The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes

Paulina Krzyszczyk, Rene Schloss, Andre Palmer, François Berthiaume, Paulina Krzyszczyk, Rene Schloss, Andre Palmer, François Berthiaume

Abstract

Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes) to anti-inflammatory (M2-like phenotypes). Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation-the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1) expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds.

Keywords: chronic wounds; inflammation; macrophages; skin regeneration; wound healing.

Figures

Figure 1
Figure 1
Monocyte-Macrophage Recruitment and Differentiation in Wounds. The mechanism of monocyte recruitment and macrophage differentiation during dermal wound healing can vary depending on spatiotemporal cues. A few models are presented: (1) Classical monocytes in the circulation are primed to differentiate into M1 macrophages following extravasation. In the wound microenvironment, they respond to spatiotemporal cues and can differentiate into any of the M2-like phenotypes, which can transdifferentiate into one another. For brevity, M2a, b, c and d phenotypes are also categorized as M2-like in the remaining processes. (2) Classical monocytes can differentiate into M1 macrophages in the wound. In contrast to the first model, in this panel, macrophages retain the M1 phenotype without further differentiating to M2-like macrophages. Similarly, non-classical monocytes are primed to differentiate into M2-like macrophages and can retain this phenotype. This panel suggests that the final macrophage phenotype is predetermined by the starting monocyte phenotype, and an M1/M2 transition does not occur. (3) This model shows that classical monocytes, rather than macrophages, can also persist in the wound environment for several days, and at a later time, differentiate into non-classical monocytes and then M2-like macrophages. Dashes on the blood vessel indicate that monocytes can exit damaged vasculature via micro-hemorrhages. The yellow star-shape represents resident macrophages, which are established during embryonic development. The purple star-shape represents a possible Mhem phenotype in wounds (analogous to that found in atherosclerotic plaques) which breakdowns hemoglobin and releases anti-inflammatory factors.
Figure 2
Figure 2
The Role of Macrophage Phenotypes in Wound Healing. Acute wounds progress through the phases of inflammation, proliferation and remodeling as they heal. In inflammation, pro-inflammatory macrophages are present. Their role is to phagocytose dead cells and bacteria and prepare the wound for healing. In proliferation, pro-wound healing macrophages are present. They secrete factors that aid in angiogenesis, formation of granulation tissue, collagen deposition, and reepithelialization. In remodeling, pro-resolving macrophages aid in breakdown of the provisional granulation tissue to allow for maturation of collagen and strengthening of the newly regenerated skin. Below the diagrams are the general roles and timing of different macrophage phenotypes during the wound healing process. Differences between in vivo and in vitro classifications are separated by the dashed line, however similar roles can be seen between many of the phenotypes. The timing is an estimate based on the role of each phenotype, and has not been experimentally confirmed.

References

    1. Ahanger A. A., Prawez S., Leo M. D., Kathirvel K., Kumar D., Tandan S. K., et al. . (2010). Pro-healing potential of hemin: an inducer of heme oxygenase-1. Eur. J. Pharmacol. 645, 165–170. 10.1016/j.ejphar.2010.06.048
    1. Auffray C., Fogg D., Garfa M., Elain G., Join-Lambert O., Kayal S., et al. . (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670. 10.1126/science.1142883
