Radiolabeled PSMA Inhibitors

Oliver C Neels, Klaus Kopka, Christos Liolios, Ali Afshar-Oromieh, Oliver C Neels, Klaus Kopka, Christos Liolios, Ali Afshar-Oromieh

Abstract

PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.

Keywords: PET; PSMA; PSMA inhibitor; SPECT; endoradiotherapy; fluorescence; fluorescence-guided surgery; prostate-specific membrane antigen; radioguided surgery; radiolabeling; radionuclides; targeted photodynamic therapy; theranostics.

Conflict of interest statement

K.K. is coinventor of PSMA-617, PSMA-914 and PSMA-1007 and derivatives thereof. Moreover, K.K. is member of the scientific advisory board of Telix Pharmaceuticals Ltd. All other authors declare that they have no conflict of interest.

References

    1. Hofman M.S. Prostate-Specific Membrane Antigen: The Target of the Decade, from Biochemical Recurrence to Widespread Adoption. J. Nucl Med. 2020;61:246S–247S. doi: 10.2967/jnumed.120.252213.
    1. Czernin J., Calais J. (177)Lu-PSMA617 and the VISION Trial: One of the Greatest Success Stories in the History of Nuclear Medicine. J. Nucl Med. 2021;62:1025–1026. doi: 10.2967/jnumed.121.262710.
    1. Murphy D.G., Sathianathen N., Hofman M.S., Azad A., Lawrentschuk N. Where to Next for Theranostics in Prostate Cancer? Eur. Urol. Oncol. 2019;2:163–165. doi: 10.1016/j.euo.2019.03.004.
    1. Herrmann K., Schwaiger M., Lewis J.S., Solomon S.B., McNeil B.J., Baumann M., Gambhir S.S., Hricak H., Weissleder R. Radiotheranostics: A roadmap for future development. Lancet Oncol. 2020;21:e146–e156. doi: 10.1016/S1470-2045(19)30821-6.
    1. Hofman M.S. Bringing VISION to Nuclear Medicine: Accelerating evidence and changing paradigms with theranostics. J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.262890.
    1. Fendler W.P., Eiber M., Beheshti M., Bomanji J., Ceci F., Cho S., Giesel F., Haberkorn U., Hope T.A., Kopka K., et al. (68)Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1014–1024. doi: 10.1007/s00259-017-3670-z.
    1. Fanti S., Minozzi S., Antoch G., Banks I., Briganti A., Carrio I., Chiti A., Clarke N., Eiber M., De Bono J., et al. Consensus on molecular imaging and theranostics in prostate cancer. Lancet Oncol. 2018;19:696–708. doi: 10.1016/S1470-2045(18)30604-1.
    1. Kratochwil C., Fendler W.P., Eiber M., Baum R., Bozkurt M.F., Czernin J., Delgado Bolton R.C., Ezziddin S., Forrer F., Hicks R.J., et al. EANM procedure guidelines for radionuclide therapy with (177)Lu-labelled PSMA-ligands ((177)Lu-PSMA-RLT) Eur. J. Nucl. Med. Mol. Imaging. 2019;46:2536–2544. doi: 10.1007/s00259-019-04485-3.
    1. Afshar-Oromieh A., Eiber M., Fendler W., Schmidt M., Rahbar K., Ahmadzadehfar H., Umutlu L., Hadaschik B., Hakenberg O.W., Fornara P., et al. PSMA-Liganden-PET/CT in der Diagnostik des Prostatakarzinoms. 2019. [(accessed on 26 October 2021)]. Available online: .
    1. Vorster M., Warwick J., Lawal I.O., Du Toit P., Vangu M., Nyakale N.E., Steyn R., Gutta A.A., Hart G., Mutambirwa S., et al. South African guidelines for receptor radioligand therapy (RLT) with Lu-177-PSMA in prostate cancer. S. Afr. J. Surg. 2019;57:45–51. doi: 10.17159/2078-5151/2019/v57n4a3107.
    1. Uçmak G., Ak Sivrikoz İ., Alan Selçuk N., Demirci E., Elboğa U., Türkmen C., Kabasakal L. Procedur Guideline for Prostate Cancer Imaging: Ga68 PSMA PET/CT. Nucl. Med. Semin. 2020;6:370–384. doi: 10.4274/nts.galenos.2020.0030.
    1. Ak Sivrikoz İ., Uçmak G., Kaya Çapa G., Demirci E., Alan Selçuk N., Türkmen C., Elboğa U., Kabasakal L. Procedure Guidelines for Lu-177 PSMA Radyoligand Treatment. Nucl. Med. Semin. 2020;6:385–396. doi: 10.4274/nts.galenos.2020.0031.
    1. Fanti S., Goffin K., Hadaschik B.A., Herrmann K., Maurer T., MacLennan S., Oprea-Lager D.E., Oyen W.J., Rouviere O., Mottet N., et al. Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:469–476. doi: 10.1007/s00259-020-04934-4.
    1. Mottet N., van den Bergh R.C.N., Briers E., Van den Broeck T., Cumberbatch M.G., De Santis M., Fanti S., Fossati N., Gandaglia G., Gillessen S., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021;79:243–262. doi: 10.1016/j.eururo.2020.09.042.
    1. Cornford P., van den Bergh R.C.N., Briers E., Van den Broeck T., Cumberbatch M.G., De Santis M., Fanti S., Fossati N., Gandaglia G., Gillessen S., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2021;79:263–282. doi: 10.1016/j.eururo.2020.09.046.
    1. Ceci F., Oprea-Lager D.E., Emmett L., Adam J.A., Bomanji J., Czernin J., Eiber M., Haberkorn U., Hofman M.S., Hope T.A., et al. E-PSMA: The EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:1626–1638. doi: 10.1007/s00259-021-05245-y.
    1. Shaygan B., Zukotynski K., Benard F., Menard C., Kuk J., Sistani G., Bauman G., Veit-Haibach P., Metser U. Canadian Urological Association best practice report: Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) and PET/magnetic resonance (MR) in prostate cancer. Can. Urol Assoc. J. 2021;15:162–172. doi: 10.5489/cuaj.7268.
    1. Beyersdorff D., Rahbar K., Essler M., Ganswindt U., Grosu A.L., Gschwend J.E., Miller K., Scheidhauer K., Schlemmer H.P., Wolff J.M., et al. Interdisciplinary expert consensus on innovations in imaging diagnostics and radionuclide-based therapies for advanced prostate cancer. Urol. A. 2021;60:1579–1585. doi: 10.1007/s00120-021-01598-2.
    1. Jadvar H., Calais J., Fanti S., Feng F., Greene K.L., Gulley J.L., Hofman M., Koontz B.F., Lin D.W., Morris M.J., et al. Appropriate Use Criteria for Prostate-Specific Membrane Antigen PET Imaging. J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.263262.
    1. Eder M., Schafer M., Bauder-Wust U., Hull W.E., Wangler C., Mier W., Haberkorn U., Eisenhut M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–697. doi: 10.1021/bc200279b.
    1. Afshar-Oromieh A., da Cunha M.L., Wagner J., Haberkorn U., Debus N., Weber W., Eiber M., Holland-Letz T., Rauscher I. Performance of [(68)Ga]Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer after prostatectomy-a multi-centre evaluation of 2533 patients. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:2925–2934. doi: 10.1007/s00259-021-05189-3.
    1. Abghari-Gerst M., Armstrong W.R., Nguyen K., Calais J., Czernin J., Lin D., Jariwala N., Rodnick M., Hope T.A., Hearn J., et al. A comprehensive assessment of (68)Ga-PSMA-11 PET in biochemically recurrent prostate cancer: Results from a prospective multi-center study in 2005 patients. J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.262412.
    1. Ferdinandus J., Fendler W.P., Farolfi A., Washington S., Mohamad O., Pampaloni M.H., Scott P.J., Rodnick M., Viglianti B.L., Eiber M., et al. PSMA PET validates higher rates of metastatic disease for European Association of Urology Biochemical Recurrence Risk Groups: An international multicenter study. J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.262821.
    1. Chen Y., Pullambhatla M., Foss C.A., Byun Y., Nimmagadda S., Senthamizhchelvan S., Sgouros G., Mease R.C., Pomper M.G. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pen tanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res. 2011;17:7645–7653. doi: 10.1158/1078-0432.CCR-11-1357.
    1. Morris M.J., Rowe S.P., Gorin M.A., Saperstein L., Pouliot F., Josephson D., Wong J.Y.C., Pantel A.R., Cho S.Y., Gage K.L., et al. Diagnostic Performance of (18)F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin. Cancer Res. 2021;27:3674–3682. doi: 10.1158/1078-0432.CCR-20-4573.
    1. Pienta K.J., Gorin M.A., Rowe S.P., Carroll P.R., Pouliot F., Probst S., Saperstein L., Preston M.A., Alva A.S., Patnaik A., et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY) J. Urol. 2021;206:52–61. doi: 10.1097/JU.0000000000001698.
    1. Bodar Y.J.L., Zwezerijnen B., van der Voorn P.J., Jansen B.H.E., Smit R.S., Kol S.Q., Meijer D., de Bie K., Yaqub M., Windhorst B.A.D., et al. Prospective analysis of clinically significant prostate cancer detection with [(18)F]DCFPyL PET/MRI compared to multiparametric MRI: A comparison with the histopathology in the radical prostatectomy specimen, the ProStaPET study. Eur. J. Nucl. Med. Mol. Imaging. 2021 doi: 10.1007/s00259-021-05604-9.
    1. FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer. [(accessed on 26 October 2021)];2020 Available online: .
    1. Carlucci G., Ippisch R., Slavik R., Mishoe A., Blecha J., Zhu S. (68)Ga-PSMA-11 NDA Approval: A Novel and Successful Academic Partnership. J. Nucl Med. 2021;62:149–155. doi: 10.2967/jnumed.120.260455.
    1. Sartor O., Hope T.A., Calais J., Fendler W.P. Oliver Sartor Talks with Thomas, A. Hope, Jeremie Calais, and Wolfgang, P. Fendler About FDA Approval of PSMA. J. Nucl. Med. 2021;62:146–148. doi: 10.2967/jnumed.120.261834.
    1. Masters S.C., Hofling A.A., Gorovets A., Marzella L. FDA Approves Ga 68 PSMA-11 for Prostate Cancer Imaging. Int. J. Radiat. Oncol. Biol. Phys. 2021;111:27–28. doi: 10.1016/j.ijrobp.2021.03.055.
    1. Hennrich U., Eder M. [(68)Ga]Ga-PSMA-11: The First FDA-Approved (68)Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer. Pharmaceuticals. 2021;14:713. doi: 10.3390/ph14080713.
    1. FDA Approves Second PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer. [(accessed on 26 October 2021)];2021 Available online: .
