effect of limiting antimicrobial therapy duration on antimicrobial resistance in the critical care setting. Am J Infect Control. 2009;37:204–9 (II).
    1. Falagas ME, Bliziotis IA, Michalopoulos A, et al. Effect of a policy for restriction of selected classes of antibiotics on antimicrobial drug cost and resistance. J Chemother. 2007;19:178–184. doi: 10.1179/joc.2007.19.2.178.
    1. Lewis GJ, Fang X, Gooch M, Cook PP. Decreased resistance of Pseudomonas aeruginosa with restriction of ciprofloxacin in a large teaching hospital’s intensive care and intermediate care units. Infect Control Hosp Epidemiol. 2012;33:368–373. doi: 10.1086/664763.
    1. Pepin J, Saheb N, Coulombe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis. 2005;41:1254–1260. doi: 10.1086/496986.
    1. LeBlanc L, Pepin J, Toulouse K, et al. Fluoroquinolones and risk for methicillin-resistant Staphylococcus aureus, Canada. Emerg Infect Dis. 2006;12:1398–1405. doi: 10.3201/eid1209.060397.
    1. Weber SG, Gold HS, Hooper DC, Karchmer AW, Carmeli Y. Fluoroquinolones and the risk for methicillin-resistant Staphylococcus aureus in hospitalized patients. Emerg Infect Dis. 2003;9:1415–1422. doi: 10.3201/eid0911.030284.
    1. MacDougall C, Powell JP, Johnson CK, Edmond MB, Polk RE. Hospital and community fluoroquinolone use and resistance in Staphylococcus aureus and Escherichia coli in 17 US hospitals. Clin Infect Dis. 2005;41:435–440. doi: 10.1086/432056.
    1. Charbonneau P, Parienti JJ, Thibon P, et al. Fluoroquinolone use and methicillin-resistant Staphylococcus aureus isolation rates in hospitalized patients: a quasi experimental study. Clin Infect Dis. 2006;42:778–784. doi: 10.1086/500319.
    1. Parienti JJ, Cattoir V, Thibon P, et al. Hospital-wide modification of fluoroquinolone policy and methicillin-resistant Staphylococcus aureus rates: a 10-year interrupted time-series analysis. J Hosp Infect. 2011;78:118–122. doi: 10.1016/j.jhin.2011.03.008.
    1. Lafaurie M, Porcher R, Donay JL, Touratier S, Molina JM. Reduction of fluoroquinolone use is associated with a decrease in methicillin-resistant Staphylococcus aureus and fluoroquinolone-resistant Pseudomonas aeruginosa isolation rates: a 10 year study. J Antimicrob Chemother. 2012;67:1010–1015. doi: 10.1093/jac/dkr555.
    1. Talpaert MJ, Gopal RG, Cooper BS, Wade P. Impact of guidelines and enhanced antibiotic stewardship on reducing broad-spectrum antibiotic usage and its effect on incidence of Clostridium difficile infection. J Antimicrob Chemother. 2011;66:2168–2174. doi: 10.1093/jac/dkr253.
    1. Kallen AJ, Thompson A, Ristaino P, et al. Complete restriction of fluoroquinolone use to control an outbreak of Clostridium difficile infection at a community hospital. Infect Control Hosp Epidemiol. 2009;30:264–272. doi: 10.1086/595694.
    1. Price J, Cheek E, Lippett S, et al. Impact of an intervention to control Clostridium difficile infection on hospital- and community-onset disease; an interrupted time series analysis. Clin Microbiol Infect. 2010;16:1297–1302. doi: 10.1111/j.1469-0691.2009.03077.x.
    1. Willemsen I, Cooper B, van BC, Winters M, Andriesse G, Kluytmans J. Improving quinolone use in hospitals by using a bundle of interventions in an interrupted time series analysis. Antimicrob Agents Chemother. 2010;54:3763–3769. doi: 10.1128/AAC.01581-09.
    1. Aldeyab MA, Devine MJ, Flanagan P, et al. Multihospital outbreak of Clostridium difficile ribotype 027 infection: epidemiology and analysis of control measures. Infect Control Hosp Epidemiol. 2011;32:210–219. doi: 10.1086/658333.
    1. Ranji SR, Steinman MA, Shojania KG, Gonzales R. Interventions to reduce unnecessary antibiotic prescribing: a systematic review and quantitative analysis. Med Care. 2008;46:847–862. doi: 10.1097/MLR.0b013e318178eabd.
    1. Serisier DJ, Bowler SD. Effect of a simple educational intervention on the hospital management of community-acquired pneumonia. Respirology. 2007;12:389–393. doi: 10.1111/j.1440-1843.2007.01058.x.
    1. Akter SF, Heller RD, Smith AJ, Milly AF. Impact of a training intervention on use of antimicrobials in teaching hospitals. J Infect Dev Ctries. 2009;3:447–451. doi: 10.3855/jidc.416.
    1. Kao LS, Lew DF, Doyle PD, et al. A tale of 2 hospitals: a staggered cohort study of targeted interventions to improve compliance with antibiotic prophylaxis guidelines. Surgery. 2010;148:255–262. doi: 10.1016/j.surg.2010.04.003.
    1. Zabarsky TF, Sethi AK, Donskey CJ. Sustained reduction in inappropriate treatment of asymptomatic bacteriuria in a long-term care facility through an educational intervention. Am J Infect Control. 2008;36:476–480. doi: 10.1016/j.ajic.2007.11.007.
    1. Pavese P, Saurel N, Labarere J, et al. Does an educational session with an infectious diseases physician reduce the use of inappropriate antibiotic therapy for inpatients with positive urine culture results? A controlled before-and-after study. Infect Control Hosp Epidemiol. 2009;30:596–599. doi: 10.1086/597514.
    1. Monette J, Miller MA, Monette M, et al. Effect of an educational intervention on optimizing antibiotic prescribing in long-term care facilities. J Am Geriatr Soc. 2007;55:1231–1235. doi: 10.1111/j.1532-5415.2007.01250.x.
    1. Metlay JP, Camargo CA, Jr, MacKenzie T, et al. Cluster-randomized trial to improve antibiotic use for adults with acute respiratory infections treated in emergency departments. Ann Emerg Med. 2007;50:221–230. doi: 10.1016/j.annemergmed.2007.03.022.
    1. Landgren FT, Harvey KJ, Mashford ML, Moulds RF, Guthrie B, Hemming M. Changing antibiotic prescribing by educational marketing. Med J Aust. 1988;149:595–599.
    1. Ozgun H, Ertugrul BM, Soyder A, Ozturk B, Aydemir M. Peri-operative antibiotic prophylaxis: adherence to guidelines and effects of educational intervention. Int J Surg. 2010;8:159–163. doi: 10.1016/j.ijsu.2009.12.005.
    1. Kanter G, Connelly NR, Fitzgerald J. A system and process redesign to improve perioperative antibiotic administration. Anesth Analg. 2006;103:1517–1521. doi: 10.1213/01.ane.0000221442.30952.83.
    1. Pettersson E, Vernby A, Molstad S, Lundborg CS. Can a multifaceted educational intervention targeting both nurses and physicians change the prescribing of antibiotics to nursing home residents? A cluster randomized controlled trial. J Antimicrob Chemother. 2011;66:2659–2666. doi: 10.1093/jac/dkr312.
    1. Zahar JR, Rioux C, Girou E, et al. Inappropriate prescribing of aminoglycosides: risk factors and impact of an antibiotic control team. J Antimicrob Chemother. 2006;58:651–656. doi: 10.1093/jac/dkl288.
    1. Kisuule F, Wright S, Barreto J, Zenilman J. Improving antibiotic utilization among hospitalists: a pilot academic detailing project with a public health approach. J Hosp Med. 2008;3:64–70. doi: 10.1002/jhm.278.
    1. Kiyatkin DE, Wright S, Zenilman J, Kisuule F. Improving utilization of antimicrobial drugs among physician assistants in the ED. JAAPA 2011;24:44, 47-1 (II).
    1. Linnebur SA, Fish DN, Ruscin JM, et al. Impact of a multidisciplinary intervention on antibiotic use for nursing home-acquired pneumonia. Am J Geriatr Pharmacother. 2011;9:442–450. doi: 10.1016/j.amjopharm.2011.09.009.
    1. Cosgrove SE, Patel A, Song X, et al. Impact of different methods of feedback to clinicians after postprescription antimicrobial review based on the Centers for Disease Control and Prevention’s 12 steps to prevent antimicrobial resistance among hospitalized adults. Infect Control Hosp Epidemiol. 2007;28:641–646. doi: 10.1086/518345.
    1. Ivers N, Jamtvedt G, Flottorp S, et al. Audit and feedback: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev. 2012;6:CD000259.
    1. LaRocco A., Jr Concurrent antibiotic review programs—a role for infectious diseases specialists at small community hospitals. Clin Infect Dis. 2003;37:742–743. doi: 10.1086/377286.
    1. Masia M, Matoses C, Padilla S, et al. Limited efficacy of a nonrestricted intervention on antimicrobial prescription of commonly used antibiotics in the hospital setting: results of a randomized controlled trial. Eur J Clin Microbiol Infect Dis. 2008;27:597–605. doi: 10.1007/s10096-008-0482-x.
    1. Rattanaumpawan P, Sutha P, Thamlikitkul V. Effectiveness of drug use evaluation and antibiotic authorization on patients’ clinical outcomes, antibiotic consumption, and antibiotic expenditures. Am J Infect Control. 2010;38:38–43. doi: 10.1016/j.ajic.2009.04.288.