    1. Barminko J. A., Nativ N. I., Schloss R., Yarmush M. L. (2014). Fractional factorial design to investigate stromal cell regulation of macrophage plasticity. Biotechnol. Bioeng. 111, 2239–2251. 10.1002/bit.25282
    1. Barrientos S., Brem H., Stojadinovic O., Tomic-Canic M. (2014). Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 22, 569–578. 10.1111/wrr.12205
    1. Baum C. L., Arpey C. J. (2005). Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 31, 674–686. discussion: 86. 10.1097/00042728-200506000-00011
    1. Benson R. M., Minter L. M., Osborne B. A., Granowitz E. V. (2003). Hyperbaric oxygen inhibits stimulus-induced proinflammatory cytokine synthesis by human blood-derived monocyte-macrophages. Clin. Exp. Immunol. 134, 57–62. 10.1046/j.1365-2249.2003.02248.x
    1. Bianchi M. E., Manfredi A. A. (2009). Immunology. Dangers in and out. Science 323, 1683–1684. 10.1126/science.1172794
    1. Blakney A. K., Swartzlander M. D., Bryant S. J. (2012). The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100, 1375–1386. 10.1002/jbm.a.34104
    1. Blakytny R., Jude E. (2006). The molecular biology of chronic wounds and delayed healing in diabetes. Diabet. Med. 23, 594–608. 10.1111/j.1464-5491.2006.01773.x
    1. Boyette L. B., Macedo C., Hadi K., Elinoff B. D., Walters J. T., Ramaswami B., et al. . (2017). Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE 12:e0176460. 10.1371/journal.pone.0176460
    1. Boyle J. J. (2012). Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage. Curr. Opin. Lipidol. 23, 453–461. 10.1097/MOL.0b013e328356b145
    1. Cairo G., Recalcati S., Mantovani A., Locati M. (2011). Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 32, 241–247. 10.1016/j.it.2011.03.007
    1. Carls G. S., Gibson T. B., Driver V. R., Wrobel J. S., Garoufalis M. G., Defrancis R. R., et al. . (2011). The economic value of specialized lower-extremity medical care by podiatric physicians in the treatment of diabetic foot ulcers. J. Am. Podiatr. Med. Assoc. 101, 93–115. 10.7547/1010093
    1. Castellana D., Paus R., Perez-Moreno M. (2014). Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol. 12:e1002002. 10.1371/journal.pbio.1002002
    1. Cha B. H., Shin S. R., Leijten J., Li Y. C., Singh S., Liu J. C., et al. . (2017). Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv. Healthc. Mater. 6, 1–12. 10.1002/adhm.201700289
    1. Chen L., Mirza R., Kwon Y., DiPietro L. A., Koh T. J. (2015). The murine excisional wound model: contraction revisited. Wound Repair Regen. 23, 874–877. 10.1111/wrr.12338
    1. Chen L., Tredget E. E., Wu P. Y., Wu Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 3:e1886. 10.1371/journal.pone.0001886
    1. Chen Q. Y., Wang G. G., Li W., Jiang Y. X., Lu X. H., Zhou P. P. (2016). Heme oxygenase-1 promotes delayed wound healing in diabetic rats. J. Diabetes Res. 2016:9726503. 10.1155/2016/9726503
    1. Christoph T., Müller-Röver S., Audring H., Tobin D. J., Hermes B., Cotsarelis G., et al. . (2000). The human hair follicle immune system: cellular composition and immune privilege. Br. J. Dermatol. 142, 862–873. 10.1046/j.1365-2133.2000.03464.x
    1. Cianfarani F., Tommasi R., Failla C. M., Viviano M. T., Annessi G., Papi M., et al. . (2006). Granulocyte/macrophage colony-stimulating factor treatment of human chronic ulcers promotes angiogenesis associated with de novo vascular endothelial growth factor transcription in the ulcer bed. Br. J. Dermatol. 154, 34–41. 10.1111/j.1365-2133.2005.06925.x
    1. Colin S., Chinetti-Gbaguidi G., Staels B. (2014). Macrophage phenotypes in atherosclerosis. Immunol. Rev. 262, 153–166. 10.1111/imr.12218
    1. Crane M. J., Daley J. M., van Houtte O., Brancato S. K., Henry W. L., Jr., Albina J. E. (2014). The monocyte to macrophage transition in the murine sterile wound. PLoS ONE 9:e86660. 10.1371/journal.pone.0086660