    1. Song H., Iagaru A., Rowe S.P. (18)F DCFPyL PET Acquisition, Interpretation and Reporting: Suggestions Post Food and Drug Administration Approval. J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.262989.
    1. Cardinale J., Schafer M., Benesova M., Bauder-Wust U., Leotta K., Eder M., Neels O.C., Haberkorn U., Giesel F.L., Kopka K. Preclinical Evaluation of (18)F-PSMA-1007, a New Prostate-Specific Membrane Antigen Ligand for Prostate Cancer Imaging. J. Nucl. Med. 2017;58:425–431. doi: 10.2967/jnumed.116.181768.
    1. Giesel F.L., Knorr K., Spohn F., Will L., Maurer T., Flechsig P., Neels O., Schiller K., Amaral H., Weber W.A., et al. Detection Efficacy of (18)F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J. Nucl. Med. 2019;60:362–368. doi: 10.2967/jnumed.118.212233.
    1. Sprute K., Kramer V., Koerber S.A., Meneses M., Fernandez R., Soza-Ried C., Eiber M., Weber W.A., Rauscher I., Rahbar K., et al. Diagnostic Accuracy of (18)F-PSMA-1007 PET/CT Imaging for Lymph Node Staging of Prostate Carcinoma in Primary and Biochemical Recurrence. J. Nucl. Med. 2021;62:208–213. doi: 10.2967/jnumed.120.246363.
    1. Malaspina S., Anttinen M., Taimen P., Jambor I., Sandell M., Rinta-Kiikka I., Kajander S., Schildt J., Saukko E., Noponen T., et al. Prospective comparison of (18)F-PSMA-1007 PET/CT, whole-body MRI and CT in primary nodal staging of unfavourable intermediate- and high-risk prostate cancer. Eur J. Nucl. Med. Mol. Imaging. 2021;48:2951–2959. doi: 10.1007/s00259-021-05296-1.
    1. Vallabhajosula S., Nikolopoulou A., Babich J.W., Osborne J.R., Tagawa S.T., Lipai I., Solnes L., Maresca K.P., Armor T., Joyal J.L., et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: Pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J. Nucl. Med. 2014;55:1791–1798. doi: 10.2967/jnumed.114.140426.
    1. Goffin K.E., Joniau S., Tenke P., Slawin K., Klein E.A., Stambler N., Strack T., Babich J., Armor T., Wong V. Phase 2 Study of (99m)Tc-Trofolastat SPECT/CT to Identify and Localize Prostate Cancer in Intermediate- and High-Risk Patients Undergoing Radical Prostatectomy and Extended Pelvic LN Dissection. J. Nucl. Med. 2017;58:1408–1413. doi: 10.2967/jnumed.116.187807.
    1. Schmidkonz C., Hollweg C., Beck M., Reinfelder J., Goetz T.I., Sanders J.C., Schmidt D., Prante O., Bauerle T., Cavallaro A., et al. (99m) Tc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate. 2018;78:54–63. doi: 10.1002/pros.23444.
    1. Schmidkonz C., Cordes M., Beck M., Goetz T.I., Schmidt D., Prante O., Bauerle T., Uder M., Wullich B., Goebell P., et al. SPECT/CT With the PSMA Ligand 99mTc-MIP-1404 for Whole-Body Primary Staging of Patients With Prostate Cancer. Clin. Nucl. Med. 2018;43:225–231. doi: 10.1097/RLU.0000000000001991.
    1. EDQM . European Pharmacopoeia. 10th ed. Council of Europe; Strasbourg, France: 2021.
    1. Alberts I.L., Seide S.E., Mingels C., Bohn K.P., Shi K., Zacho H.D., Rominger A., Afshar-Oromieh A. Comparing the diagnostic performance of radiotracers in recurrent prostate cancer: A systematic review and network meta-analysis. Eur J. Nucl. Med. Mol. Imaging. 2021;48:2978–2989. doi: 10.1007/s00259-021-05210-9.
    1. Weineisen M., Schottelius M., Simecek J., Baum R.P., Yildiz A., Beykan S., Kulkarni H.R., Lassmann M., Klette I., Eiber M., et al. 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J. Nucl. Med. 2015;56:1169–1176. doi: 10.2967/jnumed.115.158550.
    1. Heck M.M., Tauber R., Schwaiger S., Retz M., D’Alessandria C., Maurer T., Gafita A., Wester H.J., Gschwend J.E., Weber W.A., et al. Treatment Outcome, Toxicity, and Predictive Factors for Radioligand Therapy with (177)Lu-PSMA-I&T in Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2019;75:920–926. doi: 10.1016/j.eururo.2018.11.016.
    1. Prive B.M., Janssen M.J.R., van Oort I.M., Muselaers C.H.J., Jonker M.A., de Groot M., Mehra N., Verzijlbergen J.F., Scheenen T.W.J., Zamecnik P., et al. Lutetium-177-PSMA-I&T as metastases directed therapy in oligometastatic hormone sensitive prostate cancer, a randomized controlled trial. BMC Cancer. 2020;20:884. doi: 10.1186/s12885-020-07386-z.
    1. Zacherl M.J., Gildehaus F.J., Mittlmeier L., Boning G., Gosewisch A., Wenter V., Unterrainer M., Schmidt-Hegemann N., Belka C., Kretschmer A., et al. First Clinical Results for PSMA-Targeted alpha-Therapy Using (225)Ac-PSMA-I&T in Advanced-mCRPC Patients. J. Nucl. Med. 2021;62:669–674. doi: 10.2967/jnumed.120.251017.
    1. Benesova M., Schafer M., Bauder-Wust U., Afshar-Oromieh A., Kratochwil C., Mier W., Haberkorn U., Kopka K., Eder M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015;56:914–920. doi: 10.2967/jnumed.114.147413.
    1. Rahbar K., Ahmadzadehfar H., Kratochwil C., Haberkorn U., Schafers M., Essler M., Baum R.P., Kulkarni H.R., Schmidt M., Drzezga A., et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J. Nucl. Med. 2017;58:85–90. doi: 10.2967/jnumed.116.183194.
    1. Kratochwil C., Bruchertseifer F., Rathke H., Hohenfellner M., Giesel F.L., Haberkorn U., Morgenstern A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J. Nucl. Med. 2018;59:795–802. doi: 10.2967/jnumed.117.203539.
    1. Khreish F., Ghazal Z., Marlowe R.J., Rosar F., Sabet A., Maus S., Linxweiler J., Bartholoma M., Ezziddin S. 177 Lu-PSMA-617 radioligand therapy of metastatic castration-resistant prostate cancer: Initial 254-patient results from a prospective registry (REALITY Study) Eur J. Nucl. Med. Mol. Imaging. 2021 doi: 10.1007/s00259-021-05525-7.
    1. Morris M.J., De Bono J.S., Chi K.N., Fizazi K., Herrmann K., Rahbar K., Tagawa S.T., Nordquist L.T., Vaishampayan N., El-Haddad G., et al. Phase III study of lutetium-177-PSMA-617 in patients with metastatic castration-resistant prostate cancer (VISION) J. Clin. Oncol. 2021;39:LBA4. doi: 10.1200/JCO.2021.39.15_suppl.LBA4.
    1. Dolgin E. Drugmakers go nuclear, continuing push into radiopharmaceuticals. Nat. Biotechnol. 2021;39:647–649. doi: 10.1038/s41587-021-00954-z.
    1. Sartor O., de Bono J., Chi K.N., Fizazi K., Herrmann K., Rahbar K., Tagawa S.T., Nordquist L.T., Vaishampayan N., El-Haddad G., et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021;385:1091–1103. doi: 10.1056/NEJMoa2107322.
    1. Zippel C., Giesel F.L., Kratochwil C., Eiber M., Rahbar K., Albers P., Maurer T., Krause B.J., Bohnet-Joschko S. PSMA radioligand therapy could pose infrastructural challenges for nuclear medicine: Results of a basic calculation for the capacity planning of nuclear medicine beds in the German hospital sector. Nuklearmedizin. 2021;60:216–223. doi: 10.1055/a-1351-0030.
    1. Viljoen B., Hofman M.S., Chambers S.K., Dunn J., Dhillon H., Davis I.D., Ralph N. Advanced prostate cancer experimental radioactive treatment-clinical trial decision making: Patient experiences. BMJ Support. Palliat Care. 2021 doi: 10.1136/bmjspcare-2021-002994.
    1. Srinivas S., Iagaru A. To Scan or Not to Scan: An Unnecessary Dilemma for PSMA Radioligand Therapy. J. Nucl. Med. 2021;62:1487–1488. doi: 10.2967/jnumed.121.263035.
    1. Calais J., Czernin J. PSMA Expression Assessed by PET Imaging Is a Required Biomarker for Selecting Patients for Any PSMA-Targeted Therapy. J. Nucl. Med. 2021;62:1489–1491. doi: 10.2967/jnumed.121.263159.
    1. Herrmann K., Kraus B.J., Hadaschik B., Kunikowska J., van Poppel H., N’Dow J., Sartor O., Oyen W.J.G. Nuclear medicine theranostics comes of age. Lancet Oncol. 2021;22:1497–1498. doi: 10.1016/S1470-2045(21)00540-4.
    1. Czernin J. Reply: PSMA-Targeted Therapeutics: A Tale About Law and Economics. J. Nucl. Med. 2021;62:1483. doi: 10.2967/jnumed.121.262566.
    1. Zippel C., Ronski S.C., Bohnet-Joschko S., Giesel F.L., Kopka K. Current Status of PSMA-Radiotracers for Prostate Cancer: Data Analysis of Prospective Trials Listed on . Pharmaceuticals. 2020;13:12. doi: 10.3390/ph13010012.
    1. Sandhu S., Guo C., Hofman M.S. Radionuclide Therapy in Prostate Cancer: From standalone to combination PSMA theranostics. J. Nucl. Med. 2021 doi: 10.2967/jnumed.120.243295.
    1. Zhang H., Koumna S., Pouliot F., Beauregard J.M., Kolinsky M. PSMA Theranostics: Current Landscape and Future Outlook. Cancers. 2021;13:23. doi: 10.3390/cancers13164023.
    1. Kopka K., Benesova M., Barinka C., Haberkorn U., Babich J. Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J. Nucl. Med. 2017;58:17S–26S. doi: 10.2967/jnumed.116.186775.
    1. Szabo Z., Mena E., Rowe S.P., Plyku D., Nidal R., Eisenberger M.A., Antonarakis E.S., Fan H., Dannals R.F., Chen Y., et al. Initial Evaluation of [(18)F]DCFPyL for Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer. Mol. Imaging Biol. 2015;17:565–574. doi: 10.1007/s11307-015-0850-8.
    1. Afshar-Oromieh A., Haberkorn U., Eder M., Eisenhut M., Zechmann C.M. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: Comparison with 18F-FECH. Eur J. Nucl. Med. Mol. Imaging. 2012;39:1085–1086. doi: 10.1007/s00259-012-2069-0.