    1. Elligsen M, Walker SA, Pinto R, et al. Audit and feedback to reduce broad-spectrum antibiotic use among intensive care unit patients: a controlled interrupted time series analysis. Infect Control Hosp Epidemiol. 2012;33:354–361. doi: 10.1086/664757.
    1. Zvonar RK, Bush P, Roth V. Practice changes to improve delivery of surgical antibiotic prophylaxis. Healthc Q. 2008;11:141–144. doi: 10.12927/hcq.2008.19664.
    1. Chu LA, Bratzler DW, Lewis RJ, et al. Improving the quality of care for patients with pneumonia in very small hospitals. Arch Intern Med. 2003;163:326–332. doi: 10.1001/archinte.163.3.326.
    1. Cooke J, Alexander K, Charani E, et al. Antimicrobial stewardship: an evidence-based, antimicrobial self-assessment toolkit (ASAT) for acute hospitals. J Antimicrob Chemother. 2010;65:2669–2673. doi: 10.1093/jac/dkq367.
    1. Amadeo B, Dumartin C, Parneix P, Fourrier-Reglat A, Rogues AM. Relationship between antibiotic consumption and antibiotic policy: an adjusted analysis in the French healthcare system. J Antimicrob Chemother. 2011;66:434–442. doi: 10.1093/jac/dkq456.
    1. Nothacker M, Reiter A. Qualitätsindikatoren für Nationale VersorgungsLeitlinien. In: ÄZQ (Hrsg.) Programm für Nationale VersorgungsLeitlinien von BÄK, KBV und AWMF—Qualitätsindikatoren, Manual für Autoren. 18–31. 2009.
    1. Afshar N, Tabas J, Afshar K, Silbergleit R. Blood cultures for community-acquired pneumonia: are they worthy of two quality measures? A systematic review. J Hosp Med. 2009;4:112–123. doi: 10.1002/jhm.382.
    1. Dumartin C, Rogues AM, Amadeo B, et al. Antibiotic stewardship programmes: legal framework and structure and process indicator in Southwestern French hospitals, 2005–2008. J Hosp Infect. 2011;77:123–128. doi: 10.1016/j.jhin.2010.07.014.
    1. Hermanides HS, Hulscher ME, Schouten JA, Prins JM, Geerlings SE. Development of quality indicators for the antibiotic treatment of complicated urinary tract infections: a first step to measure and improve care. Clin Infect Dis. 2008;46:703–711. doi: 10.1086/527384.
    1. Kanwar M, Brar N, Khatib R, Fakih MG. Misdiagnosis of community-acquired pneumonia and inappropriate utilization of antibiotics: side effects of the 4-h antibiotic administration rule. Chest. 2007;131:1865–1869. doi: 10.1378/chest.07-0164.
    1. Morris AM, Brener S, Dresser L, et al. Use of a structured panel process to define quality metrics for antimicrobial stewardship programs. Infect Control Hosp Epidemiol. 2012;33:500–506. doi: 10.1086/665324.
    1. Nathwani D, Sneddon J, Patton A, Malcolm W. Antimicrobial stewardship in Scotland: impact of a national programme. Antimicrob Resist Infect Control. 2012;1:7. doi: 10.1186/2047-2994-1-7.
    1. Nguyen HB, Corbett SW, Steele R, et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med. 2007;35:1105–1112. doi: 10.1097/01.CCM.0000259463.33848.3D.
    1. Pines JM, Isserman JA, Hinfey PB. The measurement of time to first antibiotic dose for pneumonia in the emergency department: a white paper and position statement prepared for the American Academy of Emergency Medicine. J Emerg Med. 2009;37:335–340. doi: 10.1016/j.jemermed.2009.06.127.
    1. Pulcini C, Defres S, Aggarwal I, Nathwani D, Davey P. Design of a ‘day 3 bundle’ to improve the reassessment of inpatient empirical antibiotic prescriptions. J Antimicrob Chemother. 2008;61:1384–1388. doi: 10.1093/jac/dkn113.
    1. Quattromani E, Powell ES, Khare RK, et al. Hospital-reported data on the pneumonia quality measure “Time to First Antibiotic Dose” are not associated with inpatient mortality: results of a nationwide cross-sectional analysis. Acad Emerg Med. 2011;18:496–503. doi: 10.1111/j.1553-2712.2011.01053.x.
    1. Saizy-Callaert S, Causse R, Furhman C, Le Paih MF, Thebault A, Chouaid C. Impact of a multidisciplinary approach to the control of antibiotic prescription in a general hospital. J Hosp Infect. 2003;53:177–182. doi: 10.1053/jhin.2002.1307.
    1. Shorr AF, Owens RC., Jr Guidelines and quality for community-acquired pneumonia: measures from the Joint Commission and the Centers for Medicare and Medicaid Services. Am J Health Syst Pharm. 2009;66:S2–S7. doi: 10.2146/090087a.
    1. Van Kasteren ME, Mannien J, Kullberg BJ, et al. Quality improvement of surgical prophylaxis in Dutch hospitals: evaluation of a multi-site intervention by time series analysis. J Antimicrob Chemother. 2005;56:1094–1102. doi: 10.1093/jac/dki374.
    1. von Gunten V, Troillet N, Beney J, et al. Impact of an interdisciplinary strategy on antibiotic use: a prospective controlled study in three hospitals. J Antimicrob Chemother. 2005;55:362–366. doi: 10.1093/jac/dki021.
    1. Buyle FM, Metz-Gercek S, Mechtler R, et al. Prospective multicentre feasibility study of a quality of care indicator for intravenous to oral switch therapy with highly bioavailable antibiotics. J Antimicrob Chemother. 2012;67:2043–2046. doi: 10.1093/jac/dks145.
    1. Kern WV, Metz-Gercek S, Mechtler R, et al. Staphylococcus aureus blood-stream infection management indicators as quality indicators for hospital antibiotic stewardship: feasibility study by the ABS International Quality Indicators (ABS QI) team. Clin Microbiol Infect 2009;15 Suppl 4:S188 (IV).
    1. Drew RH, White R, MacDougall C, Hermsen ED, Owens RC., Jr Insights from the Society of Infectious Diseases Pharmacists on antimicrobial stewardship guidelines from the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Pharmacotherapy. 2009;29:593–607. doi: 10.1592/phco.29.5.593.
    1. Huttner B, Jones M, Rubin MA, et al. Double trouble: how big a problem is redundant anaerobic antibiotic coverage in Veterans Affairs medical centres? J Antimicrob Chemother. 2012;67:1537–1539. doi: 10.1093/jac/dks074.
    1. Aarts MA, Hancock JN, Heyland D, McLeod RS, Marshall JC. Empiric antibiotic therapy for suspected ventilator-associated pneumonia: a systematic review and meta-analysis of randomized trials. Crit Care Med. 2008;36:108–117. doi: 10.1097/01.CCM.0000297956.27474.9D.
    1. De Waele JJ, Ravyts M, Depuydt P, Blot SI, Decruyenaere J, Vogelaers D. De-escalation after empirical meropenem treatment in the intensive care unit: fiction or reality? J Crit Care. 2010;25:641–646. doi: 10.1016/j.jcrc.2009.11.007.
    1. Johnson SJ, Ernst EJ, Moores KG. Is double coverage of gram-negative organisms necessary? Am J Health Syst Pharm. 2011;68:119–124. doi: 10.2146/ajhp090360.
    1. Niederman MS, Soulountsi V. De-escalation therapy: is it valuable for the management of ventilator-associated pneumonia? Clin Chest Med. 2011;32:517–534. doi: 10.1016/j.ccm.2011.05.009.
    1. Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME. Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis. 2005;41:149–158. doi: 10.1086/430912.
    1. Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ. 2004;328:668. doi: 10.1136/bmj.38028.520995.63.
    1. Marcus R, Paul M, Elphick H, Leibovici L. Clinical implications of beta-lactam-aminoglycoside synergism: systematic review of randomised trials. Int J Antimicrob Agents. 2011;37:491–503. doi: 10.1016/j.ijantimicag.2010.11.029.
    1. Abad CL, Kumar A, Safdar N. Antimicrobial therapy of sepsis and septic shock—when are two drugs better than one? Crit Care Clin. 2011;27:e1–e27. doi: 10.1016/j.ccc.2010.12.001.
    1. Boyd N, Nailor MD. Combination antibiotic therapy for empiric and definitive treatment of gram-negative infections: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2011;31:1073–1084. doi: 10.1592/phco.31.11.1073.
    1. Alvarez-Lerma F, Alvarez B, Luque P, et al. Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: a prospective observational study. Crit Care. 2006;10:R78. doi: 10.1186/cc4919.
    1. Mettler J, Simcock M, Sendi P, et al. Empirical use of antibiotics and adjustment of empirical antibiotic therapies in a university hospital: a prospective observational study. BMC Infect Dis. 2007;7:21. doi: 10.1186/1471-2334-7-21.
    1. Montravers P, Dupont H, Gauzit R, Veber B, Bedos JP, Lepape A. Strategies of initiation and streamlining of antibiotic therapy in 41 French intensive care units. Crit Care. 2011;15:R17. doi: 10.1186/cc9961.