    1. Cros J., Cagnard N., Woollard K., Patey N., Zhang S. Y., Senechal B., et al. . (2010). Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375–386. 10.1016/j.immuni.2010.08.012
    1. Da Costa R. M., Ribeiro Jesus F. M., Aniceto C., Mendes M. (1999). Randomized, double-blind, placebo-controlled, dose- ranging study of granulocyte-macrophage colony stimulating factor in patients with chronic venous leg ulcers. Wound Repair Regen. 7, 17–25. 10.1046/j.1524-475X.1999.00017.x
    1. Dai T., Tanaka M., Huang Y. Y., Hamblin M. R. (2011). Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther. 9, 857–879. 10.1586/eri.11.59
    1. Daley J. M., Brancato S. K., Thomay A. A., Reichner J. S., Albina J. E. (2010). The phenotype of murine wound macrophages. J. Leukoc. Biol. 87, 59–67. 10.1189/jlb.0409236
    1. Danon D., Madjar J., Edinov E., Knyszynski A., Brill S., Diamantshtein L., et al. . (1997). Treatment of human ulcers by application of macrophages prepared from a blood unit. Exp. Gerontol. 32, 633–641. 10.1016/S0531-5565(97)00094-6
    1. Davies L. C., Jenkins S. J., Allen J. E., Taylor P. R. (2013). Tissue-resident macrophages. Nat. Immunol. 14, 986–995. 10.1038/ni.2705
    1. Doebel T., Voisin B., Nagao K. (2017). Langerhans cells - the macrophage in dendritic cell clothing. Trends Immunol. 38, 817–828. 10.1016/j.it.2017.06.008
    1. Eichmüller S., van der Veen C., Moll I., Hermes B., Hofmann U., Müller-Röver S., et al. . (1998). Clusters of perifollicular macrophages in normal murine skin: physiological degeneration of selected hair follicles by programmed organ deletion. J. Histochem. Cytochem. 46, 361–370. 10.1177/002215549804600310
    1. Etzerodt A., Kjolby M., Nielsen M. J., Maniecki M., Svendsen P., Moestrup S. K. (2013). Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid. Redox Signal. 18, 2254–2263. 10.1089/ars.2012.4605
    1. Evans B. J., Haskard D. O., Sempowksi G., Landis R. C. (2013). Evolution of the macrophage CD163 phenotype and cytokine profiles in a human model of resolving inflammation. Int. J. Inflam. 2013:780502. 10.1155/2013/780502
    1. Falanga V. (2005). Wound healing and its impairment in the diabetic foot. Lancet 366, 1736–1743. 10.1016/S0140-6736(05)67700-8
    1. Fantin A., Vieira J. M., Gestri G., Denti L., Schwarz Q., Prykhozhij S., et al. . (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840. 10.1182/blood-2009-12-257832
    1. Faulknor R. A., Olekson M. A., Ekwueme E. C., Krzyszczyk P., Freeman J. W., Berthiaume F. (2017). Hypoxia impairs mesenchymal stromal cell-induced macrophage M1 to M2 transition Technology. 5, 81–86. 10.1142/S2339547817500042
    1. Ferrante C. J., Leibovich S. J. (2012). Regulation of macrophage polarization and wound healing. Adv. Wound Care 1, 10–16. 10.1089/wound.2011.0307
    1. Filardy A. A., Pires D. R., Nunes M. P., Takiya C. M., Freire-de-Lima C. G., Ribeiro-Gomes F. L., et al. . (2010). Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages. J. Immunol. 185, 2044–2050. 10.4049/jimmunol.1000017
    1. Frenkel O., Shani E., Ben-Bassat I., Brok-Simoni F., Rozenfeld-Granot G., Kajakaro G., et al. . (2002). Activated macrophages for treating skin ulceration: gene expression in human monocytes after hypo-osmotic shock. Clin. Exp. Immunol. 128, 59–66. 10.1046/j.1365-2249.2002.01630.x
    1. Frykberg R. G., Banks J. (2015). Challenges in the treatment of chronic wounds. Adv Wound Care 4, 560–582. 10.1089/wound.2015.0635
    1. Funato N., Moriyama K., Saitoh M., Baba Y., Ichijo H., Kuroda T. (1998). Evidence for apoptosis signal-regulating kinase 1 in the regenerating palatal epithelium upon acute injury. Lab. Invest. 78, 477–483.
    1. Gallucci S. (2016). Chapter 1 - An Overview of the Innate Immune Response to Infectious and Noninfectious Stressors A2 - Amadori, Massimo. (San Diego, CA: The Innate Immune Response to Noninfectious Stressors, Academic Press; ), 1–24.