    1. Malik N., Baur B., Winter G., Reske S.N., Beer A.J., Solbach C. Radiofluorination of PSMA-HBED via Al(18)F(2+) Chelation and Biological Evaluations In Vitro. Mol. Imaging Biol. 2015;17:777–785. doi: 10.1007/s11307-015-0844-6.
    1. Piron S., De Man K., Van Laeken N., D’Asseler Y., Bacher K., Kersemans K., Ost P., Decaestecker K., Deseyne P., Fonteyne V., et al. Radiation Dosimetry and Biodistribution of (18)F-PSMA-11 for PET Imaging of Prostate Cancer. J. Nucl. Med. 2019;60:1736–1742. doi: 10.2967/jnumed.118.225250.
    1. Giesel F.L., Cardinale J., Schafer M., Neels O., Benesova M., Mier W., Haberkorn U., Kopka K., Kratochwil C. (18)F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur J. Nucl. Med. Mol. Imaging. 2016;43:1929–1930. doi: 10.1007/s00259-016-3447-9.
    1. Umbricht C.A., Benesova M., Schmid R.M., Turler A., Schibli R., van der Meulen N.P., Muller C. (44)Sc-PSMA-617 for radiotheragnostics in tandem with (177)Lu-PSMA-617-preclinical investigations in comparison with (68)Ga-PSMA-11 and (68)Ga-PSMA-617. EJNMMI Res. 2017;7:9. doi: 10.1186/s13550-017-0257-4.
    1. Eppard E., de la Fuente A., Benesova M., Khawar A., Bundschuh R.A., Gartner F.C., Kreppel B., Kopka K., Essler M., Rosch F. Clinical Translation and First In-Human Use of [(44)Sc]Sc-PSMA-617 for PET Imaging of Metastasized Castrate-Resistant Prostate Cancer. Theranostics. 2017;7:4359–4369. doi: 10.7150/thno.20586.
    1. Grubmuller B., Baum R.P., Capasso E., Singh A., Ahmadi Y., Knoll P., Floth A., Righi S., Zandieh S., Meleddu C., et al. (64)Cu-PSMA-617 PET/CT Imaging of Prostate Adenocarcinoma: First In-Human Studies. Cancer Biother. Radiopharm. 2016;31:277–286. doi: 10.1089/cbr.2015.1964.
    1. Afshar-Oromieh A., Hetzheim H., Kratochwil C., Benesova M., Eder M., Neels O.C., Eisenhut M., Kubler W., Holland-Letz T., Giesel F.L., et al. The Theranostic PSMA Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry, and First Evaluation of Tumor Lesions. J. Nucl. Med. 2015;56:1697–1705. doi: 10.2967/jnumed.115.161299.
    1. Mix M., Reichel K., Stoykow C., Bartholoma M., Drendel V., Gourni E., Wetterauer U., Schultze-Seemann W., Meyer P.T., Jilg C.A. Performance of (111)In-labelled PSMA ligand in patients with nodal metastatic prostate cancer: Correlation between tracer uptake and histopathology from lymphadenectomy. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:2062–2070. doi: 10.1007/s00259-018-4094-0.
    1. Muller C., Singh A., Umbricht C.A., Kulkarni H.R., Johnston K., Benesova M., Senftleben S., Muller D., Vermeulen C., Schibli R., et al. Preclinical investigations and first-in-human application of (152)Tb-PSMA-617 for PET/CT imaging of prostate cancer. EJNMMI Res. 2019;9:68. doi: 10.1186/s13550-019-0538-1.
    1. Kratochwil C., Giesel F.L., Eder M., Afshar-Oromieh A., Benesova M., Mier W., Kopka K., Haberkorn U. [(1)(7)(7)Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:987–988. doi: 10.1007/s00259-014-2978-1.
    1. Kratochwil C., Bruchertseifer F., Giesel F.L., Weis M., Verburg F.A., Mottaghy F., Kopka K., Apostolidis C., Haberkorn U., Morgenstern A. 225Ac-PSMA-617 for PSMA-Targeted alpha-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016;57:1941–1944. doi: 10.2967/jnumed.116.178673.
    1. Schottelius M., Wirtz M., Eiber M., Maurer T., Wester H.J. [(111)In]PSMA-I&T: Expanding the spectrum of PSMA-I&T applications towards SPECT and radioguided surgery. EJNMMI Res. 2015;5:68. doi: 10.1186/s13550-015-0147-6.
    1. Maurer T., Weirich G., Schottelius M., Weineisen M., Frisch B., Okur A., Kubler H., Thalgott M., Navab N., Schwaiger M., et al. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur. Urol. 2015;68:530–534. doi: 10.1016/j.eururo.2015.04.034.
    1. Robu S., Schottelius M., Eiber M., Maurer T., Gschwend J., Schwaiger M., Wester H.J. Preclinical Evaluation and First Patient Application of 99mTc-PSMA-I&S for SPECT Imaging and Radioguided Surgery in Prostate Cancer. J. Nucl. Med. 2017;58:235–242. doi: 10.2967/jnumed.116.178939.
    1. Reinfelder J., Kuwert T., Beck M., Sanders J.C., Ritt P., Schmidkonz C., Hennig P., Prante O., Uder M., Wullich B., et al. First Experience With SPECT/CT Using a 99mTc-Labeled Inhibitor for Prostate-Specific Membrane Antigen in Patients With Biochemical Recurrence of Prostate Cancer. Clin. Nucl. Med. 2017;42:26–33. doi: 10.1097/RLU.0000000000001433.
    1. Wurzer A., Parzinger M., Konrad M., Beck R., Gunther T., Felber V., Farber S., Di Carlo D., Wester H.J. Preclinical comparison of four [(18)F, (nat)Ga]rhPSMA-7 isomers: Influence of the stereoconfiguration on pharmacokinetics. EJNMMI Res. 2020;10:149. doi: 10.1186/s13550-020-00740-z.
    1. Tolvanen T., Kalliokoski K., Malaspina S., Kuisma A., Lahdenpohja S., Postema E.J., Miller M.P., Scheinin M. Safety, Biodistribution, and Radiation Dosimetry of (18)F-rhPSMA-7.3 in Healthy Adult Volunteers. J. Nucl. Med. 2021;62:679–684. doi: 10.2967/jnumed.120.252114.
    1. Yusufi N., Wurzer A., Herz M., D’Alessandria C., Feuerecker B., Weber W., Wester H.J., Nekolla S., Eiber M. Comparative Preclinical Biodistribution, Dosimetry, and Endoradiotherapy in Metastatic Castration-Resistant Prostate Cancer Using (19)F/(177)Lu-rhPSMA-7.3 and (177)Lu-PSMA I&T. J. Nucl. Med. 2021;62:1106–1111. doi: 10.2967/jnumed.120.254516.
    1. Feuerecker B., Chantadisai M., Allmann A., Tauber R., Allmann J., Steinhelfer L., Rauscher I., Wurzer A., Wester H.J., Weber W.A., et al. Pre-therapeutic comparative dosimetry of (177)Lu-rhPSMA-7.3 and (177)Lu-PSMAI&T in patients with metastatic castration resistant prostate cancer (mCRPC) J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.262671.
    1. Zlatopolskiy B.D., Endepols H., Krapf P., Guliyev M., Urusova E.A., Richarz R., Hohberg M., Dietlein M., Drzezga A., Neumaier B. Discovery of (18)F-JK-PSMA-7, a PET Probe for the Detection of Small PSMA-Positive Lesions. J. Nucl. Med. 2019;60:817–823. doi: 10.2967/jnumed.118.218495.
    1. Hohberg M., Kobe C., Krapf P., Tager P., Hammes J., Dietlein F., Zlatopolskiy B.D., Endepols H., Wild M., Neubauer S., et al. Biodistribution and radiation dosimetry of [(18)F]-JK-PSMA-7 as a novel prostate-specific membrane antigen-specific ligand for PET/CT imaging of prostate cancer. EJNMMI Res. 2019;9:66. doi: 10.1186/s13550-019-0540-7.
    1. Young J.D., Abbate V., Imberti C., Meszaros L.K., Ma M.T., Terry S.Y.A., Hider R.C., Mullen G.E., Blower P.J. (68)Ga-THP-PSMA: A PET Imaging Agent for Prostate Cancer Offering Rapid, Room-Temperature, 1-Step Kit-Based Radiolabeling. J. Nucl. Med. 2017;58:1270–1277. doi: 10.2967/jnumed.117.191882.
    1. Hofman M.S., Eu P., Jackson P., Hong E., Binns D., Iravani A., Murphy D., Mitchell C., Siva S., Hicks R.J., et al. Cold Kit for Prostate-Specific Membrane Antigen (PSMA) PET Imaging: Phase 1 Study of (68)Ga-Tris(Hydroxypyridinone)-PSMA PET/CT in Patients with Prostate Cancer. Nucl. Med. 2018;59:625–631. doi: 10.2967/jnumed.117.199554.
    1. Iudicello A., Genovese F., Di Iorio V., Cicoria G., Boschi S. An HPLC and UHPLC-HRMS approach to study PSMA-11 instability in aqueous solution. EJNMMI Radiopharm. Chem. 2021;6:14. doi: 10.1186/s41181-021-00122-3.
    1. Eder M., Neels O., Muller M., Bauder-Wust U., Remde Y., Schafer M., Hennrich U., Eisenhut M., Afshar-Oromieh A., Haberkorn U., et al. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals. 2014;7:779–796. doi: 10.3390/ph7070779.
    1. Martin S., Tonnesmann R., Hierlmeier I., Maus S., Rosar F., Ruf J., Holland J.P., Ezziddin S., Bartholoma M.D. Identification, Characterization, and Suppression of Side Products Formed during the Synthesis of [(177)Lu]Lu-PSMA-617. J. Med. Chem. 2021;64:4960–4971. doi: 10.1021/acs.jmedchem.1c00045.
    1. Thiele N.A., Brown V., Kelly J.M., Amor-Coarasa A., Jermilova U., MacMillan S.N., Nikolopoulou A., Ponnala S., Ramogida C.F., Robertson A.K.H., et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem. Int. Ed. Engl. 2017;56:14712–14717. doi: 10.1002/anie.201709532.
    1. Reissig F., Bauer D., Zarschler K., Novy Z., Bendova K., Ludik M.C., Kopka K., Pietzsch H.J., Petrik M., Mamat C. Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA-A Proof of Concept Study. Cancers. 2021;13:974. doi: 10.3390/cancers13081974.
    1. Mukherjee A. An Update on Extemporaneous Preparation of Radiopharmaceuticals Using Freeze-Dried Cold Kits. Mini Rev. Med. Chem. 2021;21:1322–1336. doi: 10.2174/1389557520999201214233634.
