Bioactive Nutrients and Nutrigenomics in Age-Related Diseases

Tania Rescigno, Luigina Micolucci, Mario F Tecce, Anna Capasso, Tania Rescigno, Luigina Micolucci, Mario F Tecce, Anna Capasso

Abstract

The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

Keywords: aging; bioactive nutrients; dietary; molecular pathological epidemiology; nutrigenomics; oxi-inflamm-aging.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. National Research Council (U.S.) Committee on Population . In: Between Zeus and the Salmon. Wachter K.W., Finch C.E., editors. National Academies Press (U.S.); Washington, DC, USA: 1997.
    1. Weinert B.T., Timiras P.S. Invited review: Theories of aging. J. Appl. Physiol. 2003;95:1706–1716. doi: 10.1152/japplphysiol.00288.2003.
    1. Yang J., Huang T., Song W., Petralia F., Mobbs C.V., Zhang B., Zhao Y., Schadt E.E., Zhu J., Tu Z. Discover the network mechanisms underlying the connections between aging and age-related diseases. Sci. Rep. 2016;6:32566. doi: 10.1038/srep32566.
    1. Srivastava I., Thukral N., Hasija Y. Genetics of human age related disorders. Adv. Gerontol. Uspekhi Gerontol. 2015;28:228–247.
    1. Pizza V., Agresta A., D’Acunto C.W., Festa M., Capasso A. Neuroinflammation and ageing: Current theories and an overview of the data. Rev. Recent Clin. Trials. 2011;6:189–203. doi: 10.2174/157488711796575577.
    1. Kowald A., Kirkwood T.B. A network theory of ageing: The interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat. Res. 1996;316:209–236. doi: 10.1016/S0921-8734(96)90005-3.
    1. Von Zglinicki T., Martin-Ruiz C.M. Telomeres as biomarkers for ageing and age-related diseases. Curr. Mol. Med. 2005;5:197–203. doi: 10.2174/1566524053586545.
    1. Bonfigli A.R., Spazzafumo L., Prattichizzo F., Bonafè M., Mensà E., Micolucci L., Giuliani A., Fabbietti P., Testa R., Boemi M., et al. Leukocyte telomere length and mortality risk in patients with type 2 diabetes. Oncotarget. 2016;7:50835–50844. doi: 10.18632/oncotarget.10615.
    1. Olivieri F., Albertini M.C., Orciani M., Ceka A., Cricca M., Procopio A.D., Bonafè M. DNA damage response (DDR) and senescence: Shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget. 2015;6:35509–35521.
    1. Maslov A.Y., Vijg J. Genome instability, cancer and aging. Biochim. Biophys. Acta Gen. Subj. 2009;1790:963–969. doi: 10.1016/j.bbagen.2009.03.020.
    1. Dai D.-F., Chiao Y., Marcinek D.J., Szeto H.H., Rabinovitch P.S. Mitochondrial oxidative stress in aging and healthspan. Longev. Health. 2014;3:6. doi: 10.1186/2046-2395-3-6.
    1. Bhatti J.S., Bhatti G.K., Reddy P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2016 doi: 10.1016/j.bbadis.2016.11.010.
    1. Singhal G., Jaehne E.J., Corrigan F., Toben C., Baune B.T. Inflammasomes in neuroinflammation and changes in brain function: A focused review. Front. Neurosci. 2014;8:315. doi: 10.3389/fnins.2014.00315.
    1. Bessueille L., Magne D. Inflammation: A culprit for vascular calcification in atherosclerosis and diabetes. Cell. Mol. Life Sci. 2015;72:2475–2489. doi: 10.1007/s00018-015-1876-4.
    1. Guarner V., Rubio-Ruiz M.E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip. Top. Gerontol. 2015;40:99–106.
    1. Franceschi C., Bonafè M., Valensin S., Olivieri F., de Luca M., Ottaviani E., de Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. De la Fuente M., Miquel J. An update of the oxidation-inflammation theory of aging: The involvement of the immune system in oxi-inflamm-aging. Curr. Pharm. Des. 2009;15:3003–3026. doi: 10.2174/138161209789058110.
    1. Ricordi C., Garcia-Contreras M., Farnetti S. Diet and inflammation: Possible effects on immunity, chronic diseases, and life span. J. Am. Coll. Nutr. 2015;34:10–13. doi: 10.1080/07315724.2015.1080101.
    1. Pelicci P.G., Migliaccio E., Giorgio M., Mele S., Pelicci G., Reboldi P., Pandolfi P.P., Lanfrancone L. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402:309–313. doi: 10.1038/46311.
    1. Puca A.A., Daly M.J., Brewster S.J., Matise T.C., Barrett J., Shea-Drinkwater M., Kang S., Joyce E., Nicoli J., Benson E., et al. A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc. Natl. Acad. Sci. USA. 2001;98:10505–10508. doi: 10.1073/pnas.181337598.
    1. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965;37:614–636. doi: 10.1016/0014-4827(65)90211-9.
    1. Judith C. Cellular Senescence and Cell Death. In: Timiras P.S., editor. Physiological Basis of Aging and Geriatrics. 3rd ed. CRC Press; Boca Raton, FL, USA: 2003. pp. 47–59.
    1. Blackburn E.H. Telomere states and cell fates. Nature. 2000;408:53–56. doi: 10.1038/35040500.
    1. Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L., Coviello G.M., Wright W.E., Weinrich S.L., Shay J.W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015. doi: 10.1126/science.7605428.
    1. Reddel R.R. The role of senescence and immortalization in carcinogenesis. Carcinogenesis. 2000;21:477–484. doi: 10.1093/carcin/21.3.477.
    1. Ferrara N., Corbi G., Scarpa D., Rengo G., Longobardi G., Mazzella F., Cacciatore F., Rengo F. Teorie dell’invecchiamento The aging theories. G. Gerontol. 2005;53:57–74.
    1. Smith R.G., Betancourt L., Sun Y. Molecular endocrinology and physiology of the aging central nervous system. Endocr. Rev. 2005;26:203–250. doi: 10.1210/er.2002-0017.
    1. Pizza V., Agresta A., Iorio E.L., Capasso A. Oxidative stress and aging: a clinical and biochemical study. Pharmacologyonline. 2013;2:28–37.
    1. Cannon W.B. The Wisdom of the Body. W. W. Norton & Company; New York, NY, USA: 1932.
    1. McEwen B.S. The End of Stress as We Know It. Joseph Henry Press; Washington, DC, USA: 2002.
    1. Selye H. The Stress of Life. McGraw-Hill; New York, NY, USA: 1976.
    1. Nawata H., Yanase T., Goto K., Okabe T., Nomura M., Ashida K., Watanabe T. Adrenopause. Horm. Res. 2004;62:110–114. doi: 10.1159/000080509.
    1. Graham D., McLachlan A. Declining melatonin levels and older people. How old is old? Neuro Endocrinol. Lett. 2004;25:415–418.
    1. Arendt J. Melatonin. Clin. Endocrinol. (Oxf.) 1988;29:205–229. doi: 10.1111/j.1365-2265.1988.tb00263.x.
    1. Armstrong S.M., Redman J.R. Melatonin: A chronobiotic with anti-aging properties? Med. Hypotheses. 1991;34:300–309. doi: 10.1016/0306-9877(91)90046-2.
    1. Bondy S.C., Sharman E.H. Melatonin and the aging brain. Neurochem. Int. 2007;50:571–580. doi: 10.1016/j.neuint.2006.12.014.
    1. Pierpaoli W., Regelson W. Pineal control of aging: Effect of melatonin and pineal grafting on aging mice. Proc. Natl. Acad. Sci. USA. 1994;91:787–791. doi: 10.1073/pnas.91.2.787.
    1. Karasek M. Melatonin, human aging, and age-related diseases. Exp. Gerontol. 2004;39:1723–1729. doi: 10.1016/j.exger.2004.04.012.