    1. Briceland LL, Nightingale CH, Quintiliani R, Cooper BW, Smith KS. Antibiotic streamlining from combination therapy to monotherapy utilizing an interdisciplinary approach. Arch Intern Med. 1988;148:2019–2022. doi: 10.1001/archinte.1988.00380090091022.
    1. Schlueter M, James C, Dominguez A, Tsu L, Seymann G. Practice patterns for antibiotic de-escalation in culture-negative healthcare-associated pneumonia. Infection. 2010;38:357–362. doi: 10.1007/s15010-010-0042-z.
    1. Shime N, Satake S, Fujita N. De-escalation of antimicrobials in the treatment of bacteraemia due to antibiotic-sensitive pathogens in immunocompetent patients. Infection. 2011;39:319–325. doi: 10.1007/s15010-011-0116-6.
    1. Glowacki RC, Schwartz DN, Itokazu GS, Wisniewski MF, Kieszkowski P, Weinstein RA. Antibiotic combinations with redundant antimicrobial spectra: clinical epidemiology and pilot intervention of computer-assisted surveillance. Clin Infect Dis. 2003;37:59–64. doi: 10.1086/376623.
    1. Micek ST, Ward S, Fraser VJ, Kollef MH. A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest. 2004;125:1791–1799. doi: 10.1378/chest.125.5.1791.
    1. Kollef MH, Kollef KE. Antibiotic utilization and outcomes for patients with clinically suspected ventilator-associated pneumonia and negative quantitative BAL culture results. Chest. 2005;128:2706–2713. doi: 10.1378/chest.128.4.2706.
    1. Giantsou E, Liratzopoulos N, Efraimidou E, et al. De-escalation therapy rates are significantly higher by bronchoalveolar lavage than by tracheal aspirate. Intensive Care Med. 2007;33:1533–1540. doi: 10.1007/s00134-007-0619-x.
    1. Heyland DK, Dodek P, Muscedere J, Day A, Cook D. Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med. 2008;36:737–744. doi: 10.1097/01.CCM.0B013E31816203D6.
    1. Eachempati SR, Hydo LJ, Shou J, Barie PS. Does de-escalation of antibiotic therapy for ventilator-associated pneumonia affect the likelihood of recurrent pneumonia or mortality in critically ill surgical patients? J Trauma. 2009;66:1343–1348. doi: 10.1097/TA.0b013e31819dca4e.
    1. Amadeo B, Zarb P, Muller A, et al. European surveillance of antibiotic consumption (ESAC) point prevalence survey 2008: paediatric antimicrobial prescribing in 32 hospitals of 21 European countries. J Antimicrob Chemother. 2010;65:2247–2252. doi: 10.1093/jac/dkq309.
    1. Guillemot D, Carbon C, Balkau B, et al. Low dosage and long treatment duration of beta-lactam: risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA. 1998;279:365–370. doi: 10.1001/jama.279.5.365.
    1. Harbarth S, Harris AD, Carmeli Y, Samore MH. Parallel analysis of individual and aggregated data on antibiotic exposure and resistance in gram-negative bacilli. Clin Infect Dis. 2001;33:1462–1468. doi: 10.1086/322677.
    1. Albrich WC, Monnet DL, Harbarth S. Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes. Emerg Infect Dis. 2004;10:514–517. doi: 10.3201/eid1003.030252.
    1. Zillich AJ, Sutherland JM, Wilson SJ, et al. Antimicrobial use control measures to prevent and control antimicrobial resistance in US hospitals. Infect Control Hosp Epidemiol. 2006;27:1088–1095. doi: 10.1086/507963.
    1. Dunbar LM, Wunderink RG, Habib MP, et al. High-dose, short-course levofloxacin for community-acquired pneumonia: a new treatment paradigm. Clin Infect Dis. 2003;37:752–760. doi: 10.1086/377539.
    1. van NC, van’t Wout JW, Assendelft WJ, et al. Treatment duration of febrile urinary tract infection (FUTIRST trial): a randomized placebo-controlled multicenter trial comparing short (7 days) antibiotic treatment with conventional treatment (14 days) BMC Infect Dis. 2009;9:131. doi: 10.1186/1471-2334-9-131.
    1. Pugh R, Grant C, Cooke RP, Dempsey G. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst Rev. 2011;10:CD007577.
    1. Havey TC, Fowler RA, Daneman N. Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care. 2011;15:R267. doi: 10.1186/cc10545.
    1. Eliakim-Raz N, Yahav D, Paul M, Leibovici L. Duration of antibiotic treatment for acute pyelonephritis and septic urinary tract infection—7 days or less versus longer treatment: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2013;68:2183–91 (I).
    1. Hayashi Y, Paterson DL. Strategies for reduction in duration of antibiotic use in hospitalized patients. Clin Infect Dis. 2011;52:1232–1240. doi: 10.1093/cid/cir063.
    1. Liew YX, Chlebicki MP, Lee W, Hsu LY, Kwa AL. Use of procalcitonin (PCT) to guide discontinuation of antibiotic use in an unspecified sepsis is an antimicrobial stewardship program (ASP) Eur J Clin Microbiol Infect Dis. 2011;30:853–855. doi: 10.1007/s10096-011-1165-6.
    1. Schuetz P, Muller B, Christ-Crain M, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev. 2012;9:CD007498.
    1. Agarwal R, Schwartz DN. Procalcitonin to guide duration of antimicrobial therapy in intensive care units: a systematic review. Clin Infect Dis. 2011;53:379–387. doi: 10.1093/cid/cir408.
    1. Bouadma L, Luyt CE, Tubach F, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375:463–474. doi: 10.1016/S0140-6736(09)61879-1.
    1. Schroeder S, Hochreiter M, Koehler T, et al. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch Surg. 2009;394:221–226. doi: 10.1007/s00423-008-0432-1.
    1. Kopterides P, Siempos II, Tsangaris I, Tsantes A, Armaganidis A. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2010;38:2229–2241. doi: 10.1097/CCM.0b013e3181f17bf9.
    1. Heyland DK, Johnson AP, Reynolds SC, Muscedere J. Procalcitonin for reduced antibiotic exposure in the critical care setting: a systematic review and an economic evaluation. Crit Care Med. 2011;39:1792–1799. doi: 10.1097/CCM.0b013e31821201a5.
    1. Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177:498–505. doi: 10.1164/rccm.200708-1238OC.
    1. Tang H, Huang T, Jing J, Shen H, Cui W. Effect of procalcitonin-guided treatment in patients with infections: a systematic review and meta-analysis. Infection. 2009;37:497–507. doi: 10.1007/s15010-009-9034-2.
    1. Hohn A, Schroeder S, Gehrt A, et al. Procalcitonin-guided algorithm to reduce length of antibiotic therapy in patients with severe sepsis and septic shock. BMC Infect Dis. 2013;13:158. doi: 10.1186/1471-2334-13-158.
    1. Gyssens IC, Geerligs IE, Dony JM, et al. Optimising antimicrobial drug use in surgery: an intervention study in a Dutch university hospital. J Antimicrob Chemother. 1996;38:1001–1012. doi: 10.1093/jac/38.6.1001.
    1. Burke JP. Maximizing appropriate antibiotic prophylaxis for surgical patients: an update from LDS Hospital, Salt Lake City. Clin Infect Dis. 2001;33:S78–S83. doi: 10.1086/321861.
    1. Hosoglu S, Aslan S, Akalin S, Bosnak V. Audit of quality of perioperative antimicrobial prophylaxis. Pharm World Sci. 2009;31:14–17. doi: 10.1007/s11096-008-9259-7.
    1. Burkitt KH, Mor MK, Jain R, et al. Toyota production system quality improvement initiative improves perioperative antibiotic therapy. Am J Manag Care. 2009;15:633–642.
    1. Takahashi Y, Takesue Y, Nakajima K, et al. Implementation of a hospital-wide project for appropriate antimicrobial prophylaxis. J Infect Chemother. 2010;16:418–423. doi: 10.1007/s10156-010-0078-0.
    1. Meyer E, Schwab F, Pollitt A, Bettolo W, Schroeren-Boersch B, Trautmann M. Impact of a change in antibiotic prophylaxis on total antibiotic use in a surgical intensive care unit. Infection. 2010;38:19–24. doi: 10.1007/s15010-009-9115-2.
    1. Sun TB, Chao SF, Chang BS, Chen TY, Gao PY, Shyr MH. Quality improvements of antimicrobial prophylaxis in coronary artery bypass grafting. J Surg Res. 2011;167:329–335. doi: 10.1016/j.jss.2009.06.049.
    1. Haynes K, Linkin DR, Fishman NO, et al. Effectiveness of an information technology intervention to improve prophylactic antibacterial use in the postoperative period. J Am Med Inform Assoc. 2011;18:164–168. doi: 10.1136/jamia.2009.002998.
    1. Lim WS, Baudouin SV, George RC, et al. BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax. 2009;64:iii1–iii55. doi: 10.1136/thx.2009.121434.
    1. Wiersinga WJ, Bonten MJ, Boersma WG, et al. SWAB/NVALT (Dutch Working Party on Antibiotic Policy and Dutch Association of Chest Physicians) guidelines on the management of community-acquired pneumonia in adults. Neth J Med. 2012;70:90–101.
    1. Hoffken G, Lorenz J, Kern W, et al. S3-guideline on ambulant acquired pneumonia and deep airway infections. Pneumologie. 2005;59:612–664. doi: 10.1055/s-2005-870988.