    1. Satpati D. Recent Breakthrough in (68)Ga-Radiopharmaceuticals Cold Kits for Convenient PET Radiopharmacy. Bioconjug Chem. 2021;32:430–447. doi: 10.1021/acs.bioconjchem.1c00010.
    1. Australian TGA Approves Illuccix® for Prostate Cancer Imaging. [(accessed on 2 November 2021)]. Available online: .
    1. Baum R.P., Langbein T., Singh A., Shahinfar M., Schuchardt C., Volk G.F., Kulkarni H. Injection of Botulinum Toxin for Preventing Salivary Gland Toxicity after PSMA Radioligand Therapy: An Empirical Proof of a Promising Concept. Nucl. Med. Mol. Imaging. 2018;52:80–81. doi: 10.1007/s13139-017-0508-3.
    1. Taieb D., Foletti J.M., Bardies M., Rocchi P., Hicks R.J., Haberkorn U. PSMA-Targeted Radionuclide Therapy and Salivary Gland Toxicity: Why Does It Matter? J. Nucl. Med. 2018;59:747–748. doi: 10.2967/jnumed.118.207993.
    1. Langbein T., Chausse G., Baum R.P. Salivary Gland Toxicity of PSMA Radioligand Therapy: Relevance and Preventive Strategies. J. Nucl. Med. 2018;59:1172–1173. doi: 10.2967/jnumed.118.214379.
    1. Mohan V., Bruin N.M., van de Kamer J.B., Sonke J.J., Vogel W.V. The effect of eating on the uptake of PSMA ligands in the salivary glands. EJNMMI Res. 2021;11:95. doi: 10.1186/s13550-021-00838-y.
    1. Heynickx N., Herrmann K., Vermeulen K., Baatout S., Aerts A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl. Med. Biol. 2021;98–99:30–39. doi: 10.1016/j.nucmedbio.2021.04.003.
    1. Tonnesmann R., Meyer P.T., Eder M., Baranski A.C. [(177)Lu]Lu-PSMA-617 Salivary Gland Uptake Characterized by Quantitative In Vitro Autoradiography. Pharmaceuticals. 2019;12:18. doi: 10.3390/ph12010018.
    1. Felber V.B., Valentin M.A., Wester H.J. Design of PSMA ligands with modifications at the inhibitor part: An approach to reduce the salivary gland uptake of radiolabeled PSMA inhibitors? EJNMMI Radiopharm. Chem. 2021;6:10. doi: 10.1186/s41181-021-00124-1.
    1. Kalidindi T.M., Lee S.G., Jou K., Chakraborty G., Skafida M., Tagawa S.T., Bander N.H., Schoder H., Bodei L., Pandit-Taskar N., et al. A simple strategy to reduce the salivary gland and kidney uptake of PSMA-targeting small molecule radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:2642–2651. doi: 10.1007/s00259-020-05150-w.
    1. Roy J., Warner B.M., Basuli F., Zhang X., Zheng C., Goldsmith C., Phelps T., Wong K., Ton A.T., Pieschl R., et al. Competitive blocking of salivary gland [(18)F]DCFPyL uptake via localized, retrograde ductal injection of non-radioactive DCFPyL: A preclinical study. EJNMMI Res. 2021;11:66. doi: 10.1186/s13550-021-00803-9.
    1. Van Leeuwen F.W.B., Winter A., van Der Poel H.G., Eiber M., Suardi N., Graefen M., Wawroschek F., Maurer T. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat. Rev. Urol. 2019;16:159–171. doi: 10.1038/s41585-018-0140-8.
    1. Rauscher I., Duwel C., Wirtz M., Schottelius M., Wester H.J., Schwamborn K., Haller B., Schwaiger M., Gschwend J.E., Eiber M., et al. Value of (111) In-prostate-specific membrane antigen (PSMA)-radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer: Correlation with histopathology and clinical follow-up. BJU Int. 2017;120:40–47. doi: 10.1111/bju.13713.
    1. Jilg C.A., Reichel K., Stoykow C., Rischke H.C., Bartholoma M., Drendel V., von Buren M., Schultze-Seemann W., Meyer P.T., Mix M. Results from extended lymphadenectomies with [(111)In]PSMA-617 for intraoperative detection of PSMA-PET/CT-positive nodal metastatic prostate cancer. EJNMMI Res. 2020;10:17. doi: 10.1186/s13550-020-0598-2.
    1. Rauscher I., Maurer T., Souvatzoglou M., Beer A.J., Vag T., Wirtz M., Weirich G., Wester H.J., Gschwend J.E., Schwaiger M., et al. Intrapatient Comparison of 111In-PSMA I&T SPECT/CT and Hybrid 68Ga-HBED-CC PSMA PET in Patients With Early Recurrent Prostate Cancer. Clin. Nucl. Med. 2016;41:e397–e402. doi: 10.1097/RLU.0000000000001273.
    1. Maurer T., Robu S., Schottelius M., Schwamborn K., Rauscher I., van den Berg N.S., van Leeuwen F.W.B., Haller B., Horn T., Heck M.M., et al. (99m)Technetium-based Prostate-specific Membrane Antigen-radioguided Surgery in Recurrent Prostate Cancer. Eur. Urol. 2019;75:659–666. doi: 10.1016/j.eururo.2018.03.013.
    1. Horn T., Kronke M., Rauscher I., Haller B., Robu S., Wester H.J., Schottelius M., van Leeuwen F.W.B., van der Poel H.G., Heck M., et al. Single Lesion on Prostate-specific Membrane Antigen-ligand Positron Emission Tomography and Low Prostate-specific Antigen Are Prognostic Factors for a Favorable Biochemical Response to Prostate-specific Membrane Antigen-targeted Radioguided Surgery in Recurrent Prostate Cancer. Eur. Urol. 2019;76:517–523. doi: 10.1016/j.eururo.2019.03.045.
    1. Werner P., Neumann C., Eiber M., Wester H.J., Schottelius M. [(99cm)Tc]Tc-PSMA-I&S-SPECT/CT: Experience in prostate cancer imaging in an outpatient center. EJNMMI Res. 2020;10:45. doi: 10.1186/s13550-020-00635-z.
    1. Urban S., Meyer C., Dahlbom M., Farkas I., Sipka G., Besenyi Z., Czernin J., Calais J., Pavics L. Radiation Dosimetry of (99m)Tc-PSMA I&S: A Single-Center Prospective Study. J. Nucl. Med. 2021;62:1075–1081. doi: 10.2967/jnumed.120.253476.
    1. Afshar-Oromieh A., Hetzheim H., Kubler W., Kratochwil C., Giesel F.L., Hope T.A., Eder M., Eisenhut M., Kopka K., Haberkorn U. Radiation dosimetry of (68)Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:1611–1620. doi: 10.1007/s00259-016-3419-0.
    1. Giesel F.L., Hadaschik B., Cardinale J., Radtke J., Vinsensia M., Lehnert W., Kesch C., Tolstov Y., Singer S., Grabe N., et al. F-18 labelled PSMA-1007: Biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:678–688. doi: 10.1007/s00259-016-3573-4.
    1. Aalbersberg E.A., Verwoerd D., Mylvaganan-Young C., de Barros H.A., van Leeuwen P.J., Sonneborn-Bols M., Donswijk M.L. Occupational Radiation Exposure of Radiopharmacy, Nuclear Medicine, and Surgical Personnel During Use of [(99m)Tc]Tc-PSMA-I&S for Prostate Cancer Surgery. J. Nucl. Med. Technol. 2021;49:334–338. doi: 10.2967/jnmt.121.262161.
    1. Jeschke S., Beri A., Grull M., Ziegerhofer J., Prammer P., Leeb K., Sega W., Janetschek G. Laparoscopic radioisotope-guided sentinel lymph node dissection in staging of prostate cancer. Eur. Urol. 2008;53:126–132. doi: 10.1016/j.eururo.2007.03.064.
    1. Meershoek P., van Oosterom M.N., Simon H., Mengus L., Maurer T., van Leeuwen P.J., Wit E.M.K., van der Poel H.G., van Leeuwen F.W.B. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: First-in-human translation. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:49–53. doi: 10.1007/s00259-018-4095-z.
    1. Van Oosterom M.N., Simon H., Mengus L., Welling M., Van der Poel H.G., Van den Berg N.S., Van Leeuwen F.W. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology. Am. J. Nucl. Med. Mol. Imaging. 2016;6:1–17.
    1. Van Leeuwen F.W.B., van Oosterom M.N., Meershoek P., van Leeuwen P.J., Berliner C., van der Poel H.G., Graefen M., Maurer T. Minimal-Invasive Robot-Assisted Image-Guided Resection of Prostate-Specific Membrane Antigen-Positive Lymph Nodes in Recurrent Prostate Cancer. Clin. Nucl Med. 2019;44:580–581. doi: 10.1097/RLU.0000000000002600.
    1. Collamati F., van Oosterom M.N., De Simoni M., Faccini R., Fischetti M., Mancini Terracciano C., Mirabelli R., Moretti R., Heuvel J.O., Solfaroli Camillocci E., et al. A DROP-IN beta probe for robot-assisted (68)Ga-PSMA radioguided surgery: First ex vivo technology evaluation using prostate cancer specimens. EJNMMI Res. 2020;10:92. doi: 10.1186/s13550-020-00682-6.
    1. Olde Heuvel J., de Wit-van der Veen B.J., Vyas K.N., Tuch D.S., Grootendorst M.R., Stokkel M.P.M., Slump C.H. Performance evaluation of Cerenkov luminescence imaging: A comparison of (68)Ga with (18)F. EJNMMI Phys. 2019;6:17. doi: 10.1186/s40658-019-0255-x.
    1. Darr C., Harke N.N., Radtke J.P., Yirga L., Kesch C., Grootendorst M.R., Fendler W.P., Costa P.F., Rischpler C., Praus C., et al. Intraoperative (68)Ga-PSMA Cerenkov Luminescence Imaging for Surgical Margins in Radical Prostatectomy: A Feasibility Study. J. Nucl. Med. 2020;61:1500–1506. doi: 10.2967/jnumed.119.240424.
    1. Olde Heuvel J., de Wit-van der Veen B.J., van der Poel H.G., Bekers E.M., Grootendorst M.R., Vyas K.N., Slump C.H., Stokkel M.P.M. (68)Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: First-in-man series. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:2624–2632. doi: 10.1007/s00259-020-04783-1.
    1. Darr C., Krafft U., Fendler W.P., Costa P.F., Barbato F., Praus C., Reis H., Hager T., Tschirdewahn S., Radtke J.P., et al. First-in-man intraoperative Cerenkov luminescence imaging for oligometastatic prostate cancer using (68)Ga-PSMA-11. Eur J. Nucl. Med. Mol. Imaging. 2020;47:3194–3195. doi: 10.1007/s00259-020-04778-y.