    1. Rudman D., Feller A.G., Nagraj H.S., Gergans G.A., Lalitha P.Y., Goldberg A.F., Schlenker R.A., Cohn L., Rudman I.W., Mattson D.E. Effects of human growth hormone in men over 60 years old. N. Engl. J. Med. 1990;323:1–6. doi: 10.1056/NEJM199007053230101.
    1. Nass R., Park J., Thorner M.O. Growth hormone supplementation in the elderly. Endocrinol. Metab. Clin. N. Am. 2007;36:233–245. doi: 10.1016/j.ecl.2006.08.004.
    1. Snyder P.J., Peachey H., Hannoush P., Berlin J.A., Loh L., Lenrow D.A., Holmes J.H., Dlewati A., Santanna J., Rosen C.J., et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J. Clin. Endocrinol. Metab. 1999;84:2647–2653. doi: 10.1210/jc.84.8.2647.
    1. Stoll B.A. Dietary supplements of dehydroepiandrosterone in relation to breast cancer risk. Eur. J. Clin. Nutr. 1999;53:771–775. doi: 10.1038/sj.ejcn.1600889.
    1. Effros R.B. From Hayflick to Walford: The role of T cell replicative senescence in human aging. Exp. Gerontol. 2004;39:885–890. doi: 10.1016/j.exger.2004.03.004.
    1. Zhang H., Puleston D.J., Simon A.K. Autophagy and immune senescence. Trends Mol. Med. 2016;22:671–686. doi: 10.1016/j.molmed.2016.06.001.
    1. Gerli R., Paganelli R., Cossarizza A., Muscat C., Piccolo G., Barbieri D., Mariotti S., Monti D., Bistoni O., Raiola E., et al. Long-term immunologic effects of thymectomy in patients with myasthenia gravis. J. Allergy Clin. Immunol. 1999;103:865–872. doi: 10.1016/S0091-6749(99)70431-8.
    1. Effros R.B. Ageing and the immune system. Novartis Found. Symp. 2001;235:146–149.
    1. Fagnoni F.F., Vescovini R., Mazzola M., Bologna G., Nigro E., Lavagetto G., Franceschi C., Passeri M., Sansoni P. Expansion of cytotoxic CD8+ CD28− T cells in healthy ageing people, including centenarians. Immunology. 1996;88:501–507. doi: 10.1046/j.1365-2567.1996.d01-689.x.
    1. Timm J.A., Thoman M.L. Maturation of CD4+ lymphocytes in the aged microenvironment results in a memory-enriched population. J. Immunol. 1999;162:711–717.
    1. Effros R.B. Long-term immunological memory against viruses. Mech. Ageing Dev. 2000;121:161–171. doi: 10.1016/S0047-6374(00)00207-4.
    1. Wikby A., Johansson B., Olsson J., Löfgren S., Nilsson B.O., Ferguson F. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: The Swedish NONA immune study. Exp. Gerontol. 2002;37:445–453. doi: 10.1016/S0531-5565(01)00212-1.
    1. Pawelec G., Ouyang Q., Wagner W., Biol D., Wikby A. Pathways to a robust immune response in the elderly. Immunol. Allergy Clin. N. Am. 2003;23:1–13. doi: 10.1016/S0889-8561(02)00075-9.
    1. Bonafè M., Valensin S., Gianni W., Marigliano V., Franceschi C. The unexpected contribution of immunosenescence to the leveling off of cancer incidence and mortality in the oldest old. Crit. Rev. Oncol. Hematol. 2001;39:227–233. doi: 10.1016/S1040-8428(01)00168-8.
    1. Pahlavani M.A. T cell signaling: Effect of age. Front. Biosci. 1998;3:D1120–D1133. doi: 10.2741/A349.
    1. Franceschi C., Monti D., Sansoni P., Cossarizza A. The immunology of exceptional individuals: The lesson of centenarians. Immunol. Today. 1995;16:12–16. doi: 10.1016/0167-5699(95)80064-6.
    1. Sansoni P., Cossarizza A., Brianti V., Fagnoni F., Snelli G., Monti D., Marcato A., Passeri G., Ortolani C., Forti E. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood. 1993;82:2767–2773.
    1. Franceschi C., Monti D., Barbieri D., Grassilli E., Troiano L., Salvioli S., Negro P., Capri M., Guido M., Azzi R., et al. Immunosenescence in Humans: Deterioration or Remodelling? Int. Rev. Immunol. 1995;12:57–74. doi: 10.3109/08830189509056702.
    1. Ogata K., Yokose N., Tamura H., An E., Nakamura K., Dan K., Nomura T. Natural killer cells in the late decades of human life. Clin. Immunol. Immunopathol. 1997;84:269–275. doi: 10.1006/clin.1997.4401.
    1. Remarque E., Pawelec G. T-cell immunosenescence and its clinical relevance in man. Rev. Clin. Gerontol. 1998;8:5–14. doi: 10.1017/S0959259898008028.
    1. Kourilsky P., Truffa-Bachi P. Cytokine fields and the polarization of the immune response. Trends Immunol. 2001;22:502–509. doi: 10.1016/S1471-4906(01)02012-9.
    1. Forsey R.J., Thompson J.M., Ernerudh J., Hurst T.L., Strindhall J., Johansson B., Nilsson B.-O., Wikby A. Plasma cytokine profiles in elderly humans. Mech. Ageing Dev. 2003;124:487–493. doi: 10.1016/S0047-6374(03)00025-3.
    1. Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 1972;26:239–257. doi: 10.1038/bjc.1972.33.
    1. Akbar A.N., Salmon M. Cellular environments and apoptosis: Tissue microenvironments control activated T-cell death. Immunol. Today. 1997;18:72–76. doi: 10.1016/S0167-5699(97)01003-7.
    1. Krammer P.H. CD95’s deadly mission in the immune system. Nature. 2000;407:789–795. doi: 10.1038/35037728.
    1. Gupta S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci. 2001;69:2957–2964. doi: 10.1016/S0024-3205(01)01404-7.
    1. Hengartner M.O. The biochemistry of apoptosis. Nature. 2000;407:770–776. doi: 10.1038/35037710.
    1. Jäättelä M., Tschopp J. Caspase-independent cell death in T lymphocytes. Nat. Immunol. 2003;4:416–423. doi: 10.1038/ni0503-416.
    1. Franceschi C., Valensin S., Bonafè M., Paolisso G., Yashin A.I., Monti D., De Benedictis G. The network and the remodeling theories of aging: Historical background and new perspectives. Exp. Gerontol. 2000;35:879–896. doi: 10.1016/S0531-5565(00)00172-8.
    1. De Martinis M., Franceschi C., Monti D., Ginaldi L. Apoptosis remodeling in immunosenescence: Implications for strategies to delay ageing. Curr. Med. Chem. 2007;14:1389–1397. doi: 10.2174/092986707780831122.
    1. Franceschi C., Bonafè M., Valensin S. Human immunosenescence: The prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18:1717–1720. doi: 10.1016/S0264-410X(99)00513-7.
    1. Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. doi: 10.1038/35041687.
    1. Franceschi C. Cell proliferation, cell death and aging. Aging (Milano) 1989;1:3–15. doi: 10.1007/BF03323871.
    1. Franceschi C., Ottaviani E. Stress, inflammation and natural immunity in the aging process: A new theory. Aging (Milano) 1997;9:30–31. doi: 10.1007/BF03339694.
    1. Salvioli S., Capri M., Valensin S., Tieri P., Monti D., Ottaviani E., Franceschi C. Inflamm-aging, cytokines and aging: State of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr. Pharm. Des. 2006;12:3161–3171. doi: 10.2174/138161206777947470.
    1. De Martinis M., Franceschi C., Monti D., Ginaldi L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 2005;579:2035–2039. doi: 10.1016/j.febslet.2005.02.055.