    1. Siegel RE, Halpern NA, Almenoff PL, Lee A, Cashin R, Greene JG. A prospective randomized study of inpatient IV antibiotics for community-acquired pneumonia—the optimal duration of therapy. Chest. 1996;110:965–971. doi: 10.1378/chest.110.4.965.
    1. Athanassa Z, Makris G, Dimopoulos G, Falagas ME. Early switch to oral treatment in patients with moderate to severe community-acquired pneumonia: a meta-analysis. Drugs. 2008;68:2469–2481. doi: 10.2165/0003495-200868170-00005.
    1. Oosterheert JJ, Bonten MJ, Schneider MM, et al. Effectiveness of early switch from intravenous to oral antibiotics in severe community acquired pneumonia: multicentre randomised trial. BMJ. 2006;333:1193. doi: 10.1136/.
    1. Rhew DC, Tu GS, Ofman J, Henning JM, Richards MS, Weingarten SR. Early switch and early discharge strategies in patients with community-acquired pneumonia: a meta-analysis. Arch Intern Med. 2001;161:722–727. doi: 10.1001/archinte.161.5.722.
    1. Castro-Guardiola A, Viejo-Rodriguez AL, Soler-Simon S, et al. Efficacy and safety of oral and early-switch therapy for community-acquired pneumonia: a randomized controlled trial. Am J Med. 2001;111:367–374. doi: 10.1016/S0002-9343(01)00868-3.
    1. Li JZ, Willke RJ, Rittenhouse BE, Rybak MJ. Effect of linezolid versus vancomycin on length of hospital stay in patients with complicated skin and soft tissue infections caused by known or suspected methicillin-resistant Staphylococci: results from a randomized clinical trial. Surg Infect (Larchmt) 2003;4:57–70. doi: 10.1089/109629603764655290.
    1. Chan R, Hemeryck L, O’Regan M, Clancy L, Feely J. Oral versus intravenous antibiotics for community acquired lower respiratory tract infection in a general hospital: open, randomised controlled trial. BMJ. 1995;310:1360–1362. doi: 10.1136/bmj.310.6991.1360.
    1. Omidvari K, de Boisblanc BP, Karam G, Nelson S, Haponik E, Summer W. Early transition to oral antibiotic therapy for community-acquired pneumonia: duration of therapy, clinical outcomes, and cost analysis. Respir Med. 1998;92:1032–1039. doi: 10.1016/S0954-6111(98)90351-1.
    1. Manuel O, Burnand B, Bady P, et al. Impact of standardised review of intravenous antibiotic therapy 72 hours after prescription in two internal medicine wards. J Hosp Infect. 2010;74:326–331. doi: 10.1016/j.jhin.2009.07.011.
    1. Ramirez JA, Vargas S, Ritter GW, et al. Early switch from intravenous to oral antibiotics and early hospital discharge: a prospective observational study of 200 consecutive patients with community-acquired pneumonia. Arch Intern Med. 1999;159:2449–2454. doi: 10.1001/archinte.159.20.2449.
    1. Lee RW, Lindstrom ST. Early switch to oral antibiotics and early discharge guidelines in the management of community-acquired pneumonia. Respirology. 2007;12:111–116. doi: 10.1111/j.1440-1843.2006.00931.x.
    1. Mertz D, Koller M, Haller P, et al. Outcomes of early switching from intravenous to oral antibiotics on medical wards. J Antimicrob Chemother. 2009;64:188–199. doi: 10.1093/jac/dkp131.
    1. Nathan RV, Rhew DC, Murray C, Bratzler DW, Houck PM, Weingarten SR. In-hospital observation after antibiotic switch in pneumonia: a national evaluation. Am J Med. 2006;119:512–517. doi: 10.1016/j.amjmed.2005.09.012.
    1. Bocquet N, Sergent AA, Jais JP, et al. Randomized trial of oral versus sequential IV/oral antibiotic for acute pyelonephritis in children. Pediatrics. 2012;129:e269–e275. doi: 10.1542/peds.2011-0814.
    1. Klastersky J, Paesmans M. Risk-adapted strategy for the management of febrile neutropenia in cancer patients. Support Care Cancer. 2007;15:477–482. doi: 10.1007/s00520-006-0185-8.
    1. Bachur R, Pagon Z. Success of short-course parenteral antibiotic therapy for acute osteomyelitis of childhood. Clin Pediatr (Phila) 2007;46:30–35. doi: 10.1177/0009922806289081.
    1. Kern WV. Risk assessment and treatment of low-risk patients with febrile neutropenia. Clin Infect Dis. 2006;42:533–540. doi: 10.1086/499352.
    1. van NC, van’t Wout JW, Spelt IC, et al. Prospective cohort study of acute pyelonephritis in adults: safety of triage towards home based oral antimicrobial treatment. J Infect. 2010;60:114–121. doi: 10.1016/j.jinf.2009.11.008.
    1. Jagodzinski NA, Kanwar R, Graham K, Bache CE. Prospective evaluation of a shortened regimen of treatment for acute osteomyelitis and septic arthritis in children. J Pediatr Orthop. 2009;29:518–525. doi: 10.1097/BPO.0b013e3181ab472d.
    1. Stengel D, Bauwens K, Sehouli J, Ekkernkamp A, Porzsolt F. Systematic review and meta-analysis of antibiotic therapy for bone and joint infections. Lancet Infect Dis. 2001;1:175–188. doi: 10.1016/S1473-3099(01)00094-9.
    1. Cenizal MJ, Skiest D, Luber S, et al. Prospective randomized trial of empiric therapy with trimethoprim-sulfamethoxazole or doxycycline for outpatient skin and soft tissue infections in an area of high prevalence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51:2628–2630. doi: 10.1128/AAC.00206-07.
    1. Hodson EM, Willis NS, Craig JC. Antibiotics for acute pyelonephritis in children. Cochrane Database Syst Rev. 2007;4:CD003772.
    1. Neuhaus TJ, Berger C, Buechner K, et al. Randomised trial of oral versus sequential intravenous/oral cephalosporins in children with pyelonephritis. Eur J Pediatr. 2008;167:1037–1047. doi: 10.1007/s00431-007-0638-1.
    1. Vouloumanou EK, Rafailidis PI, Kazantzi MS, Athanasiou S, Falagas ME. Early switch to oral versus intravenous antimicrobial treatment for hospitalized patients with acute pyelonephritis: a systematic review of randomized controlled trials. Curr Med Res Opin. 2008;24:3423–3434. doi: 10.1185/03007990802550679.
    1. Hom J. Are oral antibiotics equivalent to intravenous antibiotics for the initial management of pyelonephritis in children? Paediatr Child Health. 2010;15:150–152.
    1. Kuti JL, Le TN, Nightingale CH, Nicolau DP, Quintiliani R. Pharmacoeconomics of a pharmacist-managed program for automatically converting levofloxacin route from i.v. to oral. Am J Health Syst Pharm. 2002;59:2209–2215.
    1. Rigaud B, Malbranche C, Pioud V, et al. Good clinical practices and inpatient antibiotics: optimization of fluoroquinolone switch therapy. Presse Med. 2007;36:1159–1166. doi: 10.1016/j.lpm.2007.01.038.
    1. Lorgelly PK, Atkinson M, Lakhanpaul M, et al. Oral versus i.v. antibiotics for community-acquired pneumonia in children: a cost-minimisation analysis. Eur Respir J. 2010;35:858–864. doi: 10.1183/09031936.00087209.
    1. Przybylski KG, Rybak MJ, Martin PR, et al. A pharmacist-initiated program of intravenous to oral antibiotic conversion. Pharmacotherapy. 1997;17:271–276.
    1. Vogtlander NP, Van Kasteren ME, Natsch S, Kullberg BJ, Hekster YA, Van Der Meer JW. Improving the process of antibiotic therapy in daily practice: interventions to optimize timing, dosage adjustment to renal function, and switch therapy. Arch Intern Med. 2004;164:1206–1212. doi: 10.1001/archinte.164.11.1206.
    1. Waagsbo B, Sundoy A, Paulsen EQ. Reduction of unnecessary i.v. antibiotic days using general criteria for antibiotic switch. Scand J Infect Dis. 2008;40:468–473. doi: 10.1080/00365540701837134.
    1. Shindo Y, Sato S, Maruyama E, et al. Implication of clinical pathway care for community-acquired pneumonia in a community hospital: early switch from an intravenous beta-lactam plus a macrolide to an oral respiratory fluoroquinolone. Intern Med. 2008;47:1865–1874. doi: 10.2169/internalmedicine.47.1343.
    1. Buyle F, Vogelaers D, Peleman R, Van MG, Robays H. Implementation of guidelines for sequential therapy with fluoroquinolones in a Belgian hospital. Pharm World Sci. 2010;32:404–410. doi: 10.1007/s11096-010-9384-y.
    1. Dryden M, Saeed K, Townsend R, et al. Antibiotic stewardship and early discharge from hospital: impact of a structured approach to antimicrobial management. J Antimicrob Chemother. 2012;67:2289–2296. doi: 10.1093/jac/dks193.
    1. Metjian TA, Prasad PA, Kogon A, Coffin SE, Zaoutis TE. Evaluation of an antimicrobial stewardship program at a pediatric teaching hospital. Pediatr Infect Dis J. 2008;27:106–111.
    1. Hoefel HH, Lautert L, Schmitt C, Soares T, Jordan S. Vancomycin administration: mistakes made by nursing staff. Nurs Stand. 2008;22:35–42. doi: 10.7748/ns2008.06.22.39.35.c6567.