    1. Olde Heuvel J., de Wit-van der Veen B.J., van der Poel H.G., van Leeuwen P.J., Bekers E.M., Grootendorst M.R., Vyas K.N., Slump C.H., Stokkel M.P.M. Cerenkov Luminescence Imaging in prostate cancer: Not the only light that shines. J. Nucl. Med. 2021 doi: 10.2967/jnumed.120.260034.
    1. Darr C., Fragoso Costa P., Kesch C., Krafft U., Pullen L., Harke N.N., Hess J., Szarvas T., Haubold J., Reis H., et al. Prostate specific membrane antigen-radio guided surgery using Cerenkov luminescence imaging-utilization of a short-pass filter to reduce technical pitfalls. Transl. Urol. 2021;10:3972–3985. doi: 10.21037/tau-20-1141.
    1. Collamati F., van Oosterom M.N., Hadaschik B.A., Fragoso Costa P., Darr C. Beta radioguided surgery: Towards routine implementation? Q. J. Nucl. Med. Mol. Imaging. 2021;65:229–243. doi: 10.23736/S1824-4785.21.03358-6.
    1. Van Leeuwen F.W.B., Cornelissen B., Caobelli F., Evangelista L., Rbah-Vidal L., Del Vecchio S., Xavier C., Barbet J., de Jong M. Generation of fluorescently labeled tracers - which features influence the translational potential? EJNMMI Radiopharm. Chem. 2017;2:15. doi: 10.1186/s41181-017-0034-8.
    1. Maurer T., van Leeuwen F.W.B., Schottelius M., Wester H.J., Eiber M. Entering the era of molecular-targeted precision surgery in recurrent prostate cancer. J. Nucl. Med. 2018 doi: 10.2967/jnumed.118.221861.
    1. Lutje S., Heskamp S., Franssen G.M., Frielink C., Kip A., Hekman M., Fracasso G., Colombatti M., Herrmann K., Boerman O.C., et al. Development and characterization of a theranostic multimodal anti-PSMA targeting agent for imaging, surgical guidance, and targeted photodynamic therapy of PSMA-expressing tumors. Theranostics. 2019;9:2924–2938. doi: 10.7150/thno.35274.
    1. Derks Y.H.W., Lowik D., Sedelaar J.P.M., Gotthardt M., Boerman O.C., Rijpkema M., Lutje S., Heskamp S. PSMA-targeting agents for radio- and fluorescence-guided prostate cancer surgery. Theranostics. 2019;9:6824–6839. doi: 10.7150/thno.36739.
    1. Hernandez Vargas S., Ghosh S.C., Azhdarinia A. New Developments in Dual-Labeled Molecular Imaging Agents. J. Nucl. Med. 2019;60:459–465. doi: 10.2967/jnumed.118.213488.
    1. Baranski A.C., Schafer M., Bauder-Wust U., Roscher M., Schmidt J., Stenau E., Simpfendorfer T., Teber D., Maier-Hein L., Hadaschik B., et al. PSMA-11-Derived Dual-Labeled PSMA Inhibitors for Preoperative PET Imaging and Precise Fluorescence-Guided Surgery of Prostate Cancer. J. Nucl. Med. 2018;59:639–645. doi: 10.2967/jnumed.117.201293.
    1. Baranski A.C., Schafer M., Bauder-Wust U., Wacker A., Schmidt J., Liolios C., Mier W., Haberkorn U., Eisenhut M., Kopka K., et al. Improving the Imaging Contrast of (68)Ga-PSMA-11 by Targeted Linker Design: Charged Spacer Moieties Enhance the Pharmacokinetic Properties. Bioconjug. Chem. 2017;28:2485–2492. doi: 10.1021/acs.bioconjchem.7b00458.
    1. Liolios C., Schafer M., Haberkorn U., Eder M., Kopka K. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer. Bioconjug. Chem. 2016;27:737–751. doi: 10.1021/acs.bioconjchem.5b00687.
    1. Eder A.C., Schafer M., Schmidt J., Bauder-Wust U., Roscher M., Leotta K., Haberkorn U., Kopka K., Eder M. Rational Linker Design to Accelerate Excretion and Reduce Background Uptake of Peptidomimetic PSMA-Targeting Hybrid Molecules. J. Nucl. Med. 2021;62:1461–1467. doi: 10.2967/jnumed.120.248443.
    1. Eder A.C., Omrane M.A., Stadlbauer S., Roscher M., Khoder W.Y., Gratzke C., Kopka K., Eder M., Meyer P.T., Jilg C.A., et al. The PSMA-11-derived hybrid molecule PSMA-914 specifically identifies prostate cancer by preoperative PET/CT and intraoperative fluorescence imaging. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:2057–2058. doi: 10.1007/s00259-020-05184-0.
    1. Schottelius M., Wurzer A., Wissmiller K., Beck R., Koch M., Gorpas D., Notni J., Buckle T., van Oosterom M.N., Steiger K., et al. Synthesis and Preclinical Characterization of the PSMA-Targeted Hybrid Tracer PSMA-I&F for Nuclear and Fluorescence Imaging of Prostate Cancer. J. Nucl. Med. 2019;60:71–78. doi: 10.2967/jnumed.118.212720.
    1. van Leeuwen F.W., van der Poel H.G. Surgical Guidance in Prostate Cancer: “From Molecule to Man” Translations. Clin. Cancer Res. 2016;22:1304–1306. doi: 10.1158/1078-0432.CCR-15-2575.
    1. Van Leeuwen F.W.B., Schottelius M., Brouwer O.R., Vidal-Sicart S., Achilefu S., Klode J., Wester H.J., Buckle T. Trending: Radioactive and Fluorescent Bimodal/Hybrid Tracers as Multiplexing Solutions for Surgical Guidance. J. Nucl. Med. 2020;61:13–19. doi: 10.2967/jnumed.119.228684.
    1. Wang X., Luo D., Basilion J.P. Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers. Cancers. 2021;13:992. doi: 10.3390/cancers13122992.
    1. Derks Y.H.W., Rijpkema M., Amatdjais-Groenen H.I.V., Kip A., Franssen G.M., Sedelaar J.P.M., Somford D.M., Simons M., Laverman P., Gotthardt M., et al. Photosensitizer-based multimodal PSMA-targeting ligands for intraoperative detection of prostate cancer. Theranostics. 2021;11:1527–1541. doi: 10.7150/thno.52166.
    1. Kurth J., Krause B.J., Schwarzenbock S.M., Stegger L., Schafers M., Rahbar K. External radiation exposure, excretion, and effective half-life in (177)Lu-PSMA-targeted therapies. EJNMMI Res. 2018;8:32. doi: 10.1186/s13550-018-0386-4.
    1. Dumelin C.E., Trussel S., Buller F., Trachsel E., Bootz F., Zhang Y., Mannocci L., Beck S.C., Drumea-Mirancea M., Seeliger M.W., et al. A portable albumin binder from a DNA-encoded chemical library. Angew. Chem. Int. Ed. Engl. 2008;47:3196–3201. doi: 10.1002/anie.200704936.
    1. Muller C., Struthers H., Winiger C., Zhernosekov K., Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J. Nucl. Med. 2013;54:124–131. doi: 10.2967/jnumed.112.107235.
    1. Kelly J.M., Amor-Coarasa A., Nikolopoulou A., Wustemann T., Barelli P., Kim D., Williams C., Jr., Zheng X., Bi C., Hu B., et al. Dual-Target Binding Ligands with Modulated Pharmacokinetics for Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2017;58:1442–1449. doi: 10.2967/jnumed.116.188722.
    1. Kelly J., Amor-Coarasa A., Ponnala S., Nikolopoulou A., Williams C., Jr., Schlyer D., Zhao Y., Kim D., Babich J.W. Trifunctional PSMA-targeting constructs for prostate cancer with unprecedented localization to LNCaP tumors. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:1841–1851. doi: 10.1007/s00259-018-4004-5.
    1. Kelly J.M., Amor-Coarasa A., Ponnala S., Nikolopoulou A., Williams C., Jr., DiMagno S.G., Babich J.W. Albumin-Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. J. Nucl. Med. 2019;60:656–663. doi: 10.2967/jnumed.118.221150.
    1. Benesova M., Umbricht C.A., Schibli R., Muller C. Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Mol. Pharm. 2018;15:934–946. doi: 10.1021/acs.molpharmaceut.7b00877.
    1. Umbricht C.A., Benesova M., Schibli R., Muller C. Preclinical Development of Novel PSMA-Targeting Radioligands: Modulation of Albumin-Binding Properties To Improve Prostate Cancer Therapy. Mol. Pharm. 2018;15:2297–2306. doi: 10.1021/acs.molpharmaceut.8b00152.
    1. Borgna F., Deberle L.M., Cohrs S., Schibli R., Muller C. Combined Application of Albumin-Binding [(177)Lu]Lu-PSMA-ALB-56 and Fast-Cleared PSMA Inhibitors: Optimization of the Pharmacokinetics. Mol. Pharm. 2020;17:2044–2053. doi: 10.1021/acs.molpharmaceut.0c00199.
    1. Kramer V., Fernandez R., Lehnert W., Jimenez-Franco L.D., Soza-Ried C., Eppard E., Ceballos M., Meckel M., Benesova M., Umbricht C.A., et al. Biodistribution and dosimetry of a single dose of albumin-binding ligand [(177)Lu]Lu-PSMA-ALB-56 in patients with mCRPC. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:893–903. doi: 10.1007/s00259-020-05022-3.
    1. Deberle L.M., Benesova M., Umbricht C.A., Borgna F., Buchler M., Zhernosekov K., Schibli R., Muller C. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics. 2020;10:1678–1693. doi: 10.7150/thno.40482.
    1. Deberle L.M., Tschan V.J., Borgna F., Sozzi-Guo F., Bernhardt P., Schibli R., Muller C. Albumin-Binding PSMA Radioligands: Impact of Minimal Structural Changes on the Tissue Distribution Profile. Molecules. 2020;25:542. doi: 10.3390/molecules25112542.
    1. Tschan V.J., Borgna F., Schibli R., Muller C. Impact of the mouse model and molar amount of injected ligand on the tissue distribution profile of PSMA radioligands. Eur. J. Nucl. Med. Mol. Imaging. 2021 doi: 10.1007/s00259-021-05446-5.
    1. Sancho V., Di Florio A., Moody T.W., Jensen R.T. Bombesin receptor-mediated imaging and cytotoxicity: Review and current status. Curr Drug Deliv. 2011;8:79–134. doi: 10.2174/156720111793663624.
    1. Mansi R., Nock B.A., Dalm S.U., Busstra M.B., van Weerden W.M., Maina T. Radiolabeled Bombesin Analogs. Cancers. 2021;13:766. doi: 10.3390/cancers13225766.