    1. Fagiolo U., Cossarizza A., Scala E., Fanales-Belasio E., Ortolani C., Cozzi E., Monti D., Franceschi C., Paganelli R. Increased cytokine production in mononuclear cells of healthy elderly people. Eur. J. Immunol. 1993;23:2375–2378. doi: 10.1002/eji.1830230950.
    1. Lio D., Scola L., Crivello A., Colonna-Romano G., Candore G., Bonafé M., Cavallone L., Marchegiani F., Olivieri F., Franceschi C., et al. Inflammation, genetics, and longevity: Further studies on the protective effects in men of IL-10-1082 promoter SNP and its interaction with TNF-α-308 promoter SNP. J. Med. Genet. 2003;40:296–299. doi: 10.1136/jmg.40.4.296.
    1. Candore G., Colonna-Romano G., Balistreri C.R., Carlo D.D., Grimaldi M.P., Listì F., Nuzzo D., Vasto S., Lio D., Caruso C. Biology of Longevity: Role of the Innate Immune System. Rejuvenation Res. 2006;9:143–148. doi: 10.1089/rej.2006.9.143.
    1. Giunta S. Is inflammaging an auto[innate]immunity subclinical syndrome? Immun. Ageing. 2006;3:12. doi: 10.1186/1742-4933-3-12.
    1. Campisi J., d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007;8:729–740. doi: 10.1038/nrm2233.
    1. Childs B.G., Durik M., Baker D.J., van Deursen J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015;21:1424–1435. doi: 10.1038/nm.4000.
    1. Franceschi C., Motta L., Valensin S., Rapisarda R., Franzone A., Berardelli M., Motta M., Monti D., Bonafè M., Ferrucci L., et al. Do men and women follow different trajectories to reach extreme longevity? Italian Multicenter Study on Centenarians (IMUSCE) Aging (Milano) 2000;12:77–84.
    1. Ginaldi L., de Martinis M., Monti D., Franceschi C. The immune system in the elderly: Activation-induced and damage-induced apoptosis. Immunol. Res. 2004;30:81–94. doi: 10.1385/IR:30:1:081.
    1. Bonafè M., Olivieri F., Cavallone L., Giovagnetti S., Mayegiani F., Cardelli M., Pieri C., Marra M., Antonicelli R., Lisa R., et al. A gender—Dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur. J. Immunol. 2001;31:2357–2361. doi: 10.1002/1521-4141(200108)31:8<2357::AID-IMMU2357>;2-X.
    1. Capri M., Salvioli S., Sevini F., Valensin S., Celani L., Monti D., Pawelec G., de Benedictis G., Gonos E.S., Franceschi C. The Genetics of Human Longevity. Ann. N. Y. Acad. Sci. 2006;1067:252–263. doi: 10.1196/annals.1354.033.
    1. Franceschi C., Bezrukov V., Blanché H., Bolund L., Christensen K., de Benedictis G., Deiana L., Gonos E., Hervonen A., Yang H., et al. Genetics of healthy aging in Europe: The EU-integrated project GEHA (GEnetics of Healthy Aging) Ann. N. Y. Acad. Sci. 2007;1100:21–45. doi: 10.1196/annals.1395.003.
    1. Khan N., Shariff N., Cobbold M., Bruton R., Ainsworth J.A., Sinclair A.J., Nayak L., Moss P.A.H. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 2002;169:1984–1992. doi: 10.4049/jimmunol.169.4.1984.
    1. Ouyang Q., Wagner W.M., Walter S., Müller C.A., Wikby A., Aubert G., Klatt T., Stevanovic S., Dodi T., Pawelec G. An age-related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein-Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen-specific responsiveness. Mech. Ageing Dev. 2003;124:477–485. doi: 10.1016/S0047-6374(03)00026-5.
    1. Pawelec G., Akbar A., Caruso C., Solana R., Grubeck-Loebenstein B., Wikby A. Human immunosenescence: Is it infectious? Immunol. Rev. 2005;205:257–268. doi: 10.1111/j.0105-2896.2005.00271.x.
    1. Vescovini R., Telera A., Fagnoni F.F., Biasini C., Medici M.C., Valcavi P., di Pede P., Lucchini G., Zanlari L., Passeri G., et al. Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T cells. Exp. Gerontol. 2004;39:1233–1243. doi: 10.1016/j.exger.2004.04.004.
    1. Bürkle A., Caselli G., Franceschi C., Mariani E., Sansoni P., Santoni A., Vecchio G., Witkowski J.M., Caruso C. Pathophysiology of ageing, longevity and age related diseases. Immun. Ageing. 2007;4:4. doi: 10.1186/1742-4933-4-4.
    1. Kammerman E.M., Neumann D.M., Ball M.J., Lukiw W., Hill J.M. Senile plaques in Alzheimer’s diseased brains: possible association of beta-amyloid with herpes simplex virus type 1 (HSV-1) l-particles. Med. Hypotheses. 2006;66:294–299. doi: 10.1016/j.mehy.2005.07.033.
    1. Itzhaki R. Herpes simplex virus type 1, apolipoprotein E and Alzheimer’ disease. Herpes. 2004;11:77A–82A.
    1. Letenneur L., Pérès K., Fleury H., Garrigue I., Barberger-Gateau P., Helmer C., Orgogozo J.-M., Gauthier S., Dartigues J.-F. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: A population-based cohort study. PLoS ONE. 2008;3:e3637. doi: 10.1371/journal.pone.0003637.
    1. Malaquin N., Carrier-Leclerc A., Dessureault M., Rodier F. DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front. Genet. 2015;6:94. doi: 10.3389/fgene.2015.00094.
    1. Prattichizzo F., Bonafè M., Ceka A., Giuliani A., Rippo M.R., Re M., Antonicelli R., Procopio A.D., Olivieri F. Endothelial Cell Senescence and Inflammaging: MicroRNAs as Biomarkers and Innovative Therapeutic Tools. Curr. Drug Targets. 2016;17:388–397. doi: 10.2174/1389450116666150804105659.
    1. Cesari M., Penninx B.W.J.H., Pahor M., Lauretani F., Corsi A.M., Rhys Williams G., Guralnik J.M., Ferrucci L. Inflammatory markers and physical performance in older persons: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2004;59:242–248. doi: 10.1093/gerona/59.3.M242.
    1. Rowshani A.T., Bemelman F.J., van Leeuwen E.M.M., van Lier R.A.W., ten Berge I.J.M. Clinical and immunologic aspects of cytomegalovirus infection in solid organ transplant recipients. Transplantation. 2005;79:381–386. doi: 10.1097/01.TP.0000148239.00384.F0.
    1. Salvioli S., Olivieri F., Marchegiani F., Cardelli M., Santoro A., Bellavista E., Mishto M., Invidia L., Capri M., Valensin S., et al. Genes, ageing and longevity in humans: Problems, advantages and perspectives. Free Radic. Res. 2006;40:1303–1323. doi: 10.1080/10715760600917136.
    1. Carrieri G., Marzi E., Olivieri F., Marchegiani F., Cavallone L., Cardelli M., Giovagnetti S., Stecconi R., Molendini C., Trapassi C., et al. The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: A study in Italian centenarians. Aging Cell. 2004;3:443–448. doi: 10.1111/j.1474-9728.2004.00129.x.
    1. Caruso C., Lio D., Cavallone L., Franceschi C. Aging, longevity, inflammation, and cancer. Ann. N. Y. Acad. Sci. 2004;1028:1–13. doi: 10.1196/annals.1322.001.
    1. Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., Panourgia M.P., Invidia L., Celani L., Scurti M., et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007;128:92–105. doi: 10.1016/j.mad.2006.11.016.