    1. Magnotti LJ, Schroeppel TJ, Fabian TC, et al. Reduction in inadequate empiric antibiotic therapy for ventilator-associated pneumonia: impact of a unit-specific treatment pathway. Am Surg. 2008;74:516–522.
    1. Dalley AJ, Lipman J, Venkatesh B, Rudd M, Roberts MS, Cross SE. Inadequate antimicrobial prophylaxis during surgery: a study of beta-lactam levels during burn debridement. J Antimicrob Chemother. 2007;60:166–169. doi: 10.1093/jac/dkm128.
    1. Luna CM, Aruj P, Niederman MS, et al. Appropriateness and delay to initiate therapy in ventilator-associated pneumonia. Eur Respir J. 2006;27:158–164. doi: 10.1183/09031936.06.00049105.
    1. Ramsay C, Brown E, Hartman G, Davey P. Room for improvement: a systematic review of the quality of evaluations of interventions to improve hospital antibiotic prescribing. J Antimicrob Chemother. 2003;52:764–771. doi: 10.1093/jac/dkg460.
    1. Zaragoza R, Artero A, Camarena JJ, Sancho S, Gonzalez R, Nogueira JM. The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect. 2003;9:412–418. doi: 10.1046/j.1469-0691.2003.00656.x.
    1. McKenzie C. Antibiotic dosing in critical illness. J Antimicrob Chemother. 2011;66:ii25–ii31. doi: 10.1093/jac/dkq516.
    1. Cordova MA, Generali JA, White SJ, Godwin HN. The effects of two pharmacy intervention methods on cefazolin dosing intervel for surgical prophylaxis. Hospital pharmacy. 1986;21:405–414.
    1. Avorn J, Soumerai SB, Taylor W, Wessels MR, Janousek J, Weiner M. Reduction of incorrect antibiotic dosing through a structured educational order form. Arch Intern Med. 1988;148:1720–1724. doi: 10.1001/archinte.1988.00380080024009.
    1. Burton ME, Ash CL, Hill DP, Jr, Handy T, Shepherd MD, Vasko MR. A controlled trial of the cost benefit of computerized bayesian aminoglycoside administration. Clin Pharmacol Ther. 1991;49:685–694. doi: 10.1038/clpt.1991.86.
    1. Destache CJ, Meyer SK, Bittner MJ, Hermann KG. Impact of a clinical pharmacokinetic service on patients treated with aminoglycosides: a cost-benefit analysis. Ther Drug Monit. 1990;12:419–426. doi: 10.1097/00007691-199009000-00003.
    1. McNabb JJ, Nightingale CH, Quintiliani R, Nicolau DP. Cost-effectiveness of ceftazidime by continuous infusion versus intermittent infusion for nosocomial pneumonia. Pharmacotherapy. 2001;21:549–555. doi: 10.1592/phco.21.6.549.34539.
    1. Grant EM, Kuti JL, Nicolau DP, Nightingale C, Quintiliani R. Clinical efficacy and pharmacoeconomics of a continuous-infusion piperacillin-tazobactam program in a large community teaching hospital. Pharmacotherapy. 2002;22:471–483. doi: 10.1592/phco.22.7.471.33665.
    1. Scaglione F. Can PK/PD be used in everyday clinical practice. Int J Antimicrob Agents. 2002;19:349–353. doi: 10.1016/S0924-8579(02)00020-1.
    1. Kaufman SE, Donnell RW, Hickey WS. Rationale and evidence for extended infusion of piperacillin-tazobactam. Am J Health Syst Pharm. 2011;68:1521–1526. doi: 10.2146/ajhp100694.
    1. Duszynska W, Taccone FS, Switala M, Hurkacz M, Kowalska-Krochmal B, Kubler A. Continuous infusion of piperacillin/tazobactam in ventilator-associated pneumonia: a pilot study on efficacy and costs. Int J Antimicrob Agents. 2012;39:153–158. doi: 10.1016/j.ijantimicag.2011.10.011.
    1. DeRyke CA, Lee SY, Kuti JL, Nicolau DP. Optimising dosing strategies of antibacterials utilising pharmacodynamic principles: impact on the development of resistance. Drugs. 2006;66:1–14. doi: 10.2165/00003495-200666010-00001.
    1. Owens RC, Jr, Shorr AF. Rational dosing of antimicrobial agents: pharmacokinetic and pharmacodynamic strategies. Am J Health Syst Pharm. 2009;66:S23–S30. doi: 10.2146/090087d.
    1. Markou N, Markantonis SL, Dimitrakis E, et al. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: a prospective, open-label, uncontrolled study. Clin Ther. 2008;30:143–151. doi: 10.1016/j.clinthera.2008.01.015.
    1. Daikos GL, Lolans VT, Jackson GG. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother. 1991;35:117–123. doi: 10.1128/AAC.35.1.117.
    1. Gumbo T, Louie A, Deziel MR, Parsons LM, Salfinger M, Drusano GL. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis. 2004;190:1642–1651. doi: 10.1086/424849.
    1. Henderson-Begg SK, Livermore DM, Hall LM. Effect of subinhibitory concentrations of antibiotics on mutation frequency in Streptococcus pneumoniae. J Antimicrob Chemother. 2006;57:849–854. doi: 10.1093/jac/dkl064.
    1. Olofsson SK, Geli P, Andersson DI, Cars O. Pharmacodynamic model to describe the concentration-dependent selection of cefotaxime-resistant Escherichia coli. Antimicrob Agents Chemother. 2005;49:5081–5091. doi: 10.1128/AAC.49.12.5081-5091.2005.
    1. Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49:4920–4927. doi: 10.1128/AAC.49.12.4920-4927.2005.
    1. Smyth AR, Bhatt J. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2012;2:CD002009.
    1. Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA. Does beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care. 2012;2:35. doi: 10.1186/2110-5820-2-35.
    1. Roberts JA, Joynt GM, Choi GY, Gomersall CD, Lipman J. How to optimise antimicrobial prescriptions in the intensive care unit: principles of individualised dosing using pharmacokinetics and pharmacodynamics. Int J Antimicrob Agents. 2012;39:187–192. doi: 10.1016/j.ijantimicag.2011.11.002.
    1. Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol. 2012;73:27–36. doi: 10.1111/j.1365-2125.2011.04080.x.
    1. Roberts JA, Webb S, Paterson D, Ho KM, Lipman J. A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med. 2009;37:2071–2078. doi: 10.1097/CCM.0b013e3181a0054d.
    1. Blondiaux N, Wallet F, Favory R, et al. Daily serum piperacillin monitoring is advisable in critically ill patients. Int J Antimicrob Agents. 2010;35:500–503. doi: 10.1016/j.ijantimicag.2010.01.018.
    1. van Lent-Evers NA, Mathot RA, Geus WP, van Hout BA, Vinks AA. Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit. 1999;21:63–73. doi: 10.1097/00007691-199902000-00010.
    1. Leon-Djian CB, Bourguignon L, Spath HM, Maire P. Cost-effectiveness analysis of active TDM in elderly patients treated with aminoglycosides. Therapie. 2011;66:445–452. doi: 10.2515/therapie/2011058.
    1. Duszynska W. Pharmacokinetic-pharmacodynamic modelling of antibiotic therapy in severe sepsis. Anaesthesiol Intensive Ther. 2012;44:158–164.
    1. Hennessy S, Leonard CE, Localio AR, et al. Prescriber adherence to pharmacokinetic monitoring service recommendations for aminoglycoside dosing and the risk of acute kidney injury. Int J Clin Pharmacol Ther. 2011;49:536–544. doi: 10.5414/CP201541.
    1. Mueller EW, Boucher BA. The use of extended-interval aminoglycoside dosing strategies for the treatment of moderate-to-severe infections encountered in critically ill surgical patients. Surg Infect (Larchmt) 2009;10:563–570. doi: 10.1089/sur.2007.080.
    1. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–10. doi: 10.1086/516284.
    1. Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol. 2004;2:289–300. doi: 10.1038/nrmicro862.
    1. Kasiakou SK, Lawrence KR, Choulis N, Falagas ME. Continuous versus intermittent intravenous administration of antibacterials with time-dependent action: a systematic review of pharmacokinetic and pharmacodynamic parameters. Drugs. 2005;65:2499–2511. doi: 10.2165/00003495-200565170-00006.
    1. Kasiakou SK, Sermaides GJ, Michalopoulos A, Soteriades ES, Falagas ME. Continuous versus intermittent intravenous administration of antibiotics: a meta-analysis of randomised controlled trials. Lancet Infect Dis. 2005;5:581–589. doi: 10.1016/S1473-3099(05)70218-8.
    1. Tamma PD, Putcha N, Suh YD, Van Arendonk KJ, Rinke ML. Does prolonged beta-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect Dis. 2011;11:181. doi: 10.1186/1471-2334-11-181.
    1. McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31:345–351. doi: 10.1016/j.ijantimicag.2007.12.009.
    1. Pelkonen T, Roine I, Cruzeiro ML, Pitkaranta A, Kataja M, Peltola H. Slow initial beta-lactam infusion and oral paracetamol to treat childhood bacterial meningitis: a randomised, controlled trial. Lancet Infect Dis. 2011;11:613–621. doi: 10.1016/S1473-3099(11)70055-X.