    1. Rybalov M., Ananias H.J., Hoving H.D., van der Poel H.G., Rosati S., de Jong I.J. PSMA, EpCAM, VEGF and GRPR as imaging targets in locally recurrent prostate cancer after radiotherapy. Int J. Mol. Sci. 2014;15:6046–6061. doi: 10.3390/ijms15046046.
    1. Schollhammer R., De Clermont Gallerande H., Yacoub M., Quintyn Ranty M.L., Barthe N., Vimont D., Hindie E., Fernandez P., Morgat C. Comparison of the radiolabeled PSMA-inhibitor (111)In-PSMA-617 and the radiolabeled GRP-R antagonist (111)In-RM2 in primary prostate cancer samples. EJNMMI Res. 2019;9:52. doi: 10.1186/s13550-019-0517-6.
    1. Minamimoto R., Hancock S., Schneider B., Chin F.T., Jamali M., Loening A., Vasanawala S., Gambhir S.S., Iagaru A. Pilot Comparison of (6)(8)Ga-RM2 PET and (6)(8)Ga-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer. J. Nucl. Med. 2016;57:557–562. doi: 10.2967/jnumed.115.168393.
    1. Hoberuck S., Michler E., Wunderlich G., Lock S., Holscher T., Froehner M., Braune A., Ivan P., Seppelt D., Zophel K., et al. 68Ga-RM2 PET in PSMA- positive and -negative prostate cancer patients. Nuklearmedizin. 2019;58:352–362. doi: 10.1055/a-0990-8898.
    1. Fassbender T.F., Schiller F., Zamboglou C., Drendel V., Kiefer S., Jilg C.A., Grosu A.L., Mix M. Voxel-based comparison of [(68)Ga]Ga-RM2-PET/CT and [(68)Ga]Ga-PSMA-11-PET/CT with histopathology for diagnosis of primary prostate cancer. EJNMMI Res. 2020;10:62. doi: 10.1186/s13550-020-00652-y.
    1. Baratto L., Song H., Duan H., Hatami N., Bagshaw H.P., Buyyounouski M., Hancock S., Shah S., Srinivas S., Swift P., et al. PSMA- and GRPR-Targeted PET: Results from 50 Patients with Biochemically Recurrent Prostate Cancer. J. Nucl. Med. 2021;62:1545–1549. doi: 10.2967/jnumed.120.259630.
    1. Mapelli P., Ghezzo S., Samanes Gajate A.M., Preza E., Brembilla G., Cucchiara V., Ahmed N., Bezzi C., Presotto L., Bettinardi V., et al. Preliminary Results of an Ongoing Prospective Clinical Trial on the Use of (68)Ga-PSMA and (68)Ga-DOTA-RM2 PET/MRI in Staging of High-Risk Prostate Cancer Patients. Diagnostics. 2021;11:68. doi: 10.3390/diagnostics11112068.
    1. Iagaru A. Will GRPR Compete with PSMA as a Target in Prostate Cancer? J. Nucl. Med. 2017;58:1883–1884. doi: 10.2967/jnumed.117.198192.
    1. Reubi J.C., Maecke H.R. Approaches to Multireceptor Targeting: Hybrid Radioligands, Radioligand Cocktails, and Sequential Radioligand Applications. J. Nucl. Med. 2017;58:10S–16S. doi: 10.2967/jnumed.116.186882.
    1. Yan Y., Chen X. Peptide heterodimers for molecular imaging. Amino Acids. 2011;41:1081–1092. doi: 10.1007/s00726-010-0546-y.
    1. Liolios C., Sachpekidis C., Schafer M., Kopka K. Bispecific radioligands targeting prostate-specific membrane antigen and gastrin-releasing peptide receptors on the surface of prostate cancer cells. J. Label. Comp. Radiopharm. 2019;62:510–522. doi: 10.1002/jlcr.3749.
    1. Eder M., Schafer M., Bauder-Wust U., Haberkorn U., Eisenhut M., Kopka K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014;74:659–668. doi: 10.1002/pros.22784.
    1. Cheng C., Pan L., Dimitrakopoulou-Strauss A., Schafer M., Wangler C., Wangler B., Haberkorn U., Strauss L.G. Comparison between 68Ga-bombesin (68Ga-BZH3) and the cRGD tetramer 68Ga-RGD4 studies in an experimental nude rat model with a neuroendocrine pancreatic tumor cell line. EJNMMI Res. 2011;1:34. doi: 10.1186/2191-219X-1-34.
    1. Strauss L.G., Koczan D., Seiz M., Tuettenberg J., Schmieder K., Pan L., Cheng C., Dimitrakopoulou-Strauss A. Correlation of the Ga-68-bombesin analog Ga-68-BZH3 with receptors expression in gliomas as measured by quantitative dynamic positron emission tomography (dPET) and gene arrays. Mol. Imaging Biol. 2012;14:376–383. doi: 10.1007/s11307-011-0508-0.
    1. Bandari R.P., Jiang Z., Reynolds T.S., Bernskoetter N.E., Szczodroski A.F., Bassuner K.J., Kirkpatrick D.L., Rold T.L., Sieckman G.L., Hoffman T.J., et al. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7–14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer. Nucl. Med. Biol. 2014;41:355–363. doi: 10.1016/j.nucmedbio.2014.01.001.
    1. Bandari R.P., Lewis M.R., Smith C.J. Synthesis and Evaluation of [DUPA-6-Ahx-Lys (DOTA)-6-Ahx-RM2], a Novel, Bivalent Targeting Ligand for GRPr/PSMA Biomarkers of Prostate Cancer. Chem. Biol. Lett. 2018;5:14.
    1. Bandari R.P., Carmack T.L., Malhotra A., Watkinson L., Fergason Cantrell E.A., Lewis M.R., Smith C.J. Development of Heterobivalent Theranostic Probes Having High Affinity/Selectivity for the GRPR/PSMA. J. Med. Chem. 2021;64:2151–2166. doi: 10.1021/acs.jmedchem.0c01785.
    1. Mendoza-Figueroa M.J., Escudero-Castellanos A., Ramirez-Nava G.J., Ocampo-García B.E., Santos-Cuevas C.L., Ferro-Flores G., Pedraza-Lopez M., Avila-Rodriguez M.A. Preparation and preclinical evaluation of 68Ga-iPSMA-BN as a potential heterodimeric radiotracer for PET-imaging of prostate cancer. J. Radioanal. Nucl. Chem. 2018;318:2097–2105. doi: 10.1007/s10967-018-6285-3.
    1. Escudero-Castellanos A., Ocampo-Garcia B., Ferro-Flores G., Santos-Cuevas C., Morales-Avila E., Luna-Gutierrez M., Isaac-Olive K. Synthesis and preclinical evaluation of the 177Lu-DOTA-PSMA(inhibitor)-Lys3-bombesin heterodimer designed as a radiotheranostic probe for prostate cancer. Nucl. Med. Commun. 2019;40:278–286. doi: 10.1097/MNM.0000000000000966.
    1. Rivera-Bravo B., Ramirez-Nava G., Mendoza-Figueroa M.J., Ocampo-Garcia B., Ferro-Flores G., Avila-Rodriguez M.A., Santos-Cuevas C. [(68)Ga]Ga-iPSMA-Lys(3)-Bombesin: Biokinetics, dosimetry and first patient PET/CT imaging. Nucl. Med. Biol. 2021;96–97:54–60. doi: 10.1016/j.nucmedbio.2021.03.005.
    1. Mitran B., Varasteh Z., Abouzayed A., Rinne S.S., Puuvuori E., De Rosa M., Larhed M., Tolmachev V., Orlova A., Rosenstrom U. Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer. Cancers. 2019;11:371. doi: 10.3390/cancers11091371.
    1. Lundmark F., Abouzayed A., Mitran B., Rinne S.S., Varasteh Z., Larhed M., Tolmachev V., Rosenstrom U., Orlova A. Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer-Optimization of the Affinity towards PSMA by Linker Modification in Murine Model. Pharmaceutics. 2020;12 doi: 10.3390/pharmaceutics12070614.
    1. Abouzayed A., Yim C.B., Mitran B., Rinne S.S., Tolmachev V., Larhed M., Rosenstrom U., Orlova A. Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer. Pharmaceutics. 2019;11:358. doi: 10.3390/pharmaceutics11070358.
    1. Shallal H.M., Minn I., Banerjee S.R., Lisok A., Mease R.C., Pomper M.G. Heterobivalent agents targeting PSMA and integrin-alphavbeta3. Bioconjug Chem. 2014;25:393–405. doi: 10.1021/bc4005377.
    1. Liolios C., Sachpekidis C., Kolocouris A., Dimitrakopoulou-Strauss A., Bouziotis P. PET Diagnostic Molecules Utilizing Multimeric Cyclic RGD Peptide Analogs for Imaging Integrin alphavbeta3 Receptors. Molecules. 2021;26:792. doi: 10.3390/molecules26061792.
    1. Maschauer S., Einsiedel J., Haubner R., Hocke C., Ocker M., Hubner H., Kuwert T., Gmeiner P., Prante O. Labeling and glycosylation of peptides using click chemistry: A general approach to (18)F-glycopeptides as effective imaging probes for positron emission tomography. Angew. Chem. Int. Ed. Engl. 2010;49:976–979. doi: 10.1002/anie.200904137.
    1. Potemkin R., Strauch B., Kuwert T., Prante O., Maschauer S. Development of (18)F-Fluoroglycosylated PSMA-Ligands with Improved Renal Clearance Behavior. Mol. Pharm. 2020;17:933–943. doi: 10.1021/acs.molpharmaceut.9b01179.
    1. Greifenstein L., Engelbogen N., Lahnif H., Sinnes J.P., Bergmann R., Bachmann M., Rosch F. Synthesis, Labeling and Preclinical Evaluation of a Squaric Acid Containing PSMA Inhibitor Labeled with (68) Ga: A Comparison with PSMA-11 and PSMA-617. ChemMedChem. 2020;15:695–704. doi: 10.1002/cmdc.201900559.
    1. Grus T., Lahnif H., Klasen B., Moon E.S., Greifenstein L., Roesch F. Squaric Acid-Based Radiopharmaceuticals for Tumor Imaging and Therapy. Bioconjug. Chem. 2021;32:1223–1231. doi: 10.1021/acs.bioconjchem.1c00305.
    1. Schirrmacher R., Bradtmoller G., Schirrmacher E., Thews O., Tillmanns J., Siessmeier T., Buchholz H.G., Bartenstein P., Wangler B., Niemeyer C.M., et al. 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew Chem. Int. Ed. Engl. 2006;45:6047–6050. doi: 10.1002/anie.200600795.