    1. Scannapieco F.A., Cantos A. Oral inflammation and infection, and chronic medical diseases: Implications for the elderly. Periodontology. 2016;72:153–175. doi: 10.1111/prd.12129.
    1. Gloeckler Ries L.A., Reichman M.E., Lewis D.R., Hankey B.F., Edwards B.K. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist. 2003;8:541–552. doi: 10.1634/theoncologist.8-6-541.
    1. Serrano M., Blasco M.A. Cancer and ageing: Convergent and divergent mechanisms. Nat. Rev. Mol. Cell Biol. 2007;8:715–722. doi: 10.1038/nrm2242.
    1. Finkel T., Serrano M., Blasco M.A. The common biology of cancer and ageing. Nature. 2007;448:767–774. doi: 10.1038/nature05985.
    1. Derhovanessian E., Solana R., Larbi A., Pawelec G. Immunity, ageing and cancer. Immun. Ageing. 2008;5:11. doi: 10.1186/1742-4933-5-11.
    1. Thun M.J., Henley S.J., Gansler T. Inflammation and cancer: An epidemiological perspective. Novartis Found. Symp. 2004;256:266–269.
    1. Macarthur M., Hold G.L., El-Omar E.M. Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol. 2004;286:G515–G520. doi: 10.1152/ajpgi.00475.2003.
    1. Erlinger T.P., Platz E.A., Rifai N., Helzlsouer K.J. C-Reactive protein and the risk of incident colorectal cancer. JAMA. 2004;291:585. doi: 10.1001/jama.291.5.585.
    1. Hussain S.P., Hofseth L.J., Harris C.C. Radical causes of cancer. Nat. Rev. Cancer. 2003;3:276–285. doi: 10.1038/nrc1046.
    1. Szlosarek P.W., Balkwill F.R. Tumour necrosis factor alpha: A potential target for the therapy of solid tumours. Lancet. Oncol. 2003;4:565–573. doi: 10.1016/S1470-2045(03)01196-3.
    1. Palma G., D’Aiuto M., Petrillo A., Dallemagne P., Sinicropi M.S., Rodriquez M., Longo P., Mariconda A.L., Arra C., De Martino F., et al. Targeting STAT3 in cancer inhibition. Pharmacologyonline. 2015;1:50–66.
    1. Olivieri F., Rippo M.R., Monsurrò V., Salvioli S., Capri M., Procopio A.D., Franceschi C. MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res. Rev. 2013;12:1056–1068. doi: 10.1016/j.arr.2013.05.001.
    1. Epstein F.H., Ross R. Atherosclerosis—An Inflammatory Disease. N. Engl. J. Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207.
    1. Goate A., Chartier-Harlin M.-C., Mullan M., Brown J., Crawford F., Fidani L., Giuffra L., Haynes A., Irving N., James L., et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349:704–706. doi: 10.1038/349704a0.
    1. Sherrington R., Rogaev E.I., Liang Y., Rogaeva E.A., Levesque G., Ikeda M., Chi H., Lin C., Li G., Holman K., et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375:754–760. doi: 10.1038/375754a0.
    1. Rogaev E.I., Sherrington R., Rogaeva E.A., Levesque G., Ikeda M., Liang Y., Chi H., Lin C., Holman K., Tsuda T., et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376:775–778. doi: 10.1038/376775a0.
    1. Solerte S.B., Fioravanti M., Pascale A., Ferrari E., Govoni S., Battaini F. Increased natural killer cell cytotoxicity in Alzheimer’s disease may involve protein kinase C dysregulation. Neurobiol. Aging. 1998;19:191–199. doi: 10.1016/S0197-4580(98)00050-5.
    1. Solerte S.B., Fioravanti M., Vignati G., Giustina A., Cravello L., Ferrari E. Dehydroepiandrosterone sulfate enhances natural killer cell cytotoxicity in humans via locally generated immunoreactive insulin-like growth factor I. J. Clin. Endocrinol. Metab. 1999;84:3260–3267. doi: 10.1210/jc.84.9.3260.
    1. Licastro F., Pedrini S., Caputo L., Annoni G., Davis L.J., Ferri C., Casadei V., Grimaldi L.M. Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: Peripheral inflammation or signals from the brain? J. Neuroimmunol. 2000;103:97–102. doi: 10.1016/S0165-5728(99)00226-X.
    1. Licastro F., Pedrini S., Ferri C., Casadei V., Govoni M., Pession A., Sciacca F.L., Veglia F., Annoni G., Bonafè M., et al. Gene polymorphism affecting alpha1-antichymotrypsin and interleukin-1 plasma levels increases Alzheimer’s disease risk. Ann. Neurol. 2000;48:388–391. doi: 10.1002/1531-8249(200009)48:3<388::AID-ANA16>;2-G.
    1. De Luigi A., Fragiacomo C., Lucca U., Quadri P., Tettamanti M., Grazia De Simoni M. Inflammatory markers in Alzheimer’s disease and multi-infarct dementia. Mech. Ageing Dev. 2001;122:1985–1995. doi: 10.1016/S0047-6374(01)00313-X.
    1. Licastro F., Chiappelli M. Brain immune responses cognitive decline and dementia: Relationship with phenotype expression and genetic background. Mech. Ageing Dev. 2003;124:539–548. doi: 10.1016/S0047-6374(03)00034-4.
    1. Mukherjee P., Pasinetti G.M. The role of complement anaphylatoxin C5a in neurodegeneration: Implications in Alzheimer’s disease. J. Neuroimmunol. 2000;105:124–130. doi: 10.1016/S0165-5728(99)00261-1.
    1. Tan J., Town T., Paris D., Mori T., Suo Z., Crawford F., Mattson M.P., Flavell R.A., Mullan M. Microglial activation resulting from CD40-CD40L interaction after β-amyloid stimulation. Science. 1999;286:2352–2355. doi: 10.1126/science.286.5448.2352.
    1. Tuppo E.E., Arias H.R. The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2005;37:289–305. doi: 10.1016/j.biocel.2004.07.009.
    1. In’T Veld B.A., Ruitenberg A., Hofman A., Launer L.J., van Duijn C.M., Stijnen T., Breteler M.M.B., Stricker B.H.C. Nonsteroidal antiinflammatory drugs and the risk of alzheimer’s disease. N. Engl. J. Med. 2001;345:1515–1521. doi: 10.1056/NEJMoa010178.
    1. Licastro F., Grimaldi L.M.E., Bonafè M., Martina C., Olivieri F., Cavallone L., Giovanietti S., Masliah E., Franceschi C. Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain. Neurobiol. Aging. 2003;24:921–926. doi: 10.1016/S0197-4580(03)00013-7.
    1. Candore G., Balistreri C.R., Colonna-Romano G., Lio D., Caruso C. Major histocompatibility complex and sporadic Alzheimer’s disease: A critical reappraisal. Exp. Gerontol. 2004;39:645–652. doi: 10.1016/j.exger.2003.10.027.
    1. Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G.M., Cooper N.R., Eikelenboom P., Emmerling M., Fiebich B.L., et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging. 2000;21:383–421. doi: 10.1016/S0197-4580(00)00124-X.
    1. Scola L., Licastro F., Chiappelli M., Franceschi C., Grimaldi L.M., Crivello A., Colonna-Romano G., Candore G., Lio D., Caruso C. Allele frequencies of +874T → A single nucleotide polymorphism at the first intron of IFN-gamma gene in Alzheimer’s disease patients. Aging Clin. Exp. Res. 2003;15:292–295. doi: 10.1007/BF03324511.
    1. Lio D., Licastro F., Scola L., Chiappelli M., Grimaldi L.M., Crivello A., Colonna-Romano G., Candore G., Franceschi C., Caruso C. Interleukin-10 promoter polymorphism in sporadic Alzheimer’s disease. Genes Immun. 2003;4:234–238. doi: 10.1038/sj.gene.6363964.
