Immune modulation of the brain-gut-microbe axis

Sahar El Aidy, Timothy G Dinan, John F Cryan, Sahar El Aidy, Timothy G Dinan, John F Cryan

No abstract available

Keywords: HPA; gut microbiota; immune cells; nervous system; neuropeptides.

References

    1. Borovikova L. V., Ivanova S., Zhang M., Yang H., Botchkina G. I., Watkins L. R., et al. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 10.1038/35013070
    1. Campos-Rodríguez R., Godínez-Victoria M., Abarca-Rojano E., Pacheco-Yépez J., Reyna-Garfias H., Barbosa-Cabrera R. E., et al. (2013). Stress modulates intestinal secretory immunoglobulin A. Front. Integr. Neurosci. 7:86 10.3389/fnint.2013.00086
    1. Capuron L., Miller A. H. (2004). Cytokines and psychopathology: lessons from interferon-alpha. Biol. Psychiatry 56, 819–824 10.1016/j.biopsych.2004.02.009
    1. Capuron L., Ravaud A., Miller A. H., Dantzer R. (2004). Baseline mood and psychosocial characteristics of patients developing depressive sy.mptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav. Immun. 18, 205–213 10.1016/j.bbi.2003.11.004
    1. Carvalho F. A., Aitken J. D., Vijay-Kumar M., Gewirtz A. T. (2012). Toll-like receptor-gut microbiota interactions: perturb at your own risk! Annu. Rev. Physiol. 74, 177–198 10.1146/annurev-physiol-020911-153330
    1. Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R. D., Shanahan F., et al. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 10.1038/mp.2012.77
    1. Clarke G., Quigley E. M., Cryan J. F., Dinan T. G. (2009). Irritable bowel syndrome: towards biomarker identification. Trends Mol. Med. 15, 478–489 10.1016/j.molmed.2009.08.001
    1. Collins S. M., Bercik P. (2013). Gut microbiota: intestinal bacteria influence brain activity in healthy humans. Nat. Rev. Gastroenterol. Hepatol. 10, 326–327 10.1038/nrgastro.2013.76
    1. Costello E. K., Stagaman K., Dethlefsen L., Bohannanm B. J., Relman D. A. (2012). The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 10.1126/science.1224203
    1. Desbonnet L., Clarke G., Shanahan F., Dinan T. G., Cryan J. F. (2014). Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 10.1038/mp.2013.65
    1. Diaz-Heijtz R., Wang S., Anuar F., Qian Y., Björkholm B., Samuelsson A., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108, 3047–3052 10.1073/pnas.1010529108
    1. Dinan T. G., Cryan J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37, 1369–1378 10.1016/j.psyneuen.2012.03.007
    1. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U.S.A. 107, 11971–11975 10.1073/pnas.1002601107
    1. El Aidy S., Derrien M., Aardema R., Hooiveld G., Richards S. E., Dane A., et al. (2013b). Transient inflammatory-like state and microbial dysbiosis are pivotal in establishment of mucosal homeostasis during colonisation of germ-free mice. Benef. Microbes 5, 67–77 10.3920/BM2013.0018
    1. El Aidy S., Kleerebezem M. (2013a). Molecular signatures for the dynamic process of establishing intestinal host-microbial homeostasis: potential for disease diagnostics? Curr. Opin. Gastroenterol. 29, 621–627 10.1097/MOG.0b013e328365d365
    1. El Aidy S., Kunze W., Bienenstock J., Kleerebezem M. (2012b). The microbiota and the gut-brain axis: insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine. Benef. Microbes. 3, 251–259 10.3920/BM2012.0042
    1. El Aidy S., Merrifield C. A., Derrien M., van Baarlen P., Hooiveld G., Levenez F., et al. (2013c). The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut 62, 1306–1314 10.1136/gutjnl-2011-301955
    1. El Aidy S., van Baarlen P., Derrien M., Lindenbergh-Kortleve D. J., Hooiveld G., Levenez F., et al. (2012a). Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 5, 567–579 10.1038/mi.2012.32
    1. Felger J. C., Li L., Marvar P. J., Woolwine B. J., Harrison D. G., Raison C. L., et al. (2013). Tyrosine metabolism during interferon-alpha administration: association with fatigue and CSF dopamine concentrations. Brain Behav. Immun. 31, 153–160 10.1016/j.bbi.2012.10.010
    1. Gevers D., Kugathasan S., Lee D. A., Va'zquez-Baeza Y., Van Treuren W., Ren B., et al. (2014). The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 10.1016/j.chom.2014.02.005
    1. Harbour-McMenamin D., Smith E. M., Blalock J. E. (1985). Bacterial lipopolysaccharide induction of leukocyte-derived corticotropin and endorphins. Infect. Immun. 48, 813–817
    1. Hollis J. H., Evans A. K., Bruce K. P., Lightman S. L., Lowry C. A. (2006). Lipopolysaccharide has indomethacin-sensitive actions on Fos expression in topographically organized subpopulations of serotonergic neurons. Brain Behav. Immun. 20, 569–577 10.1016/j.bbi.2006.01.006