    1. Wurzer A., Di Carlo D., Schmidt A., Beck R., Eiber M., Schwaiger M., Wester H.J. Radiohybrid Ligands: A Novel Tracer Concept Exemplified by (18)F- or (68)Ga-Labeled rhPSMA Inhibitors. J. Nucl. Med. 2020;61:735–742. doi: 10.2967/jnumed.119.234922.
    1. Eiber M., Kroenke M., Wurzer A., Ulbrich L., Jooss L., Maurer T., Horn T., Schiller K., Langbein T., Buschner G., et al. (18)F-rhPSMA-7 PET for the Detection of Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J. Nucl. Med. 2020;61:696–701. doi: 10.2967/jnumed.119.234914.
    1. Oh S.W., Wurzer A., Teoh E.J., Oh S., Langbein T., Kronke M., Herz M., Kropf S., Wester H.J., Weber W.A., et al. Quantitative and Qualitative Analyses of Biodistribution and PET Image Quality of a Novel Radiohybrid PSMA, (18)F-rhPSMA-7, in Patients with Prostate Cancer. J. Nucl. Med. 2020;61:702–709. doi: 10.2967/jnumed.119.234609.
    1. Kroenke M., Mirzoyan L., Horn T., Peeken J.C., Wurzer A., Wester H.J., Makowski M., Weber W.A., Eiber M., Rauscher I. Matched-Pair Comparison of (68)Ga-PSMA-11 and (18)F-rhPSMA-7 PET/CT in Patients with Primary and Biochemical Recurrence of Prostate Cancer: Frequency of Non-Tumor-Related Uptake and Tumor Positivity. J. Nucl. Med. 2021;62:1082–1088. doi: 10.2967/jnumed.120.251447.
    1. Wurzer A., Di Carlo D., Herz M., Richter A., Robu S., Schirrmacher R., Mascarin A., Weber W., Eiber M., Schwaiger M., et al. Automated synthesis of [(18)F]Ga-rhPSMA-7/-7.3: Results, quality control and experience from more than 200 routine productions. EJNMMI Radiopharm. Chem. 2021;6:4. doi: 10.1186/s41181-021-00120-5.
    1. Rauscher I., Karimzadeh A., Schiller K., Horn T., D’Alessandria C., Franz C., Worther H., Nguyen N., Combs S.E., Weber W.A., et al. Detection efficacy of (18)F-rhPSMA-7.3 PET/CT and impact on patient management in patients with biochemical recurrence of prostate cancer after radical prostatectomy and prior to potential salvage treatment. J. Nucl. Med. 2021 doi: 10.2967/jnumed.120.260091.
    1. Malaspina S., Oikonen V., Kuisma A., Ettala O., Mattila K., Bostrom P.J., Minn H., Kalliokoski K., Postema E.J., Miller M.P., et al. Kinetic analysis and optimisation of (18)F-rhPSMA-7.3 PET imaging of prostate cancer. Eur J. Nucl. Med. Mol. Imaging. 2021;48:3723–3731. doi: 10.1007/s00259-021-05346-8.
    1. Luurtsema G., Pichler V., Bongarzone S., Seimbille Y., Elsinga P., Gee A., Vercouillie J. EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: Impact on safety and imaging quality. EJNMMI Radiopharm. Chem. 2021;6:34. doi: 10.1186/s41181-021-00149-6.
    1. Langbein T., Wurzer A., Gafita A., Robertson A., Wang H., Arcay A., Herz M., Wester H.J., Weber W.A., Eiber M. The Influence of Specific Activity on the Biodistribution of (18)F-rhPSMA-7.3: A Retrospective Analysis of Clinical Positron Emission Tomography Data. J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.262471.
    1. Kuo H.T., Lepage M.L., Lin K.S., Pan J., Zhang Z., Liu Z., Pryyma A., Zhang C., Merkens H., Roxin A., et al. One-Step (18)F-Labeling and Preclinical Evaluation of Prostate-Specific Membrane Antigen Trifluoroborate Probes for Cancer Imaging. J. Nucl. Med. 2019;60:1160–1166. doi: 10.2967/jnumed.118.216598.
    1. Lepage M.L., Kuo H.T., Roxin A., Huh S., Zhang Z., Kandasamy R., Merkens H., Kumlin J.O., Limoges A., Zeisler S.K., et al. Toward (18) F-Labeled Theranostics: A Single Agent that Can Be Labeled with (18) F, (64) Cu, or (177) Lu. Chembiochem. 2020;21:943–947. doi: 10.1002/cbic.201900632.
    1. Boswell C.A., Sun X., Niu W., Weisman G.R., Wong E.H., Rheingold A.L., Anderson C.J. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J. Med. Chem. 2004;47:1465–1474. doi: 10.1021/jm030383m.
    1. Han X.D., Liu C., Liu F., Xie Q.H., Liu T.L., Guo X.Y., Xu X.X., Yang X., Zhu H., Yang Z. (64)Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model. Oncotarget. 2017;8:74159–74169. doi: 10.18632/oncotarget.18276.
    1. Avila-Rodriguez M.A., Rios C., Carrasco-Hernandez J., Manrique-Arias J.C., Martinez-Hernandez R., Garcia-Perez F.O., Jalilian A.R., Martinez-Rodriguez E., Romero-Pina M.E., Diaz-Ruiz A. Biodistribution and radiation dosimetry of [(64)Cu]copper dichloride: First-in-human study in healthy volunteers. EJNMMI Res. 2017;7:98. doi: 10.1186/s13550-017-0346-4.
    1. Hoberuck S., Wunderlich G., Michler E., Holscher T., Walther M., Seppelt D., Platzek I., Zophel K., Kotzerke J. Dual-time-point (64) Cu-PSMA-617-PET/CT in patients suffering from prostate cancer. J. Label. Comp. Radiopharm. 2019;62:523–532. doi: 10.1002/jlcr.3745.
    1. Eychenne R., Cherel M., Haddad F., Guerard F., Gestin J.F. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The “Hopeful Eight”. Pharmaceutics. 2021;13:906. doi: 10.3390/pharmaceutics13060906.
    1. Duchemin C., Ramos J.P., Stora T., Ahmed E., Aubert E., Audouin N., Barbero E., Barozier V., Bernardes A.P., Bertreix P., et al. CERN-MEDICIS: A Review Since Commissioning in 2017. Front. Med. 2021;8:693682. doi: 10.3389/fmed.2021.693682.
    1. Radchenko V., Morgenstern A., Jalilian A.R., Ramogida C.F., Cutler C., Duchemin C., Hoehr C., Haddad F., Bruchertseifer F., Gausemel H., et al. Production and Supply of alpha-Particle-Emitting Radionuclides for Targeted alpha-Therapy. J. Nucl. Med. 2021;62:1495–1503. doi: 10.2967/jnumed.120.261016.
    1. Sathekge M., Bruchertseifer F., Knoesen O., Reyneke F., Lawal I., Lengana T., Davis C., Mahapane J., Corbett C., Vorster M., et al. (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: A pilot study. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:129–138. doi: 10.1007/s00259-018-4167-0.
    1. Sathekge M., Bruchertseifer F., Vorster M., Lawal I.O., Knoesen O., Mahapane J., Davis C., Reyneke F., Maes A., Kratochwil C., et al. Predictors of Overall and Disease-Free Survival in Metastatic Castration-Resistant Prostate Cancer Patients Receiving (225)Ac-PSMA-617 Radioligand Therapy. J. Nucl. Med. 2020;61:62–69. doi: 10.2967/jnumed.119.229229.
    1. Sathekge M.M., Bruchertseifer F., Lawal I.O., Vorster M., Knoesen O., Lengana T., Boshomane T.G., Mokoala K.K., Morgenstern A. Treatment of brain metastases of castration-resistant prostate cancer with (225)Ac-PSMA-617. Eur J. Nucl. Med. Mol. Imaging. 2019;46:1756–1757. doi: 10.1007/s00259-019-04354-z.
    1. Khreish F., Ebert N., Ries M., Maus S., Rosar F., Bohnenberger H., Stemler T., Saar M., Bartholoma M., Ezziddin S. (225)Ac-PSMA-617/(177)Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: Pilot experience. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:721–728. doi: 10.1007/s00259-019-04612-0.
    1. Ilhan H., Gosewisch A., Boning G., Volter F., Zacherl M., Unterrainer M., Bartenstein P., Todica A., Gildehaus F.J. Response to (225)Ac-PSMA-I&T after failure of long-term (177)Lu-PSMA RLT in mCRPC. Eur J. Nucl. Med. Mol. Imaging. 2021;48:1262–1263. doi: 10.1007/s00259-020-05023-2.
    1. Rosar F., Hau F., Bartholoma M., Maus S., Stemler T., Linxweiler J., Ezziddin S., Khreish F. Molecular imaging and biochemical response assessment after a single cycle of [(225)Ac]Ac-PSMA-617/[(177)Lu]Lu-PSMA-617 tandem therapy in mCRPC patients who have progressed on [(177)Lu]Lu-PSMA-617 monotherapy. Theranostics. 2021;11:4050–4060. doi: 10.7150/thno.56211.
    1. Sathekge M.M., Bruchertseifer F., Vorster M., Morgenstern A., Lawal I.O. Global experience with PSMA-based alpha therapy in prostate cancer. Eur J. Nucl. Med. Mol. Imaging. 2021 doi: 10.1007/s00259-021-05434-9.
    1. Roscher M., Bakos G., Benesova M. Atomic Nanogenerators in Targeted Alpha Therapies: Curie’s Legacy in Modern Cancer Management. Pharmaceuticals. 2020;13:76. doi: 10.3390/ph13040076.
    1. Feuerecker B., Tauber R., Knorr K., Heck M., Beheshti A., Seidl C., Bruchertseifer F., Pickhard A., Gafita A., Kratochwil C., et al. Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur. Urol. 2021;79:343–350. doi: 10.1016/j.eururo.2020.11.013.
    1. Verburg F.A., Nonnekens J., Konijnenberg M.W., de Jong M. To go where no one has gone before: The necessity of radiobiology studies for exploration beyond the limits of the “Holy Gray” in radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:2680–2682. doi: 10.1007/s00259-020-05147-5.
    1. Dhiantravan N., Hofman M.S., Ravi Kumar A.S. Actinium-225 Prostate-specific Membrane Antigen Theranostics: Will alpha Beat beta? Eur. Urol. 2021;79:351–352. doi: 10.1016/j.eururo.2020.12.011.
    1. Aerts A., Eberlein U., Holm S., Hustinx R., Konijnenberg M., Strigari L., van Leeuwen F.W.B., Glatting G., Lassmann M. EANM position paper on the role of radiobiology in nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:3365–3377. doi: 10.1007/s00259-021-05345-9.
    1. Pouget J.P., Constanzo J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front. Med. 2021;8:692436. doi: 10.3389/fmed.2021.692436.