    1. McGeer P.L., McGeer E.G. Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Arch. Neurol. 2001;58:1790–1792. doi: 10.1001/archneur.58.11.1790.
    1. Licastro F., Candore G., Lio D., Porcellini E., Colonna-Romano G., Franceschi C., Caruso C. Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immun. Ageing. 2005;2:8. doi: 10.1186/1742-4933-2-8.
    1. Ordovas J.M., Corella D. Nutritional genomics. Annu. Rev. Genom. Hum. Genet. 2004;5:71–118. doi: 10.1146/annurev.genom.5.061903.180008.
    1. Armstrong B., Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int. J. Cancer. 1975;15:617–631. doi: 10.1002/ijc.2910150411.
    1. Bacalini M.G., Friso S., Olivieri F., Pirazzini C., Giuliani C., Capri M., Santoro A., Franceschi C., Garagnani P. Present and future of anti-ageing epigenetic diets. Mech. Ageing Dev. 2014;136–137:101–115. doi: 10.1016/j.mad.2013.12.006.
    1. Jeffery I.B., O’Toole P.W. Diet-microbiota interactions and their implications for healthy living. Nutrients. 2013;5:234–252. doi: 10.3390/nu5010234.
    1. Neuhouser M.L., Patterson R.E., King I.B., Horner N.K., Lampe J.W. Selected nutritional biomarkers predict diet quality. Public Health Nutr. 2003;6:703–709. doi: 10.1079/PHN2003486.
    1. Eilat-Adar S., Goldbourt U. Nutritional recommendations for preventing coronary heart disease in women: Evidence concerning whole foods and supplements. Nutr. Metab. Cardiovasc. Dis. 2010;20:459–466. doi: 10.1016/j.numecd.2010.01.011.
    1. Milner J.A. Molecular targets for bioactive food components. J. Nutr. 2004;134:2492S–2498S.
    1. Lee S.-A. Gene-Diet Interaction on Cancer Risk in Epidemiological Studies. J. Prev. Med. Public Health. 2009;42:360. doi: 10.3961/jpmph.2009.42.6.360.
    1. Roberts M.A., Mutch D.M., German J.B. Genomics: Food and nutrition. Curr. Opin. Biotechnol. 2001;12:516–522. doi: 10.1016/S0958-1669(00)00256-1.
    1. Ostan R., Lanzarini C., Pini E., Scurti M., Vianello D., Bertarelli C., Fabbri C., Izzi M., Palmas G., Biondi F., et al. Inflammaging and cancer: A challenge for the Mediterranean diet. Nutrients. 2015;7:2589–2621. doi: 10.3390/nu7042589.
    1. Berendsen A., Santoro A., Pini E., Cevenini E., Ostan R., Pietruszka B., Rolf K., Cano N., Caille A., Lyon-Belgy N., et al. Reprint of: A parallel randomized trial on the effect of a healthful diet on inflammageing and its consequences in European elderly people: Design of the NU-AGE dietary intervention study. Mech. Ageing Dev. 2014;136–137:14–21. doi: 10.1016/j.mad.2014.03.001.
    1. Fenech M., El-Sohemy A., Cahill L., Ferguson L.R., French T.-A.C., Tai E.S., Milner J., Koh W.-P., Xie L., Zucker M., et al. Nutrigenetics and nutrigenomics: Viewpoints on the current status and applications in nutrition research and practice. J. Nutrigenet. Nutrigenom. 2011;4:69–89. doi: 10.1159/000327772.
    1. Ferguson J.F., Allayee H., Gerszten R.E., Ideraabdullah F., Kris-Etherton P.M., Ordovás J.M., Rimm E.B., Wang T.J., Bennett B.J. American Heart Association Council on Functional Genomics and Translational Biology, Council on Epidemiology and Prevention, and Stroke Council Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Genet. 2016;9:291–313.
    1. Preuss C., Das M.K., Pathak Y.V. Genomics and natural products: Role of bioinformatics and recent patents. Recent Pat. Biotechnol. 2014;8:144–151. doi: 10.2174/1872208309666140904110312.
    1. Evans W.E., Johnson J.A. Pharmacogenomics: The inherited basis for interindividual differences in drug response. Annu. Rev. Genom. Hum. Genet. 2001;2:9–39. doi: 10.1146/annurev.genom.2.1.9.
    1. Evans W.E., McLeod H.L., McLeod H.L. Pharmacogenomics--drug disposition, drug targets, and side effects. N. Engl. J. Med. 2003;348:538–549.
    1. Brouwer I.A., Zock P.L., van Amelsvoort L.G., Katan M.B., Schouten E.G. Association between n-3 fatty acid status in blood and electrocardiographic predictors of arrhythmia risk in healthy volunteers. Am. J. Cardiol. 2002;89:629–631. doi: 10.1016/S0002-9149(01)02314-1.
    1. Sacks F.M., Katan M. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am. J. Med. 2002;113:13S–24S. doi: 10.1016/S0002-9343(01)00987-1.
    1. Ohlsson L. Dairy products and plasma cholesterol levels. Food Nutr. Res. 2010;53:105–110. doi: 10.3402/fnr.v54i0.5124.
    1. Francis G.A., Fayard E., Picard F., Auwerx J. Nuclear Receptors and the Control of Metabolism. Annu. Rev. Physiol. 2003;65:261–311. doi: 10.1146/annurev.physiol.65.092101.142528.
    1. Willett W.C. Nutritional epidemiology issues in chronic disease at the turn of the century. Epidemiol. Rev. 2000;22:82–86. doi: 10.1093/oxfordjournals.epirev.a018029.
    1. Churchill G.A. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 2002;32:490–495. doi: 10.1038/ng1031.
    1. Lee C.-K., Allison D.B., Brand J., Weindruch R., Prolla T.A. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc. Natl. Acad. Sci. USA. 2002;99:14988–14993. doi: 10.1073/pnas.232308999.
    1. Cao S.X., Dhahbi J.M., Mote P.L., Spindler S.R. Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc. Natl. Acad. Sci. USA. 2001;98:10630–10635. doi: 10.1073/pnas.191313598.
    1. Xiao J., Gregersen S., Kruhøffer M., Pedersen S.B., Ørntoft T.F., Hermansen K. The effect of chronic exposure to fatty acids on gene expression in clonal insulin-producing cells: Studies using high density oligonucleotide microarray. Endocrinology. 2001;142:4777–4784. doi: 10.1210/endo.142.11.8483.
    1. Park J.-H., Ahn J., Kim S., Kwon D.Y., Ha T.Y. Murine hepatic miRNAs expression and regulation of gene expression in diet-induced obese mice. Mol. Cells. 2011;31:33–38. doi: 10.1007/s10059-011-0009-7.
    1. Reed B.D., Charos A.E., Szekely A.M., Weissman S.M., Snyder M. Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel functional roles and combinatorial regulation of distinct classes of genes. PLoS Genet. 2008;4:e1000133. doi: 10.1371/journal.pgen.1000133.
    1. Grody W.W. Molecular Genetic Risk Screening. Annu. Rev. Med. 2003;54:473–490. doi: 10.1146/annurev.med.54.101601.152127.
    1. Sachidanandam R., Weissman D., Schmidt S.C., Kakol J.M., Stein L.D., Marth G., Sherry S., Mullikin J.C., Mortimore B.J., Willey D.L., et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2010;409:928–933. doi: 10.1038/35057149.
    1. Blau N., van Spronsen F.J., Levy H.L. Phenylketonuria. Lancet (Lond., Engl.) 2010;376:1417–1427. doi: 10.1016/S0140-6736(10)60961-0.
    1. Terry P., Lichtenstein P., Feychting M., Ahlbom A., Wolk A. Fatty fish consumption and risk of prostate cancer. Lancet (Lond., Engl.) 2001;357:1764–1766. doi: 10.1016/S0140-6736(00)04889-3.