    1. Hooper L. V., Littman D. R., Macpherson A. J. (2012). Interactions between the microbiota and the immune system. Science 336, 1268–1273 10.1126/science.1223490
    1. Lemon K. P., Armitage G. C., Relman D. A., Fischbach M. A. (2012). Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv5 10.1126/scitranslmed.3004183
    1. Lowry C.A., Hollis J. H., de Vries A., Pan B., Brunet L. R., Hunt J. R., et al. (2007). Identification of an immune-responsive mesolimbocortical serotonergic system: potential role in regulation of emotional behavior. Neuroscience 146, 756–772 10.1016/j.neuroscience.2007.01.067
    1. Lyte M. (2011). Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33, 574–581 10.1002/bies.201100024
    1. Maestroni G. J. (2000). Dendritic cell migration controlled by alpha 1b-adrenergic receptors. J. Immunol. 165, 6743–6747
    1. Magro F., Vieira-Coelho M. A., Fraga S., Serrão M. P., Veloso F. T., Ribeiro T., et al. (2002). Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig. Dis. Sci. 47, 216–224 10.1023/A:1013256629600
    1. Maier S. F., Goehler L. E., Fleshner M., Watkins L. R. (1998). The role of the vagus nerve in cytokine-to-brain communication. Ann. N.Y. Acad. Sci. 840, 289–300 10.1111/j.1749-6632.1998.tb09569.x
    1. Miller L. E., Weidler C., Falk W., Angele P., Schaumburger J., Schölmerich J., et al. (2004). Increased prevalence of semaphorin 3C, a repellent of sympathetic nerve fibers, in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 50, 1156–1163 10.1002/art.20110
    1. Moffett J. R., Namboodiri M. A. (2003). Tryptophan and the immune response. Immunol. Cell Biol. 81, 247–265 10.1046/j.1440-1711.2003.t01-1-01177.x
    1. Moloney R. D., Desbonnet L., Clarke G., Dinan T. G., Cryan J. F. (2014). The microbiome: stress, health and disease. Mamm. Genome 25, 49–74 10.1007/s00335-013-9488-5
    1. Neufeld K. M., Kang N., Bienenstock J., Foster J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255–264, e119. 10.1111/j.1365-2982.2010.01620.x
    1. Pert C. B., Ruff M. R., Weber R. J., Herkenham M. (1985). Neuropeptides and their receptors: a psychosomatic network. J. Immunol. 135, 820s–826s
    1. Raison C. L., Rutherford R. E., Woolwine B. J., Shuo C., Schettler P., Drake D. F., et al. (2013). A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70, 31–41 10.1001/2013.jamapsychiatry.4
    1. Reardon C., Duncan G. S., Brüstle A., Brenner D., Tusche M. W., Olofsson P. S., et al. (2013). Lymphocyte-derived ACh regulates local innate but not adaptive immunity. Proc. Natl. Acad. Sci. U.S.A. 110, 1410–1415 10.1073/pnas.1221655110
    1. Roshchina V. V. (2010). Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells, in Microbial Endocrinology: Interkingdom Signaling in Infectious Diseases and Health, eds Lyte M., Freestone P. P. E. (New York, NY: Springer; ), 17–52 10.1007/978-1-4419-5576-0_2
    1. Rühl A., Collins S. M. (1997). Role of nitric oxide in norepinephrine release from myenteric plexus in vitro and in Trichinella spiralis-infected rats. Neurogastroenterol. Motil. 9, 33–39 10.1046/j.1365-2982.1997.d01-5.x
    1. Rühl A., Hurst S., Collins S. M. (1994). Synergism between interleukins 1 beta and 6 on noradrenergic nerves in rat myenteric plexus. Gastroenterology 107, 993–1001
    1. Shreiner A., Huffnagle G. B., Noverr M. C. (2008). The “microflora hypothesis” of allergic disease, in GI Microbiota and Regulation of the Immune System, eds Huffnagle G. B., Noverr M. C. (Landes Bioscience and Springer Science + Business Media; ), 113–34 10.1007/978-0-387-09550-9_10
    1. Spengler R. N., Allen R. M., Remick D. G., Strieter R. M., Kunkel S. L. (1990). Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J. Immunol. 145, 1430–1434
    1. Steinman L. (2004). Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5, 575–581 10.1038/ni1078
    1. Sternberg E. M. (1997). Neural-immune interactions in health and disease. J. Clin. Invest. 100, 2641–2647 10.1172/JCI119807
    1. Straub R. H., Günzler C., Miller L. E., Cutolo M., Schölmerich J., Schill S. (2002). Anti-inflammatory cooperativity of corticosteroids and norepinephrine in rheumatoid arthritis synovial tissue in vivo and in vitro. FASEB J. 16, 993–1000 10.1096/fj.02-0085com
    1. Straub R. H., Wiest R., Strauch U. G., Härle P., Schölmerich J. (2006). The role of the sympathetic nervous system in intestinal inflammation. Gut 55, 1640–1649 10.1136/gut.2006.091322
    1. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X. N., et al. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275 10.1113/jphysiol.2004.063388
    1. Wang Y., Kasper L. H. (2013). The role of microbiome in central nervous system disorders. Brain. Behav. Immun. [Epub ahead of print]. 10.1016/j.bbi.2013.12.015

Source: PubMed

3
Sottoscrivi