    1. Garash R., Bajpai A., Marcinkiewicz B. M., Spiller K. L. (2016). Drug delivery strategies to control macrophages for tissue repair and regeneration. Exp. Biol. Med. 241, 1054–1063. 10.1177/1535370216649444
    1. Ginhoux F., Schultze J. L., Murray P. J., Ochando J., Biswas S. K. (2016). New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17, 34–40. 10.1038/ni.3324
    1. Gordois A., Scuffham P., Shearer A., Oglesby A., Tobian J. A. (2003). The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care 26, 1790–1795. 10.2337/diacare.26.6.1790
    1. Goren I., Allmann N., Yogev N., Schürmann C., Linke A., Holdener M., et al. . (2009). A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am. J. Pathol. 175, 132–147. 10.2353/ajpath.2009.081002
    1. Goren I., Müller E., Schiefelbein D., Christen U., Pfeilschifter J., Muhl H., et al. . (2007). Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages. J. Invest. Dermatol. 127, 2259–2267. 10.1038/sj.jid.5700842
    1. Grochot-Przeczek A., Lach R., Mis J., Skrzypek K., Gozdecka M., Sroczynska P., et al. . (2009). Heme oxygenase-1 accelerates cutaneous wound healing in mice. PLoS ONE 4:e5803. 10.1371/journal.pone.0005803
    1. Hanselmann C., Mauch C., Werner S. (2001). Haem oxygenase-1: a novel player in cutaneous wound repair and psoriasis? Biochem. J. 353(Pt 3), 459–466. 10.1042/bj3530459
    1. Hesketh M., Sahin K. B., West Z. E., Murray R. Z. (2017). Macrophage phenotypes regulate scar formation and chronic wound healing. Int. J. Mol. Sci. 18:E1545. 10.3390/ijms18071545
    1. Italiani P., Boraschi D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. Functional differentiation. Front Immunol. 5:514. 10.3389/fimmu.2014.00514
    1. Jetten N., Roumans N., Gijbels M. J., Romano A., Post M. J., de Winther M. P., et al. . (2014). Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS ONE 9:e102994. 10.1371/journal.pone.0102994
    1. Kajahn J., Franz S., Rueckert E., Forstreuter I., Hintze V., Moeller S., et al. . (2012). Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2, 226–236. 10.4161/biom.22855
    1. Kapitulnik J. (2004). Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol. Pharmacol. 66, 773–779. 10.1124/mol.104.002832
    1. Khanna S., Biswas S., Shang Y., Collard E., Azad A., Kauh C., et al. . (2010). Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS ONE 5:e9539. 10.1371/journal.pone.0009539
    1. Kim J., Hematti P. (2009). Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 37, 1445–1453. 10.1016/j.exphem.2009.09.004
    1. Lacey D. C., Achuthan A., Fleetwood A. J., Dinh H., Roiniotis J., Scholz G. M., et al. . (2012). Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J. Immunol. 188, 5752–5765. 10.4049/jimmunol.1103426
    1. Leibovich S. J., Ross R. (1975). The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am. J. Pathol. 78, 71–100.
    1. Liu Z. J., Velazquez O. C. (2008). Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid. Redox Signal. 10, 1869–1882. 10.1089/ars.2008.2121
    1. Loots M. A., Lamme E. N., Zeegelaar J., Mekkes J. R., Bos J. D., Middelkoop E. (1998). Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J. Invest. Dermatol. 111, 850–857. 10.1046/j.1523-1747.1998.00381.x
    1. Lovászi M., Mattii M., Eyerich K., Gácsi A., Csányi E., Kovács D., et al. . (2017). Sebum lipids influence macrophage polarization and activation. Br. J. Dermatol. 177, 1671–1682. 10.1111/bjd.15754
    1. Lu D., Chen B., Liang Z., Deng W., Jiang Y., Li S., et al. . (2011). Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res. Clin. Pract. 92, 26–36. 10.1016/j.diabres.2010.12.010
    1. Lundvig D. M., Immenschuh S., Wagener F. A. (2012). Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly? Front. Pharmacol. 3:81. 10.3389/fphar.2012.00081
    1. Mackool R. J., Gittes G. K., Longaker M. T. (1998). Scarless healing. The fetal wound. Clin. Plast. Surg. 25, 357–365.