    1. Dandekar PK, Maglio D, Sutherland CA, Nightingale CH, Nicolau DP. Pharmacokinetics of meropenem 0.5 and 2 g every 8 hours as a 3-hour infusion. Pharmacotherapy. 2003;23:988–991. doi: 10.1592/phco.23.8.988.32878.
    1. Yost RJ, Cappelletty DM. The retrospective cohort of extended-infusion piperacillin-tazobactam (RECEIPT) study: a multicenter study. Pharmacotherapy. 2011;31:767–775. doi: 10.1592/phco.31.8.767.
    1. Arnold HM, Hollands JM, Skrupky LP, et al. Prolonged infusion antibiotics for suspected gram-negative infections in the ICU: a before-after study. Ann Pharmacother. 2013;47:170–180. doi: 10.1345/aph.1R523.
    1. Dulhunty JM, Roberts JA, Davis JS, et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis. 2013;56:236–244. doi: 10.1093/cid/cis856.
    1. Chytra I, Stepan M, Benes J, et al. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: a randomized open-label controlled trial. Crit Care. 2012;16:R113. doi: 10.1186/cc11405.
    1. Toltzis P, Dul MJ, Hoyen C, et al. The effect of antibiotic rotation on colonization with antibiotic-resistant bacilli in a neonatal intensive care unit. Pediatrics. 2002;110:707–711. doi: 10.1542/peds.110.4.707.
    1. de CC, Franchineau P, Gourgand JM, Loriette Y, Gaulme J, Sirot J. Clinical and bacteriological survey after change in aminoglycoside treatment to control an epidemic of Enterobacter cloacae. J Hosp Infect. 1994;28:219–229. doi: 10.1016/0195-6701(94)90104-X.
    1. Martinez JA, Nicolas JM, Marco F, et al. Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units. Critical Care Medicine. 2006;34:329–336. doi: 10.1097/01.CCM.0000195010.63855.45.
    1. Martinez JA, Delgado E, Marti S, et al. Influence of antipseudomonal agents on Pseudomonas aeruginosa colonization and acquisition of resistance in critically ill medical patients. Intensive Care Med. 2009;35:439–47 (III).
    1. Cadena J, Taboada CA, Burgess DS, et al. Antibiotic cycling to decrease bacterial antibiotic resistance: a 5-year experience on a bone marrow transplant unit. Bone Marrow Transpl. 2007;40:151–155. doi: 10.1038/sj.bmt.1705704.
    1. Craig M, Cumpston AD, Hobbs GR, Devetten MP, Sarwari AR, Ericson SG. The clinical impact of antibacterial prophylaxis and cycling antibiotics for febrile neutropenia in a hematological malignancy and transplantation unit. Bone Marrow Transpl. 2007;39:477–482. doi: 10.1038/sj.bmt.1705591.
    1. de Araujo OR, da Silva DC, Diegues AR, et al. Cefepime restriction improves gram-negative overall resistance patterns in neonatal intensive care unit. Braz J Infect Dis. 2007;11:277–280. doi: 10.1590/S1413-86702007000200022.
    1. Francetic I, Kalenic S, Huic M, et al. Impact of aminoglycoside cycling in six tertiary intensive care units: prospective longitudinal interventional study. Croat Med J. 2008;49:207–214. doi: 10.3325/cmj.2008.2.207.
    1. Hedrick TL, Schulman AS, McElearney ST, et al. Outbreak of resistant Pseudomonas aeruginosa infections during a quarterly cycling antibiotic regimen. Surg Infect (Larchmt) 2008;9:139–152. doi: 10.1089/sur.2006.102.
    1. Bonhoeffer S, Lipsitch M, Levin BR. Evaluating treatment protocols to prevent antibiotic resistance. Proc Natl Acad Sci USA. 1997;94:12106–12111. doi: 10.1073/pnas.94.22.12106.
    1. Bergstrom CT, Lo M, Lipsitch M. Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci USA. 2004;101:13285–13290. doi: 10.1073/pnas.0402298101.
    1. Bal AM, Kumar A, Gould IM. Antibiotic heterogeneity: from concept to practice. Ann N Y Acad Sci. 2010;1213:81–91. doi: 10.1111/j.1749-6632.2010.05867.x.
    1. Erdeljic V, Francetic I, Bosnjak Z, et al. Distributed lags time series analysis versus linear correlation analysis (Pearson’s r) in identifying the relationship between antipseudomonal antibiotic consumption and the susceptibility of Pseudomonas aeruginosa isolates in a single Intensive Care Unit of a tertiary hospital. Int J Antimicrob Agents. 2011;37:467–471. doi: 10.1016/j.ijantimicag.2010.11.030.
    1. Miliani K, L’Heriteau F, Lacave L, Carbonne A, Astagneau P. Imipenem and ciprofloxacin consumption as factors associated with high incidence rates of resistant Pseudomonas aeruginosa in hospitals in northern France. J Hosp Infect. 2011;77:343–347. doi: 10.1016/j.jhin.2010.11.024.
    1. Takesue Y, Nakajima K, Ichiki K, et al. Impact of a hospital-wide programme of heterogeneous antibiotic use on the development of antibiotic-resistant Gram-negative bacteria. J Hosp Infect. 2010;75:28–32. doi: 10.1016/j.jhin.2009.11.022.
    1. Pluss-Suard C, Pannatier A, Kronenberg A, Muhlemann K, Zanetti G. Impact of antibiotic use on carbapenem resistance in Pseudomonas aeruginosa: is there a role for antibiotic diversity? Antimicrob Agents Chemother. 2013;57:1709–1713. doi: 10.1128/AAC.01348-12.
    1. Sandiumenge A, Lisboa T, Gomez F, Hernandez P, Canadell L, Rello J. Effect of antibiotic diversity on ventilator-associated pneumonia caused by ESKAPE organisms. Chest. 2011;140:643–651. doi: 10.1378/chest.11-0462.
    1. Dancer SJ, Kirkpatrick P, Corcoran DS, Christison F, Farmer D, Robertson C. Approaching zero: temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum beta-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2013;41:137–142. doi: 10.1016/j.ijantimicag.2012.10.013.
    1. Lee J, Pai H, Kim YK, et al. Control of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children’s hospital by changing antimicrobial agent usage policy. J Antimicrob Chemother. 2007;60:629–637. doi: 10.1093/jac/dkm225.
    1. Petrikkos G, Markogiannakis A, Papaparaskevas J, et al. Differences in the changes in resistance patterns to third- and fourth-generation cephalosporins and piperacillin/tazobactam among Klebsiella pneumoniae and Escherichia coli clinical isolates following a restriction policy in a Greek tertiary care hospital. Int J Antimicrob Agents. 2007;29:34–38. doi: 10.1016/j.ijantimicag.2006.08.042.
    1. Wen Z, Wei X, Xiao Y, et al. Intervention study of the association of antibiotic utilization measures with control of extended-spectrum beta-lactamase (ESBL)-producing bacteria. Microbes Infect. 2010;12:710–715. doi: 10.1016/j.micinf.2010.04.015.
    1. Murki S, Jonnala S, Mohammed F, Reddy A. Restriction of cephalosporins and control of extended spectrum beta-lactamase producing gram negative bacteria in a neonatal intensive care unit. Indian Pediatr. 2010;47:785–788. doi: 10.1007/s13312-010-0118-y.
    1. Wilson ML, Gaido L. Laboratory diagnosis of urinary tract infections in adult patients. Clin Infect Dis. 2004;38:1150–1158. doi: 10.1086/383029.
    1. Gatermann SG, Fünfstück R, Handrick W, et al. MiQ 2 Harnwegsinfektionen. 2. Auflage. 2005. München, Urban & Fischer. Mikrobiologisch-infektiologische Qualitätsstandards (MiQ).
    1. Anevlavis S, Petroglou N, Tzavaras A, et al. A prospective study of the diagnostic utility of sputum Gram stain in pneumonia. J Infect. 2009;59:83–89. doi: 10.1016/j.jinf.2009.05.011.
    1. Barenfanger J, Drake C, Leon N, Mueller T, Troutt T. Clinical and financial benefits of rapid detection of respiratory viruses: an outcomes study. J Clin Microbiol. 2000;38:2824–2828.
    1. Podbielski A, Herrmann M, Kniehl E, Mauch H, Rüssmann H. MiQ 7 Infektionen der tiefen Atemwege—Teil I. [2. Auflage]. 2010. München, Urban & Fischer. Mikrobiologisch-infektiologische Qualitätsstandards (MiQ).
    1. Roson B, Carratala J, Verdaguer R, Dorca J, Manresa F, Gudiol F. Prospective study of the usefulness of sputum Gram stain in the initial approach to community-acquired pneumonia requiring hospitalization. Clin Infect Dis. 2000;31:869–874. doi: 10.1086/318151.
    1. Gleckman R, DeVita J, Hibert D, Pelletier C, Martin R. Sputum gram stain assessment in community-acquired bacteremic pneumonia. J Clin Microbiol. 1988;26:846–849.
    1. Tenover FC. Potential impact of rapid diagnostic tests on improving antimicrobial use. Ann N Y Acad Sci. 2010;1213:70–80. doi: 10.1111/j.1749-6632.2010.05827.x.
    1. Bauer KA, West JE, Balada-Llasat JM, Pancholi P, Stevenson KB, Goff DA. An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin Infect Dis. 2010;51:1074–1080. doi: 10.1086/656623.
    1. Kerremans JJ, Verboom P, Stijnen T, et al. Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J Antimicrob Chemother. 2008;61:428–435. doi: 10.1093/jac/dkm497.