    1. Morise A., Thomas C., Landrier J.-F., Besnard P., Hermier D. Hepatic lipid metabolism response to dietary fatty acids is differently modulated by PPARalpha in male and female mice. Eur. J. Nutr. 2009;48:465–473. doi: 10.1007/s00394-009-0037-7.
    1. Dreja T., Jovanovic Z., Rasche A., Kluge R., Herwig R., Tung Y.C.L., Joost H.G., Yeo G.S.H., Al-Hasani H. Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome. Diabetologia. 2010;53:309–320. doi: 10.1007/s00125-009-1576-4.
    1. Ness G.C., Chambers C.M. Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase: The concept of cholesterol buffering capacity. Proc. Soc. Exp. Biol. Med. 2000;224:8–19. doi: 10.1046/j.1525-1373.2000.22359.x.
    1. Cheema S.K., Clandinin M.T. Dietary fat-induced suppression of lipogenic enzymes in B/B rats during the development of diabetes. Lipids. 2000;35:421–425. doi: 10.1007/s11745-000-540-z.
    1. Schmitz G., Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008;47:147–155. doi: 10.1016/j.plipres.2007.12.004.
    1. Chapkin R.S., Kim W., Lupton J.R., McMurray D.N. Dietary docosahexaenoic and eicosapentaenoic acid: Emerging mediators of inflammation. Prostaglandins Leukot. Essent. Fat. Acids. 2009;81:187–191. doi: 10.1016/j.plefa.2009.05.010.
    1. Bouwens M., van de Rest O., Dellschaft N., Bromhaar M.G., de Groot L.C., Geleijnse J.M., Müller M., Afman L.A. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am. J. Clin. Nutr. 2009;90:415–424. doi: 10.3945/ajcn.2009.27680.
    1. Bünger M., Hooiveld G.J., Kersten S., Müller M. Exploration of PPAR functions by microarray technology—A paradigm for nutrigenomics. Biochim. Biophys. Acta. 2007;1771:1046–1064. doi: 10.1016/j.bbalip.2007.05.004.
    1. Cobb J.P., Mindrinos M.N., Miller-Graziano C., Calvano S.E., Baker H.V., Xiao W., Laudanski K., Brownstein B.H., Elson C.M., Hayden D.L., et al. Application of genome-wide expression analysis to human health and disease. Proc. Natl. Acad. Sci. USA. 2005;102:4801–4806. doi: 10.1073/pnas.0409768102.
    1. Goyenechea E., Crujeiras A.B., Abete I., Martínez J.A. Expression of two inflammation-related genes (RIPK3 and RNF216) in mononuclear cells is associated with weight-loss regain in obese subjects. J. Nutrigenet. Nutrigenom. 2009;2:78–84. doi: 10.1159/000210452.
    1. Weisberg S.P., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003;112:1796–1808. doi: 10.1172/JCI200319246.
    1. Martin K.J., Graner E., Li Y., Price L.M., Kritzman B.M., Fournier M.V., Rhei E., Pardee A.B. High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood. Proc. Natl. Acad. Sci. USA. 2001;98:2646–2651. doi: 10.1073/pnas.041622398.
    1. Whitney A.R., Diehn M., Popper S.J., Alizadeh A.A., Boldrick J.C., Relman D.A., Brown P.O. Individuality and variation in gene expression patterns in human blood. Proc. Natl. Acad. Sci. USA. 2003;100:1896–1901. doi: 10.1073/pnas.252784499.
    1. Quackenbush J. Computational approaches to analysis of DNA microarray data. Yearb. Med. Inform. 2006;1:91–103.
    1. Lee W.-N.P., Go V.L.W. Nutrient-gene interaction: tracer-based metabolomics. J. Nutr. 2005;135:3027S–3032S.
    1. Gibney M.J., Walsh M., Brennan L., Roche H.M., German B., van Ommen B. Metabolomics in human nutrition: Opportunities and challenges. Am. J. Clin. Nutr. 2005;82:497–503.
    1. Hollywood K., Brison D.R., Goodacre R. Metabolomics: Current technologies and future trends. Proteomics. 2006;6:4716–4723. doi: 10.1002/pmic.200600106.
    1. Paolucci U., Vigneau-Callahan K.E., Shi H., Matson W.R., Kristal B.S. Development of biomarkers based on diet-dependent metabolic serotypes: Characteristics of component-based models of metabolic serotypes. OMICS. 2004;8:221–238. doi: 10.1089/omi.2004.8.221.
    1. Lindon J.C., Holmes E., Nicholson J.K. Metabonomics techniques and applications to pharmaceutical research & amp; development. Pharm. Res. 2006;23:1075–1088.
    1. Tsutsui H., Maeda T., Toyo’oka T., Min J.Z., Inagaki S., Higashi T., Kagawa Y. Practical analytical approach for the identification of biomarker candidates in prediabetic state based upon metabonomic study by ultraperformance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry. J. Proteome Res. 2010;9:3912–3922. doi: 10.1021/pr100121k.
    1. Griffin J.L. Understanding mouse models of disease through metabolomics. Curr. Opin. Chem. Biol. 2006;10:309–315. doi: 10.1016/j.cbpa.2006.06.027.
    1. Gieger C., Geistlinger L., Altmaier E., Hrabé de Angelis M., Kronenberg F., Meitinger T., Mewes H.-W., Wichmann H.-E., Weinberger K.M., Adamski J., et al. Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008;4:e1000282. doi: 10.1371/journal.pgen.1000282.
    1. Kotronen A., Velagapudi V.R., Yetukuri L., Westerbacka J., Bergholm R., Ekroos K., Makkonen J., Taskinen M.-R., Oresic M., Yki-Järvinen H. Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia. 2009;52:684–690. doi: 10.1007/s00125-009-1282-2.
    1. Walsh M.C., Brennan L., Malthouse J.P.G., Roche H.M., Gibney M.J. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am. J. Clin. Nutr. 2006;84:531–539.
    1. Mao T.K., van de Water J., Keen C.L., Schmitz H.H., Gershwin M.E. Modulation of TNF-alpha secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins. Dev. Immunol. 2002;9:135–141. doi: 10.1080/1044667031000137601.
    1. Lenz E.M., Bright J., Wilson I.D., Hughes A., Morrisson J., Lindberg H., Lockton A. Metabonomics, dietary influences and cultural differences: A 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J. Pharm. Biomed. Anal. 2004;36:841–849. doi: 10.1016/j.jpba.2004.08.002.
    1. Lankinen M., Schwab U., Gopalacharyulu P.V., Seppänen-Laakso T., Yetukuri L., Sysi-Aho M., Kallio P., Suortti T., Laaksonen D.E., Gylling H., et al. Dietary carbohydrate modification alters serum metabolic profiles in individuals with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2010;20:249–257. doi: 10.1016/j.numecd.2009.04.009.
    1. Lankinen M., Schwab U., Erkkilä A., Seppänen-Laakso T., Hannila M.-L., Mussalo H., Lehto S., Uusitupa M., Gylling H., Oresic M. Fatty fish intake decreases lipids related to inflammation and insulin signaling—A lipidomics approach. PLoS ONE. 2009;4:e5258. doi: 10.1371/journal.pone.0005258.
    1. Miccheli A., Marini F., Capuani G., Miccheli A.T., Delfini M., Di Cocco M.E., Puccetti C., Paci M., Rizzo M., Spataro A. The influence of a sports drink on the postexercise metabolism of elite athletes as investigated by NMR-based metabolomics. J. Am. Coll. Nutr. 2009;28:553–564. doi: 10.1080/07315724.2009.10719787.
    1. De Hoog C.L., Mann M. PROTEOMICS. Annu. Rev. Genom. Hum. Genet. 2004;5:267–293. doi: 10.1146/annurev.genom.4.070802.110305.