    1. Malissen B., Tamoutounour S., Henri S. (2014). The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 14, 417–428. 10.1038/nri3683
    1. Mann A., Breuhahn K., Schirmacher P., Blessing M. (2001). Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J. Invest. Dermatol. 117, 1382–1390. 10.1046/j.0022-202x.2001.01600.x
    1. Martinez F. O., Gordon S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13. 10.12703/P6-13
    1. McWhorter F. Y., Wang T., Nguyen P., Chung T., Liu W. F. (2013). Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. U.S.A. 110, 17253–17258. 10.1073/pnas.1308887110
    1. Medbury H. J., Williams H., Fletcher J. P. (2014). Clinical significance of macrophage phenotypes in cardiovascular disease. Clin. Transl. Med. 3:63. 10.1186/s40169-014-0042-1
    1. MedMarket Diligence (2012). Worldwide Market for Surgical Sealants, Glues, Wound Closure and Anti-Adhesion 2010–2017.
    1. MedMarket Diligence (2015). Wound Management to 2024. Contract No. S251.
    1. Mestas J., Hughes C. C. (2004). Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738. 10.4049/jimmunol.172.5.2731
    1. Minutti C. M., Knipper J. A., Allen J. E., Zaiss D. M. (2017). Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3–11. 10.1016/j.semcdb.2016.08.006
    1. Mirza R., Koh T. J. (2011). Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine 56, 256–264. 10.1016/j.cyto.2011.06.016
    1. Mirza R., DiPietro L. A., Koh T. J. (2009). Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol. 175, 2454–2462. 10.2353/ajpath.2009.090248
    1. Moore K., Ruge F., Harding K. G. (1997). T lymphocytes and the lack of activated macrophages in wound margin biopsies from chronic leg ulcers. Br. J. Dermatol. 137, 188–194. 10.1046/j.1365-2133.1997.18041895.x
    1. Mosser D. M., Edwards J. P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969. 10.1038/nri2448
    1. Murray P. J., Wynn T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737. 10.1038/nri3073
    1. Murray P. J., Allen J. E., Biswas S. K., Fisher E. A., Gilroy D. W., Goerdt S., et al. . (2014). Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20. 10.1016/j.immuni.2014.06.008
    1. Murray P. J. (2017). Macrophage polarization. Annu. Rev. Physiol. 79, 541–566. 10.1146/annurev-physiol-022516-034339
    1. Mustoe T. A., Purdy J., Gramates P., Deuel T. F., Thomason A., Pierce G. F. (1989). Reversal of impaired wound healing in irradiated rats by platelet-derived growth factor-BB. Am. J. Surg. 158, 345–350. 10.1016/0002-9610(89)90131-1
    1. Naito Y., Takagi T., Higashimura Y. (2014). Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch. Biochem. Biophys. 564, 83–88. 10.1016/j.abb.2014.09.005
    1. Newby A. C. (2008). Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler. Thromb. Vasc. Biol. 28, 2108–2114. 10.1161/ATVBAHA.108.173898
    1. Njoroge J. M., Mitchell L. B., Centola M., Kastner D., Raffeld M., Miller J. L. (2001). Characterization of viable autofluorescent macrophages among cultured peripheral blood mononuclear cells. Cytometry 44, 38–44. 10.1002/1097-0320(20010501)44:1<38::AID-CYTO1080>;2-T
    1. Novak M. L., Koh T. J. (2013). Macrophage phenotypes during tissue repair. J. Leukoc. Biol. 93, 875–881. 10.1189/jlb.1012512
    1. Nunan R., Harding K. G., Martin P. (2014). Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis. Model. Mech. 7, 1205–1213. 10.1242/dmm.016782
    1. Nuschke A. (2014). Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis 10, 29–37. 10.4161/org.27405