    1. Bouza E, Torres MV, Radice C, et al. Direct E-test (AB Biodisk) of respiratory samples improves antimicrobial use in ventilator-associated pneumonia. Clin Infect Dis. 2007;44:382–387. doi: 10.1086/510587.
    1. Doern GV, Vautour R, Gaudet M, Levy B. Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J Clin Microbiol. 1994;32:1757–1762.
    1. Forrest GN, Roghmann MC, Toombs LS, et al. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother. 2008;52:3558–3563. doi: 10.1128/AAC.00283-08.
    1. Lucignano B, Ranno S, Liesenfeld O, et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J Clin Microbiol. 2011;49:2252–2258. doi: 10.1128/JCM.02460-10.
    1. Frye AM, Baker CA, Rustvold DL, et al. Clinical impact of a real-time PCR assay for rapid identification of staphylococcal bacteremia. J Clin Microbiol. 2012;50:127–133. doi: 10.1128/JCM.06169-11.
    1. Buchan BW, Riebe KM, Ledeboer NA. Comparison of the MALDI Biotyper system using Sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J Clin Microbiol. 2012;50:346–352. doi: 10.1128/JCM.05021-11.
    1. Falguera M, Ruiz-Gonzalez A, Schoenenberger JA, et al. Prospective, randomised study to compare empirical treatment versus targeted treatment on the basis of the urine antigen results in hospitalised patients with community-acquired pneumonia. Thorax. 2010;65:101–106. doi: 10.1136/thx.2009.118588.
    1. Sorde R, Falco V, Lowak M, et al. Current and potential usefulness of pneumococcal urinary antigen detection in hospitalized patients with community-acquired pneumonia to guide antimicrobial therapy. Arch Intern Med. 2011;171:166–172. doi: 10.1001/archinternmed.2010.347.
    1. Arbo MD, Snydman DR. Influence of blood culture results on antibiotic choice in the treatment of bacteremia. Arch Intern Med. 1994;154:2641–2645. doi: 10.1001/archinte.1994.00420230024004.
    1. Bouza E, Sousa D, Munoz P, Rodriguez-Creixems M, Fron C, Lechuz JG. Bloodstream infections: a trial of the impact of different methods of reporting positive blood culture results. Clin Infect Dis. 2004;39:1161–1169. doi: 10.1086/424520.
    1. Holtzman C, Whitney D, Barlam T, Miller NS. Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention. J Clin Microbiol. 2011;49:1581–1582. doi: 10.1128/JCM.02461-10.
    1. Nathwani D. Antimicrobial prescribing policy and practice in Scotland: recommendations for good antimicrobial practice in acute hospitals. J Antimicrob Chemother. 2006;57:1189–1196. doi: 10.1093/jac/dkl137.
    1. Steffee CH, Morrell RM, Wasilauskas BL. Clinical use of rifampicin during routine reporting of rifampicin susceptibilities: a lesson in selective reporting of antimicrobial susceptibility data. J Antimicrob Chemother. 1997;40:595–598. doi: 10.1093/jac/40.4.595.
    1. McNulty CA, Lasseter GM, Charlett A, et al. Does laboratory antibiotic susceptibility reporting influence primary care prescribing in urinary tract infection and other infections? J Antimicrob Chemother. 2011;66:1396–1404. doi: 10.1093/jac/dkr088.
    1. Hsu J, Abad C, Dinh M, Safdar N. Prevention of endemic healthcare-associated Clostridium difficile infection: reviewing the evidence. Am J Gastroenterol. 2010;105:2327–2339. doi: 10.1038/ajg.2010.254.
    1. Wilcox MH, Planche T. Clostridium difficile infection. BMJ. 2009;338:b2528.
    1. Debast SB, Vaessen N, Choudry A, Wiegers-Ligtvoet EA, van den Berg RJ, Kuijper EJ. Successful combat of an outbreak due to Clostridium difficile PCR ribotype 027 and recognition of specific risk factors. Clin Microbiol Infect. 2009;15:427–434. doi: 10.1111/j.1469-0691.2009.02713.x.
    1. Wilcox MH, Freeman J, Fawley W, et al. Long-term surveillance of cefotaxime and piperacillin-tazobactam prescribing and incidence of Clostridium difficile diarrhoea. J Antimicrob Chemother. 2004;54:168–172. doi: 10.1093/jac/dkh285.
    1. Brahmi N, Blel Y, Kouraichi N, et al. Impact of ceftazidime restriction on gram-negative bacterial resistance in an intensive care unit. J Infect Chemother. 2006;12:190–194. doi: 10.1007/s10156-006-0452-0.
    1. Lipworth AD, Hyle EP, Fishman NO, et al. Limiting the emergence of extended-spectrum beta-lactamase-producing enterobacteriaceae: influence of patient population characteristics on the response to antimicrobial formulary interventions. Infect Control Hosp Epidemiol. 2006;27:279–286. doi: 10.1086/503016.
    1. Tangden T, Eriksson BM, Melhus A, Svennblad B, Cars O. Radical reduction of cephalosporin use at a tertiary hospital after educational antibiotic intervention during an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2011;66:1161–1167. doi: 10.1093/jac/dkr053.
    1. Bamberger DM, Dahl SL. Impact of voluntary vs enforced compliance of 3Rd-generation cephalosporin use in a teaching hospital. Arch Intern Med. 1992;152:554–557. doi: 10.1001/archinte.1992.00400150078014.
    1. Anglim AM, Klym B, Byers KE, Scheld WM, Farr BM. Effect of a vancomycin restriction policy on ordering practices during an outbreak of vancomycin-resistant Enterococcus faecium. Arch Intern Med. 1997;157:1132–1136. doi: 10.1001/archinte.1997.00440310098010.
    1. May AK, Melton SM, McGwin G, Cross JM, Moser SA, Rue LW. Reduction of vancomycin-resistant enterococcal infections by limitation of broad-spectrum cephalosporin use in a trauma and burn intensive care unit. Shock. 2000;14:259–264. doi: 10.1097/00024382-200014030-00003.
    1. Stiefel U, Paterson DL, Pultz NJ, Gordon SM, Aron DC, Donskey CJ. Effect of the increasing use of piperacillin/tazobactam on the incidence of vancomycin-resistant enterococci in four academic medical centers. Infect Contr Hosp Epidemiol. 2004;25:380–383. doi: 10.1086/502409.
    1. de Man P, Verhoeven BAN, Verbrugh HA, Vos MC, van den Anker JN. An antibiotic policy to prevent emergence of resistant bacilli. Lancet. 2000;355:973–978. doi: 10.1016/S0140-6736(00)90015-1.
    1. Toltzis P, Yamashita T, Vilt L, et al. Antibiotic restriction does not alter endemic colonization with resistant Gram-negative rods in a pediatric intensive care unit. Crit Care Med. 1998;26:1893–1899. doi: 10.1097/00003246-199811000-00035.
    1. Rahal JJ, Urban C, Horn D, et al. Glass restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA J Am Med Assoc. 1998;280:1233–1237. doi: 10.1001/jama.280.14.1233.
    1. Arda B, Sipahi OR, Yamazhan T, et al. Short-term effect of antibiotic control policy on the usage patterns and cost of antimicrobials, mortality, nosocomial infection rates and antibacterial resistance. J Infect. 2007;55:41–48. doi: 10.1016/j.jinf.2007.02.014.
    1. Landman D, Chockalingam M, Quale JM. Reduction in the incidence of methicillin-resistant Staphylococcus aureus and ceftazidime-resistant Klebsiella pneumoniae following changes in a hospital antibiotic formulary. Clin Infect Dis. 1999;28:1062–1066. doi: 10.1086/514743.
    1. Leverstein-van Hall MA, Fluit AC, Blok HE, et al. Control of nosocomial multiresistant Enterobacteriaceae using a temporary restrictive antibiotic agent policy. Eur J Clin Microbiol Infect Dis. 2001;20:785–791. doi: 10.1007/s100960100615.
    1. Quale J, Landman D, Saurina G, Atwood E, DiTore V, Patel K. Manipulation of a hospital antimicrobial formulary to control an outbreak of vancomycin-resistant enterococci. Clin Infect Dis. 1996;23:1020–1025. doi: 10.1093/clinids/23.5.1020.
    1. Lautenbach E, Larosa LA, Marr AM, Nachamkin I, Bilker WB, Fishman NO. Changes in the prevalence of vancomycin-resistant enterococci in response to antimicrobial formulary interventions: impact of progressive restrictions on use of vancomycin and third-generation cephalosporins. Clin Infect Dis. 2003;36:440–446. doi: 10.1086/346153.
    1. Zhou JJ, Patel SJ, Jia H, et al. Clinicians’ knowledge, attitudes, and practices regarding infections with multidrug-resistant gram-negative bacilli in intensive care units. Infect Control Hosp Epidemiol. 2013;34:274–283. doi: 10.1086/669524.
    1. Pearson SA, Moxey A, Robertson J, et al. Do computerised clinical decision support systems for prescribing change practice? A systematic review of the literature (1990–2007) BMC Health Serv Res. 2009;9:154. doi: 10.1186/1472-6963-9-154.
    1. Linder JA, Schnipper JL, Tsurikova R, et al. Documentation-based clinical decision support to improve antibiotic prescribing for acute respiratory infections in primary care: a cluster randomised controlled trial. Inform Prim Care. 2009;17:231–240.