    1. Saleem R.A., Rogers R.S., Ratushny A.V., Dilworth D.J., Shannon P.T., Shteynberg D., Wan Y., Moritz R.L., Nesvizhskii A.I., Rachubinski R.A., et al. Integrated phosphoproteomics analysis of a signaling network governing nutrient response and peroxisome induction. Mol. Cell. Proteom. 2010;9:2076–2088. doi: 10.1074/mcp.M000116-MCP201.
    1. Pan S., Chen R., Crispin D.A., May D., Stevens T., McIntosh M.W., Bronner M.P., Ziogas A., Anton-Culver H., Brentnall T.A. Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling. J. Proteome Res. 2011;10:2359–2376. doi: 10.1021/pr101148r.
    1. Canas B., López-Ferrer D., Ramos-Fernández A., Camafeita E., Calvo E. Mass spectrometry technologies for proteomics. Brief. Funct. Genom. Proteom. 2006;4:295–320. doi: 10.1093/bfgp/eli002.
    1. Kussmann M., Krause L., Siffert W. Nutrigenomics: Where are we with genetic and epigenetic markers for disposition and susceptibility? Nutr. Rev. 2010;68:S38–S47. doi: 10.1111/j.1753-4887.2010.00326.x.
    1. Kussmann M., Panchaud A., Affolter M. Proteomics in nutrition: Status quo and outlook for biomarkers and bioactives. J. Proteome Res. 2010;9:4876–4887. doi: 10.1021/pr1004339.
    1. Marvin-Guy L., Lopes L.V., Affolter M., Courtet-Compondu M.-C., Wagnière S., Bergonzelli G.E., Fay L.B., Kussmann M. Proteomics of the rat gut: Analysis of the myenteric plexus-longitudinal muscle preparation. Proteomics. 2005;5:2561–2569. doi: 10.1002/pmic.200401265.
    1. Breikers G., van Breda S.G.J., Bouwman F.G., van Herwijnen M.H.M., Renes J., Mariman E.C.M., Kleinjans J.C.S., van Delft J.H.M. Potential protein markers for nutritional health effects on colorectal cancer in the mouse as revealed by proteomics analysis. Proteomics. 2006;6:2844–2852. doi: 10.1002/pmic.200500067.
    1. Tan S., Seow T.K., Liang R.C., Koh S., Lee C.P.C., Chung M.C.M., Hooi S.C. Proteome analysis of butyrate-treated human colon cancer cells (HT-29) Int. J. Cancer. 2002;98:523–531. doi: 10.1002/ijc.10236.
    1. Herzog A., Kindermann B., Döring F., Daniel H., Wenzel U. Pleiotropic molecular effects of the pro-apoptotic dietary constituent flavone in human colon cancer cells identified by protein and mRNA expression profiling. Proteomics. 2004;4:2455–2464. doi: 10.1002/pmic.200300754.
    1. Tom Dieck H., Döring F., Fuchs D., Roth H.-P., Daniel H. Transcriptome and proteome analysis identifies the pathways that increase hepatic lipid accumulation in zinc-deficient rats. J. Nutr. 2005;135:199–205.
    1. Zhang L., Perdomo G., Kim D.H., Qu S., Ringquist S., Trucco M., Dong H.H. Proteomic analysis of fructose-induced fatty liver in hamsters. Metabolism. 2008;57:1115–1124. doi: 10.1016/j.metabol.2008.03.017.
    1. Davis C.D., Milner J. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat. Res. 2004;551:51–64. doi: 10.1016/j.mrfmmm.2004.01.012.
    1. Ribarič S. Diet and aging. Oxid. Med. Cell. Longev. 2012;2012:741468. doi: 10.1155/2012/741468.
    1. Park L.K., Friso S., Choi S.-W. Nutritional influences on epigenetics and age-related disease. Proc. Nutr. Soc. 2012;71:75–83. doi: 10.1017/S0029665111003302.
    1. Marchesi J.R., Adams D.H., Fava F., Hermes G.D.A., Hirschfield G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., et al. The gut microbiota and host health: A new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990.
    1. Panagiotou G., Nielsen J. Nutritional systems biology: Definitions and approaches. Annu. Rev. Nutr. 2009;29:329–339. doi: 10.1146/annurev-nutr-080508-141138.
    1. Kato S., Fujiki R. Transcriptional controls by nuclear fat-soluble vitamin receptors through chromatin reorganization. Biosci. Biotechnol. Biochem. 2011;75:410–413. doi: 10.1271/bbb.100807.
    1. Knowles L.M., Milner J.A. Diallyl disulfide induces ERK phosphorylation and alters gene expression profiles in human colon tumor cells. J. Nutr. 2003;133:2901–2906.
    1. Kaput J. Diet-disease gene interactions. Nutrition. 2004;20:26–31. doi: 10.1016/j.nut.2003.09.005.
    1. Eletto D., Leone A., Bifulco M., Tecce M.F. Effect of unsaturated fat intake from Mediterranean diet on rat liver mRNA expression profile: Selective modulation of genes involved in lipid metabolism. Nutr. Metab. Cardiovasc. Dis. 2005;15:13–23. doi: 10.1016/j.numecd.2004.07.001.
    1. Maere S., Heymans K., Kuiper M. BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–3449. doi: 10.1093/bioinformatics/bti551.
    1. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303.
    1. Lehne B., Schlitt T. Protein-protein interaction databases: Keeping up with growing interactomes. Hum. Genom. 2009;3:291–297.
    1. Kuhn M., Szklarczyk D., Franceschini A., Campillos M., von Mering C., Jensen L.J., Beyer A., Bork P. STITCH 2: An interaction network database for small molecules and proteins. Nucleic Acids Res. 2010;38:D552–D556. doi: 10.1093/nar/gkp937.
    1. Matthews L., Gopinath G., Gillespie M., Caudy M., Croft D., de Bono B., Garapati P., Hemish J., Hermjakob H., Jassal B., et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 2009;37:D619–D622. doi: 10.1093/nar/gkn863.
    1. Caspi R., Altman T., Dale J.M., Dreher K., Fulcher C.A., Gilham F., Kaipa P., Karthikeyan A.S., Kothari A., Krummenacker M., et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2010;38:D473–D479. doi: 10.1093/nar/gkp875.
    1. Finn R.D., Mistry J., Tate J., Coggill P., Heger A., Pollington J.E., Gavin O.L., Gunasekaran P., Ceric G., Forslund K., et al. The Pfam protein families database. Nucleic Acids Res. 2010;38:D211–D222. doi: 10.1093/nar/gkp985.
    1. Kouranov A., Xie L., de la Cruz J., Chen L., Westbrook J., Bourne P.E., Berman H.M. The RCSB PDB information portal for structural genomics. Nucleic Acids Res. 2006;34:D302–D305. doi: 10.1093/nar/gkj120.
    1. Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. GenBank. Nucleic Acids Res. 2010;38:D46–D51. doi: 10.1093/nar/gkp1024.
    1. Mendes P., Hoops S., Sahle S., Gauges R., Dada J., Kummer U. Computational modeling of biochemical networks using COPASI. Methods Mol. Biol. 2009;500:17–59.
    1. Funahashi A., Tanimura N., Matsuoka Y., Yosinaga N., Kitano H. CellDesigner: A process diagram editor for gene-regulatory and biochemical networks. Biosilico. 2003;1:169–176. doi: 10.1016/S1478-5382(03)02370-9.
    1. Sauro H.M., Hucka M., Finney A., Wellock C., Bolouri H., Doyle J., Kitano H. Next generation simulation tools: The Systems Biology Workbench and BioSPICE integration. OMICS. 2003;7:355–372. doi: 10.1089/153623103322637670.
    1. Novère N.L., Hucka M., Mi H., Moodie S., Schreiber F., Sorokin A., Demir E., Wegner K., Aladjem M.I., Wimalaratne S.M., et al. The Systems Biology Graphical Notation. Nat. Biotechnol. 2009;27:735–741. doi: 10.1038/nbt.1558.