    1. Nussbaum S. R., Carter M. J., Fife C. E., DaVanzo J., Haught R., Nusgart M., et al. . (2018). An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21, 27–32. 10.1016/j.jval.2017.07.007
    1. Németh K., Leelahavanichkul A., Yuen P. S., Mayer B., Parmelee A., Doi K., et al. . (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42–49. 10.1038/nm.1905
    1. Ogle M. E., Segar C. E., Sridhar S., Botchwey E. A. (2016). Monocytes and macrophages in tissue repair: implications for immunoregenerative biomaterial design. Exp. Biol. Med. 241, 1084–1097. 10.1177/1535370216650293
    1. Osaka N., Takahashi T., Murakami S., Matsuzawa A., Noguchi T., Fujiwara T., et al. . (2007). ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J. Cell Biol. 176, 903–909. 10.1083/jcb.200611015
    1. Palmer A. F., Intaglietta M. (2014). Blood substitutes. Annu. Rev. Biomed. Eng. 16, 77–101. 10.1146/annurev-bioeng-071813-104950
    1. Palmer A. F., Sun G., Harris D. R. (2009). The quaternary structure of tetrameric hemoglobin regulates the oxygen affinity of polymerized hemoglobin. Biotechnol. Prog. 25, 1803–1809. 10.1002/btpr.265
    1. Parakkal P. F. (1969). Role of macrophages in collagen resorption during hair growth cycle. J. Ultrastruct. Res. 29, 210–217. 10.1016/S0022-5320(69)90101-4
    1. Pasparakis M., Haase I., Nestle F. O. (2014). Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289–301. 10.1038/nri3646
    1. Peluso G., Petillo O., Ranieri M., Santin M., Ambrosio L., Calabro D., et al. . (1994). Chitosan-mediated stimulation of macrophage function. Biomaterials 15, 1215–1220. 10.1016/0142-9612(94)90272-0
    1. Posnett J., Franks P. J. (2008). The burden of chronic wounds in the UK. Nurs. Times 104, 44–45.
    1. Rodero M. P., Licata F., Poupel L., Hamon P., Khosrotehrani K., Combadiere C., et al. . (2014). In vivo imaging reveals a pioneer wave of monocyte recruitment into mouse skin wounds. PLoS ONE 9:e108212. 10.1371/journal.pone.0108212
    1. Roszer T. (2015). Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015:816460. 10.1155/2015/816460
    1. Ryter S. W., Alam J., Choi A. M. (2006). Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583–650. 10.1152/physrev.00011.2005
    1. Satpathy A. T., Wu X., Albring J. C., Murphy K. M. (2012). Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154. 10.1038/ni.2467
    1. Self-Fordham J. B., Naqvi A. R., Uttamani J. R., Kulkarni V., Nares S. (2017). MicroRNA: dynamic regulators of macrophage polarization and plasticity. Front. Immunol. 8:1062. 10.3389/fimmu.2017.01062
    1. Sen C. K., Gordillo G. M., Roy S., Kirsner R., Lambert L., Hunt T. K., et al. . (2009). Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17, 763–771. 10.1111/j.1524-475X.2009.00543.x
    1. Sen C. K. (2009). Wound healing essentials: let there be oxygen. Wound Repair Regen. 17, 1–18. 10.1111/j.1524-475X.2008.00436.x
    1. Sindrilaru A., Scharffetter-Kochanek K. (2013). Disclosure of the culprits: macrophages-versatile regulators of wound healing. Adv. Wound Care 2, 357–368. 10.1089/wound.2012.0407
    1. Sindrilaru A., Peters T., Wieschalka S., Baican C., Baican A., Peter H., et al. . (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121, 985–997. 10.1172/JCI44490
    1. Singer A. J., Clark R. A. (1999). Cutaneous wound healing. N. Engl. J. Med. 341, 738–746. 10.1056/NEJM199909023411006
    1. Smith Nephew (2018). Mechanism of Action –Regranex (becaplermin) Gel. Available online at:
    1. Spiller K. L., Anfang R. R., Spiller K. J., Ng J., Nakazawa K. R., Daulton J. W., et al. . (2014). The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35, 4477–4488. 10.1016/j.biomaterials.2014.02.012
    1. Stern R., Maibach H. I. (2008). Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin. Dermatol. 26, 106–122. 10.1016/j.clindermatol.2007.09.013
    1. Stojadinovic O., Yin N., Lehmann J., Pastar I., Kirsner R. S., Tomic-Canic M. (2013). Increased number of Langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunol. Res. 57, 222–228. 10.1007/s12026-013-8474-z
    1. Takeo M., Lee W., Ito M. (2015). Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 5:a023267. 10.1101/cshperspect.a023267
    1. Tarnuzzer R. W., Schultz G. S. (1996). Biochemical analysis of acute and chronic wound environments. Wound Repair Regen. 4, 321–325. 10.1046/j.1524-475X.1996.40307.x
    1. Ueno H., Nakamura F., Murakami M., Okumura M., Kadosawa T., Fujinag T. (2001). Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials 22, 2125–2130. 10.1016/S0142-9612(00)00401-4
    1. Vannella K. M., Wynn T. A. (2017). Mechanisms of organ injury and repair by macrophages. Annu. Rev. Physiol. 79, 593–617. 10.1146/annurev-physiol-022516-034356
    1. Vishwakarma A., Bhise N. S., Evangelista M. B., Rouwkema J., Dokmeci M. R., Ghaemmaghami A. M., et al. (2016). Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol. 4, 470–482. 10.1016/j.tibtech.2016.03.009
    1. Wallace H. J., Stacey M. C. (1998). Levels of tumor necrosis factor-alpha (TNF-alpha) and soluble TNF receptors in chronic venous leg ulcers–correlations to healing status. J. Invest. Dermatol. 110, 292–296. 10.1046/j.1523-1747.1998.00113.x
    1. Wetzler C., Kämpfer H., Stallmeyer B., Pfeilschifter J., Frank S. (2000). Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J. Invest. Dermatol. 115, 245–253. 10.1046/j.1523-1747.2000.00029.x
    1. Wysocki A. B., Staiano-Coico L., Grinnell F. (1993). Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J. Invest. Dermatol. 101, 64–68. 10.1111/1523-1747.ep12359590
    1. Yang L., Zhang Y. (2017). Tumor-associated macrophages: from basic research to clinical application. J. Hematol. Oncol. 10:58. 10.1186/s13045-017-0430-2
    1. Yona S., Kim K. W., Wolf Y., Mildner A., Varol D., Breker M., et al. . (2013). Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91. 10.1016/j.immuni.2012.12.001
    1. Zhang Q. Z., Su W. R., Shi S. H., Wilder-Smith P., Xiang A. P., Wong A., et al. . (2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28, 1856–1868. 10.1002/stem.503
    1. Zhao R., Liang H., Clarke E., Jackson C., Xue M. (2016). Inflammation in chronic wounds. Int. J. Mol. Sci. 17:2085. 10.3390/ijms17122085
    1. Zhou M., Zhang Y., Ardans J. A., Wahl L. M. (2003). Interferon-gamma differentially regulates monocyte matrix metalloproteinase-1 and−9 through tumor necrosis factor-α and caspase 8. J. Biol. Chem. 278, 45406–45413. 10.1074/jbc.M309075200
    1. Zuloff-Shani A., Adunsky A., Even-Zahav A., Semo H., Orenstein A., Tamir J., et al. . (2010). Hard to heal pressure ulcers (stage III-IV): efficacy of injected activated macrophage suspension (AMS) as compared with standard of care (SOC) treatment controlled trial. Arch. Gerontol Geriatr. 51, 268–272. 10.1016/j.archger.2009.11.015
    1. Zuloff-Shani A., Kachel E., Frenkel O., Orenstein A., Shinar E., Danon D. (2004). Macrophage suspensions prepared from a blood unit for treatment of refractory human ulcers. Transfus. Apher. Sci. 30, 163–167. 10.1016/j.transci.2003.11.007

Source: PubMed

3
Sottoscrivi