    1. Haux R, Swinkels W, Ball M, Knaup P, Lun KC. Transformation of health care through innovative use of information technology: challenges for health and medical informatics education. Int J Med Inform. 1998;50:1–6. doi: 10.1016/S1386-5056(98)00046-X.
    1. Haux R, Knaup P, Bauer AW, et al. Information processing in healthcare at the start of the third millennium: potential and limitations. Methods Inf Med. 2001;40:156–162.
    1. Haux R. Health care in the information society: what should be the role of medical informatics? Methods Inf Med. 2002;41:31–35.
    1. Haux R, Ammenwerth E, Herzog W, Knaup P. Health care in the information society. A prognosis for the year 2013. Int J Med Inform. 2002;66:3–21. doi: 10.1016/S1386-5056(02)00030-8.
    1. Haux R. Health information systems—past, present, future. Int J Med Inform. 2006;75:268–281. doi: 10.1016/j.ijmedinf.2005.08.002.
    1. Cunningham TR, Geller ES, Clarke SW. Impact of electronic prescribing in a hospital setting: a process-focused evaluation. Int J Med Inform. 2008;77:546–554. doi: 10.1016/j.ijmedinf.2007.10.008.
    1. Sturzlinger H, Hiebinger C, Pertl D, Traurig P. Computerized physician order entry—effectiveness and efficiency of electronic medication ordering with decision support systems. GMS Health Technol Assess. 2009;5:Doc07.
    1. Di Pentima MC, Chan S, Eppes SC, Klein JD. Antimicrobial prescription errors in hospitalized children: role of antimicrobial stewardship program in detection and intervention. Clin Pediatr (Phila) 2009;48:505–512. doi: 10.1177/0009922808330774.
    1. Kazemi A, Ellenius J, Pourasghar F, et al. The effect of computerized physician order entry and decision support system on medication errors in the neonatal ward: experiences from an Iranian teaching hospital. J Med Syst. 2011;35:25–37. doi: 10.1007/s10916-009-9338-x.
    1. Cox ZL, Nelsen CL, Waitman LR, McCoy JA, Peterson JF. Effects of clinical decision support on initial dosing and monitoring of tobramycin and amikacin. Am J Health Syst Pharm. 2011;68:624–632. doi: 10.2146/ajhp100155.
    1. Traugott KA, Maxwell PR, Green K, Frei C, Lewis JS. Effects of therapeutic drug monitoring criteria in a computerized prescriber-order-entry system on the appropriateness of vancomycin level orders. Am J Health Syst Pharm. 2011;68:347–352. doi: 10.2146/ajhp090661.
    1. Kim JY, Sohn JW, Park DW, Yoon YK, Kim YM, Kim MJ. Control of extended-spectrum {beta}-lactamase-producing Klebsiella pneumoniae using a computer-assisted management program to restrict third-generation cephalosporin use. J Antimicrob Chemother. 2008;62:416–421. doi: 10.1093/jac/dkn164.
    1. Yong MK, Buising KL, Cheng AC, Thursky KA. Improved susceptibility of Gram-negative bacteria in an intensive care unit following implementation of a computerized antibiotic decision support system. J Antimicrob Chemother. 2010;65:1062–1069. doi: 10.1093/jac/dkq058.
    1. Garg AX, Adhikari NK, McDonald H, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293:1223–1238. doi: 10.1001/jama.293.10.1223.
    1. McKinley BA, Moore LJ, Sucher JF, et al. Computer protocol facilitates evidence-based care of sepsis in the surgical intensive care unit. J Trauma. 2011;70:1153–1166. doi: 10.1097/TA.0b013e31821598e9.
    1. Thursky K. Use of computerized decision support systems to improve antibiotic prescribing. Expert Rev Anti Infect Ther. 2006;4:491–507. doi: 10.1586/14787210.4.3.491.
    1. Sintchenko V, Coiera E, Gilbert GL. Decision support systems for antibiotic prescribing. Curr Opin Infect Dis. 2008;21:573–579. doi: 10.1097/QCO.0b013e3283118932.
    1. Di Pentima MC, Chan S. Impact of antimicrobial stewardship program on vancomycin use in a pediatric teaching hospital. Pediatr Infect Dis J. 2010;29:707–711. doi: 10.1097/INF.0b013e3181d683f8.
    1. Lesprit P, Duong T, Girou E, Hemery F, Brun-Buisson C. Impact of a computer-generated alert system prompting review of antibiotic use in hospitals. J Antimicrob Chemother. 2009;63:1058–1063. doi: 10.1093/jac/dkp062.
    1. Hulgan T, Rosenbloom ST, Hargrove F, et al. Oral quinolones in hospitalized patients: an evaluation of a computerized decision support intervention. J Intern Med. 2004;256:349–357. doi: 10.1111/j.1365-2796.2004.01375.x.
    1. McGregor JC, Weekes E, Forrest GN, et al. Impact of a computerized clinical decision support system on reducing inappropriate antimicrobial use: a randomized controlled trial. J Am Med Inform Assoc. 2006;13:378–384. doi: 10.1197/jamia.M2049.
    1. Shojania KG, Yokoe D, Platt R, Fiskio J, Ma’luf N, Bates DW. Reducing vancomycin use utilizing a computer guideline: results of a randomized controlled trial. J Am Med Inform Assoc. 1998;5:554–562. doi: 10.1136/jamia.1998.0050554.
    1. Rubinstein E, Barzilai A, Segev S, et al. Antibiotic cost reduction by providing cost information. Eur J Clin Pharmacol. 1988;35:269–272. doi: 10.1007/BF00558264.
    1. Parrino TA. The nonvalue of retrospective peer comparison feedback in containing hospital antibiotic costs. Am J Med. 1989;86:442–448. doi: 10.1016/0002-9343(89)90343-4.
    1. O’Reilly M, Talsma A, VanRiper S, Kheterpal S, Burney R. An anesthesia information system designed to provide physician-specific feedback improves timely administration of prophylactic antibiotics. Anesth Analg. 2006;103:908–912. doi: 10.1213/01.ane.0000237272.77090.a2.
    1. Nair BG, Newman SF, Peterson GN, Wu WY, Schwid HA. Feedback mechanisms including real-time electronic alerts to achieve near 100% timely prophylactic antibiotic administration in surgical cases. Anesth Analg. 2010;111:1293–1300. doi: 10.1213/ANE.0b013e3181f46d89.
    1. Zanetti G, Flanagan HL, Jr, Cohn LH, Giardina R, Platt R. Improvement of intraoperative antibiotic prophylaxis in prolonged cardiac surgery by automated alerts in the operating room. Infect Control Hosp Epidemiol. 2003;24:13–16. doi: 10.1086/502109.
    1. Burke JP, Classen DC, Pestotnik SL, Evans RS, Stevens LE. The HELP system and its application to infection control. J Hosp Infect. 1991;18:424–431. doi: 10.1016/0195-6701(91)90052-A.
    1. Burke JP. Surveillance, reporting, automation, and interventional epidemiology. Infect Control Hosp Epidemiol. 2003;24:10–12. doi: 10.1086/502108.
    1. Evans RS, Larsen RA, Burke JP, et al. Computer surveillance of hospital-acquired infections and antibiotic use. JAMA J Am Med Assoc. 1986;256:1007–1011. doi: 10.1001/jama.1986.03380080053027.
    1. Evans RS, Pestotnik SL, Classen DC, et al. A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med. 1998;338:232–238. doi: 10.1056/NEJM199801223380406.
    1. Evans RS, Pestotnik SL, Classen DC, Burke JP. Evaluation of a computer-assisted antibiotic-dose monitor. Ann Pharmacother. 1999;33:1026–1031. doi: 10.1345/aph.18391.
    1. Pestotnik SL, Classen DC, Evans RS, Burke JP. Implementing antibiotic practice guidelines through computer-assisted decision support: clinical and financial outcomes. Ann Intern Med. 1996;124:884. doi: 10.7326/0003-4819-124-10-199605150-00004.
    1. Mullett CJ, Evans RS, Christenson JC, Dean JM. Development and impact of a computerized pediatric antiinfective decision support program. Pediatrics. 2001;108:art-e75. doi: 10.1542/peds.108.4.e75.
    1. Mullett CJ, Thomas JG, Smith CL, Sarwari AR, Khakoo RA. Computerized antimicrobial decision support: an offline evaluation of a database-driven empiric antimicrobial guidance program in hospitalized patients with a bloodstream infection. Int J Med Inform. 2004;73:455–460. doi: 10.1016/j.ijmedinf.2004.04.002.
    1. Buising KL, Thursky KA, Robertson MB, et al. Electronic antibiotic stewardship—reduced consumption of broad-spectrum antibiotics using a computerized antimicrobial approval system in a hospital setting. J Antimicrob Chemother. 2008;62:608–616. doi: 10.1093/jac/dkn218.
    1. Paul M, Andreassen S, Tacconelli E, et al. Improving empirical antibiotic treatment using TREAT, a computerized decision support system: cluster randomized trial. J Antimicrob Chemother. 2006;58:1238–1245. doi: 10.1093/jac/dkl372.
    1. Thern J, de With K, Strauss R, Steib-Bauert M, Weber N, Kern WV. Selection of hospital antimicrobial prescribing quality indicators: a consensus among German antibiotic stewardship (ABS) networkers. Infection. 2014;42:351–62 (III).

Source: PubMed

3
Sottoscrivi