    1. Kelly J.M., Amor-Coarasa A., Sweeney E., Wilson J.J., Causey P.W., Babich J. A Consensus Time for Performing Quality Control of 225Ac-Labeled Radiopharmaceuticals. Res. Sq. 2020 doi: 10.21203/-39342/v2.
    1. Hooijman E.L., Chalashkan Y., Ling S.W., Kahyargil F.F., Segbers M., Bruchertseifer F., Morgenstern A., Seimbille Y., Koolen S.L.W., Brabander T., et al. Development of [(225)Ac]Ac-PSMA-I&T for Targeted Alpha Therapy According to GMP Guidelines for Treatment of mCRPC. Pharmaceutics. 2021;13:715. doi: 10.3390/pharmaceutics13050715.
    1. Dumond A.R.S., Rodnick M.E., Piert M.R., Scott P.J.H. Synthesis of 225Ac-PSMA-617 for preclinical use. Curr. Radiopharm. 2021 doi: 10.2174/1874471014666210709094616.
    1. Pretze M., Kunkel F., Runge R., Freudenberg R., Braune A., Hartmann H., Schwarz U., Brogsitter C., Kotzerke J. Ac-EAZY! Towards GMP-Compliant Module Syntheses of (225)Ac-Labeled Peptides for Clinical Application. Pharmaceuticals. 2021;14:652. doi: 10.3390/ph14070652.
    1. Thakral P., Simecek J., Marx S., Kumari J., Pant V., Sen I.B. In-House Preparation and Quality Control of Ac-225 Prostate-Specific Membrane Antigen-617 for the Targeted Alpha Therapy of Castration-Resistant Prostate Carcinoma. Indian J. Nucl. Med. 2021;36:114–119. doi: 10.4103/ijnm.ijnm_200_20.
    1. Neels O., Patt M., Decristoforo C. Radionuclides: Medicinal products or rather starting materials? EJNMMI Radiopharm Chem. 2019;4:22. doi: 10.1186/s41181-019-0074-3.
    1. Decristoforo C., Neels O., Patt M. Emerging Radionuclides in a Regulatory Framework for Medicinal Products - How Do They Fit? Front. Med. 2021;8:678452. doi: 10.3389/fmed.2021.678452.
    1. Kiess A.P., Minn I., Vaidyanathan G., Hobbs R.F., Josefsson A., Shen C., Brummet M., Chen Y., Choi J., Koumarianou E., et al. (2S)-2-(3-(1-Carboxy-5-(4-211At-Astatobenzamido)Pentyl)Ureido)-Pentanedioic Acid for PSMA-Targeted alpha-Particle Radiopharmaceutical Therapy. J. Nucl. Med. 2016;57:1569–1575. doi: 10.2967/jnumed.116.174300.
    1. Mease R.C., Kang C., Kumar V., Ray S., Minn I.L., Brummet M., Gabrielson K., Feng Y., Park A., Kiess A., et al. An improved (211)At-labeled agent for PSMA-targeted alpha therapy. J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.262098.
    1. Lindegren S., Albertsson P., Back T., Jensen H., Palm S., Aneheim E. Realizing Clinical Trials with Astatine-211: The Chemistry Infrastructure. Cancer Biother. Radiopharm. 2020;35:425–436. doi: 10.1089/cbr.2019.3055.
    1. Feng Y., Zalutsky M.R. Production, purification and availability of (211)At: Near term steps towards global access. Nucl. Med. Biol. 2021;100–101:12–23. doi: 10.1016/j.nucmedbio.2021.05.007.
    1. Zia N.A., Cullinane C., Van Zuylekom J.K., Waldeck K., McInnes L.E., Buncic G., Haskali M.B., Roselt P.D., Hicks R.J., Donnelly P.S. A Bivalent Inhibitor of Prostate Specific Membrane Antigen Radiolabeled with Copper-64 with High Tumor Uptake and Retention. Angew. Chem. Int. Ed. Engl. 2019;58:14991–14994. doi: 10.1002/anie.201908964.
    1. McInnes L.E., Cullinane C., Roselt P.D., Jackson S., Blyth B.J., van Dam E.M., Zia N.A., Harris M.J., Hicks R.J., Donnelly P.S. Therapeutic Efficacy of a Bivalent Inhibitor of Prostate-Specific Membrane Antigen Labeled with (67)Cu. J. Nucl. Med. 2021;62:829–832. doi: 10.2967/jnumed.120.251579.
    1. Kelly J.M., Ponnala S., Amor-Coarasa A., Zia N.A., Nikolopoulou A., Williams C., Jr., Schlyer D.J., DiMagno S.G., Donnelly P.S., Babich J.W. Preclinical Evaluation of a High-Affinity Sarcophagine-Containing PSMA Ligand for (64)Cu/(67)Cu-Based Theranostics in Prostate Cancer. Mol. Pharm. 2020;17:1954–1962. doi: 10.1021/acs.molpharmaceut.0c00060.
    1. McNeil B.L., Robertson A.K.H., Fu W., Yang H., Hoehr C., Ramogida C.F., Schaffer P. Production, purification, and radiolabeling of the (203)Pb/(212)Pb theranostic pair. EJNMMI Radiopharm. Chem. 2021;6:6. doi: 10.1186/s41181-021-00121-4.
    1. Dos Santos J.C., Schafer M., Bauder-Wust U., Lehnert W., Leotta K., Morgenstern A., Kopka K., Haberkorn U., Mier W., Kratochwil C. Development and dosimetry of (203)Pb/(212)Pb-labelled PSMA ligands: Bringing “the lead” into PSMA-targeted alpha therapy? Eur. J. Nucl. Med. Mol. Imaging. 2019;46:1081–1091. doi: 10.1007/s00259-018-4220-z.
    1. Stenberg V.Y., Juzeniene A., Chen Q., Yang X., Bruland O.S., Larsen R.H. Preparation of the alpha-emitting prostate-specific membrane antigen targeted radioligand [(212) Pb]Pb-NG001 for prostate cancer. J. Label. Comp. Radiopharm. 2020;63:129–143. doi: 10.1002/jlcr.3825.
    1. Stenberg V.Y., Juzeniene A., Bruland O.S., Larsen R.H. In situ Generated 212Pb-PSMA Ligand in a 224Ra-Solution for Dual Targeting of Prostate Cancer Sclerotic Stroma and PSMA-positive Cells. Curr. Radiopharm. 2020;13:130–141. doi: 10.2174/1874471013666200511000532.
    1. Stenberg V.Y., Larsen R.H., Ma L.W., Peng Q., Juzenas P., Bruland O.S., Juzeniene A. Evaluation of the PSMA-Binding Ligand (212)Pb-NG001 in Multicellular Tumour Spheroid and Mouse Models of Prostate Cancer. Int. J. Mol. Sci. 2021;22:815. doi: 10.3390/ijms22094815.
    1. De Kruijff R.M., Wolterbeek H.T., Denkova A.G. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals. 2015;8:321–336. doi: 10.3390/ph8020321.
    1. Muller C., Zhernosekov K., Koster U., Johnston K., Dorrer H., Hohn A., van der Walt N.T., Turler A., Schibli R. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for alpha- and beta- radionuclide therapy: An in vivo proof-of-concept study with a new receptor-targeted folate derivative. J. Nucl. Med. 2012;53:1951–1959. doi: 10.2967/jnumed.112.107540.
    1. Umbricht C.A., Koster U., Bernhardt P., Gracheva N., Johnston K., Schibli R., van der Meulen N.P., Muller C. Alpha-PET for Prostate Cancer: Preclinical investigation using (149)Tb-PSMA-617. Sci. Rep. 2019;9:17800. doi: 10.1038/s41598-019-54150-w.
    1. Muller C., Umbricht C.A., Gracheva N., Tschan V.J., Pellegrini G., Bernhardt P., Zeevaart J.R., Koster U., Schibli R., van der Meulen N.P. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J. Nucl. Med. Mol. Imaging. 2019;46:1919–1930. doi: 10.1007/s00259-019-04345-0.
    1. Bernhardt P., Svensson J., Hemmingsson J., van der Meulen N.P., Zeevaart J.R., Konijnenberg M.W., Muller C., Kindblom J. Dosimetric Analysis of the Short-Ranged Particle Emitter (161)Tb for Radionuclide Therapy of Metastatic Prostate Cancer. Cancers. 2021;13:11. doi: 10.3390/cancers13092011.
    1. Palmer T.L., Tkacz-Stachowska K., Skartlien R., Omar N., Hassfjell S., Mjos A., Bergvoll J., Brevik E.M., Hjelstuen O. Microdosimetry modeling with auger emitters in generalized cell geometry. Phys. Med. Biol. 2021;66 doi: 10.1088/1361-6560/ac01f5.
    1. Muller C., Domnanich K.A., Umbricht C.A., van der Meulen N.P. Scandium and terbium radionuclides for radiotheranostics: Current state of development towards clinical application. Br. J. Radiol. 2018;91:20180074. doi: 10.1259/bjr.20180074.
    1. Naskar N., Lahiri S. Theranostic Terbium Radioisotopes: Challenges in Production for Clinical Application. Front. Med. 2021;8:675014. doi: 10.3389/fmed.2021.675014.
    1. Vazquez S.M., Endepols H., Fischer T., Tawadros S.G., Hohberg M., Zimmermanns B., Dietlein F., Neumaier B., Drzezga A., Dietlein M., et al. Translational Development of a Zr-89-Labeled Inhibitor of Prostate-specific Membrane Antigen for PET Imaging in Prostate Cancer. Mol. Imaging Biol. 2021 doi: 10.1007/s11307-021-01632-x.
    1. Dietlein F., Kobe C., Munoz Vazquez S., Fischer T., Endepols H., Hohberg M., Reifegerst M., Neumaier B., Schomaecker K., Drzezga A.E., et al. An (89)Zr-labeled PSMA tracer for PET/CT imaging of prostate cancer patients. J. Nucl. Med. 2021 doi: 10.2967/jnumed.121.262290.
    1. Noor A., Van Zuylekom J.K., Rudd S.E., Waldeck K., Roselt P.D., Haskali M.B., Wheatcroft M.P., Yan E., Hicks R.J., Cullinane C., et al. Bivalent Inhibitors of Prostate-Specific Membrane Antigen Conjugated to Desferrioxamine B Squaramide Labeled with Zirconium-89 or Gallium-68 for Diagnostic Imaging of Prostate Cancer. J. Med. Chem. 2020;63:9258–9270. doi: 10.1021/acs.jmedchem.0c00291.
    1. Schafer M., Bauder-Wust U., Leotta K., Zoller F., Mier W., Haberkorn U., Eisenhut M., Eder M. A dimerized urea-based inhibitor of the prostate-specific membrane antigen for 68Ga-PET imaging of prostate cancer. EJNMMI Res. 2012;2:23. doi: 10.1186/2191-219X-2-23.

Source: PubMed

3
Sottoscrivi