    1. Hucka M., Finney A., Bornstein B.J., Keating S.M., Shapiro B.E., Matthews J., Kovitz B.L., Schilstra M.J., Funahashi A., Doyle J.C., et al. Evolving a lingua franca and associated software infrastructure for computational systems biology: The Systems Biology Markup Language (SBML) project. Syst. Biol. (Stevenage) 2004;1:41–53. doi: 10.1049/sb:20045008.
    1. Desiere F. Towards a systems biology understanding of human health: Interplay between genotype, environment and nutrition. Biotechnol. Annu. Rev. 2004;10:51–84.
    1. Kitano H. Systems biology: A brief overview. Science. 2002;295:1662–1664. doi: 10.1126/science.1069492.
    1. Ideker T., Galitski T., Hood L. A new approach to decoding life: systems biology. Annu. Rev. Genom. Hum. Genet. 2001;2:343–372. doi: 10.1146/annurev.genom.2.1.343.
    1. Özdemir V., Kolker E. Precision Nutrition 4.0: A Big Data and Ethics Foresight Analysis—Convergence of Agrigenomics, Nutrigenomics, Nutriproteomics, and Nutrimetabolomics. OMICS. 2016;20:69–75. doi: 10.1089/omi.2015.0193.
    1. Ogino S., Stampfer M. Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology. J. Natl. Cancer Inst. 2010;102:365–367. doi: 10.1093/jnci/djq031.
    1. Ogino S., Chan A.T., Fuchs C.S., Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: An emerging transdisciplinary and interdisciplinary field. Gut. 2011;60:397–411. doi: 10.1136/gut.2010.217182.
    1. Hamada T., Keum N., Nishihara R., Ogino S. Molecular pathological epidemiology: New developing frontiers of big data science to study etiologies and pathogenesis. J. Gastroenterol. 2016 doi: 10.1007/s00535-016-1272-3.
    1. Campbell P.T., Jacobs E.T., Ulrich C.M., Figueiredo J.C., Poynter J.N., McLaughlin J.R., Haile R.W., Jacobs E.J., Newcomb P.A., Potter J.D., et al. Case-control study of overweight, obesity, and colorectal cancer risk, overall and by tumor microsatellite instability status. J. Natl. Cancer Inst. 2010;102:391–400. doi: 10.1093/jnci/djq011.
    1. Morikawa T., Kuchiba A., Yamauchi M., Meyerhardt J.A., Shima K., Nosho K., Chan A.T., Giovannucci E., Fuchs C.S., Ogino S. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA. 2011;305:1685–1694. doi: 10.1001/jama.2011.513.
    1. Morikawa T., Kuchiba A., Lochhead P., Nishihara R., Yamauchi M., Imamura Y., Liao X., Qian Z.R., Ng K., Chan A.T., et al. Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with β-catenin (CTNNB1) status. Cancer Res. 2013;73:1600–1610. doi: 10.1158/0008-5472.CAN-12-2276.
    1. Morikawa T., Kuchiba A., Liao X., Imamura Y., Yamauchi M., Qian Z.R., Nishihara R., Sato K., Meyerhardt J.A., Fuchs C.S., et al. Tumor TP53 expression status, body mass index and prognosis in colorectal cancer. Int. J. Cancer. 2012;131:1169–1178. doi: 10.1002/ijc.26495.
    1. Kuchiba A., Morikawa T., Yamauchi M., Imamura Y., Liao X., Chan A.T., Meyerhardt J.A., Giovannucci E., Fuchs C.S., Ogino S. Body mass index and risk of colorectal cancer according to fatty acid synthase expression in the nurses’ health study. J. Natl. Cancer Inst. 2012;104:415–420. doi: 10.1093/jnci/djr542.
    1. Hanyuda A., Ogino S., Qian Z.R., Nishihara R., Song M., Mima K., Inamura K., Masugi Y., Wu K., Meyerhardt J.A., et al. Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. Int. J. Cancer. 2016;139:854–868. doi: 10.1002/ijc.30122.
    1. Schernhammer E.S., Giovannucci E., Baba Y., Fuchs C.S., Ogino S. B vitamins, methionine and alcohol intake and risk of colon cancer in relation to BRAF mutation and CpG island methylator phenotype (CIMP) PLoS ONE. 2011;6:e21102. doi: 10.1371/journal.pone.0021102.
    1. Nishihara R., Wang M., Qian Z.R., Baba Y., Yamauchi M., Mima K., Sukawa Y., Kim S.A., Inamura K., Zhang X., et al. Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region. Am. J. Clin. Nutr. 2014;100:1479–1488. doi: 10.3945/ajcn.114.095539.
    1. Dou R., Ng K., Giovannucci E.L., Manson J.E., Qian Z.R., Ogino S. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. Br. J. Nutr. 2016;115:1643–1660. doi: 10.1017/S0007114516000696.
    1. Zhang X., Keum N., Wu K., Smith-Warner S.A., Ogino S., Chan A.T., Fuchs C.S., Giovannucci E.L. Calcium intake and colorectal cancer risk: Results from the nurses’ health study and health professionals follow-up study. Int. J. Cancer. 2016;139:2232–2242. doi: 10.1002/ijc.30293.
    1. Song M., Zhang X., Meyerhardt J.A., Giovannucci E.L., Ogino S., Fuchs C.S., Chan A.T. Marine ω-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut. 2016 doi: 10.1136/gutjnl-2016-311990.
    1. Mima K., Nishihara R., Yang J., Dou R., Masugi Y., Shi Y., da Silva A., Cao Y., Song M., Nowak J., et al. MicroRNA MIR21 (miR-21) and PTGS2 Expression in colorectal cancer and patient survival. Clin. Cancer Res. 2016;22:3841–3848. doi: 10.1158/1078-0432.CCR-15-2173.
    1. Dou R., Nishihara R., Cao Y., Hamada T., Mima K., Masuda A., Masugi Y., Shi Y., Gu M., Li W., et al. MicroRNA let-7, T Cells, and Patient Survival in Colorectal Cancer. Cancer Immunol. Res. 2016;4:927–935. doi: 10.1158/2326-6066.CIR-16-0112.
    1. Olivieri F., Spazzafumo L., Bonafè M., Recchioni R., Prattichizzo F., Marcheselli F., Micolucci L., Mensà E., Giuliani A., Santini G., et al. MiR-21–5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget. 2015;6:35372–35382.
    1. Vrijens K., Bollati V., Nawrot T.S. MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ. Health Perspect. 2015;123:399–411. doi: 10.1289/ehp.1408459.
    1. Micolucci L., Akhtar M.M., Olivieri F., Rippo M.R., Procopio A.D. Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: Systematic review and qualitative meta-analysis. Oncotarget. 2016;7:58606–58637. doi: 10.18632/oncotarget.9686.
    1. Bao Y., Prescott J., Yuan C., Zhang M., Kraft P., Babic A., Morales-Oyarvide V., Qian Z.R., Buring J.E., Cochrane B.B., et al. Leucocyte telomere length, genetic variants at the TERT gene region and risk of pancreatic cancer. Gut. 2016 doi: 10.1136/gutjnl-2016-312510.
    1. Mima K., Nishihara R., Qian Z.R., Cao Y., Sukawa Y., Nowak J.A., Yang J., Dou R., Masugi Y., Song M., et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2015;65:1973–1980. doi: 10.1136/gutjnl-2015-310101.
    1. Mima K., Cao Y., Chan A.T., Qian Z.R., Nowak J.A., Masugi Y., Shi Y., Song M., da Silva A., Gu M., et al. Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clin. Transl. Gastroenterol. 2016;7:e200. doi: 10.1038/ctg.2016.53.

Source: PubMed

3
Sottoscrivi