Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy

Domenico Tricò, Simona Baldi, Silvia Frascerra, Elena Venturi, Paolo Marraccini, Danilo Neglia, Andrea Natali, Domenico Tricò, Simona Baldi, Silvia Frascerra, Elena Venturi, Paolo Marraccini, Danilo Neglia, Andrea Natali

Abstract

Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217.

Figures

Figure 1
Figure 1
Heart rate, rate pressure product (RPP), and myocardial blood flow (MBF) in 5 N-AGT (gray line), 5 DCM-NGT (dotted black line), and 5 DCM-AGT (continuous black line) in the 3 phases of the study protocol: Rest, Pacing, and Recovery. The plotted values are mean ± SEM. The thin gray lines represent the SEM of the N-AGT group.
Figure 2
Figure 2
Cardiac glucose (a), lactate (b), NEFA (c), and β-OH-butyrate (d) uptake in 5 N-AGT (gray line), 5 DCM-NGT (dotted black line), and 5 DCM-AGT (continuous black line) in the 3 phases of the study protocol: Rest, Pacing, and Recovery. The plotted values are mean ± SEM. The thin gray lines represent the SEM of the N-AGT group.
Figure 3
Figure 3
Cardiac energy generation expressed on oxygen equivalents from (a) small molecules, blood born, readily oxidizable substrates (calculated summing up glucose, lactate, and β-OH-butyrate net balances and assuming their full oxidation) as compared to energy generated by NEFA oxidation as measured from [9,103H]-oleate conversion to 3H2O in 5 N-AGT (gray line), 4 DCM-NGT (dotted black line), and 4 DCM-AGT (continuous black line) in the 3 phases of the study protocol: Rest, Pacing, and Recovery. The plotted values are mean ± SEM. The thin gray lines represent the SEM of the N-AGT group. indicates a p < 0.05 for the comparison between DCM-AGT and DCM-NGT over the study phase by 2-way ANOVA for repeated measures.
Figure 4
Figure 4
Cardiac lactate release as estimated subtracting [3-13C]-L-lactate cardiac uptake to the natural substrate net balance in 5 N-AGT (gray line), 4 DCM-NGT (dotted black line), and 4 DCM-AGT (continuous black line) in the 3 phases of the study protocol: Rest, Pacing, and Recovery. The plotted values are mean ± SEM. The thin gray lines represent the SEM of the N-AGT group.

References

    1. Kannel W. B., Hjortland M., Castelli W. P. Role of diabetes in congestive heart failure: the Framingham study. The American Journal of Cardiology. 1974;34(1):29–34. doi: 10.1016/0002-9149(74)90089-7.
    1. Bertoni A. G., Hundley W. G., Massing M. W., Bonds D. E., Burke G. L., Goff D. C., Jr. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care. 2004;27(3):699–703. doi: 10.2337/diacare.27.3.699.
    1. Nichols G. A., Gullion C. M., Koro C. E., Ephross S. A., Brown J. B. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–1884. doi: 10.2337/diacare.27.8.1879.
    1. Bertoni A. G., Tsai A., Kasper E. K., Brancati F. L. Diabetes and idiopatihic cardiomyopathy: a nationwide case-control study. Diabetes Care. 2003;26(10):2791–2795. doi: 10.2337/diacare.26.10.2791.
    1. AlZadjali M. A., Godfrey V., Khan F., et al. Insulin resistance is highly prevalent and is associated with reduced exercise tolerance in nondiabetic patients with heart failure. Journal of the American College of Cardiology. 2009;53(9):747–753. doi: 10.1016/j.jacc.2008.08.081.
    1. Ashrafian H., Frenneaux M. P., Opie L. H. Metabolic mechanisms in heart failure. Circulation. 2007;116(4):434–448. doi: 10.1161/CIRCULATIONAHA.107.702795.
    1. Stanley W. C., Recchia F. A., Lopaschuk G. D. Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews. 2005;85(3):1093–1129. doi: 10.1152/physrev.00006.2004.
    1. Neglia D., de Caterina A., Marraccini P., et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. The American Journal of Physiology—Heart and Circulatory Physiology. 2007;293(6):H3270–H3278. doi: 10.1152/ajpheart.00887.2007.
    1. Dávila-Román V. G., Vedala G., Herrero P., et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology. 2002;40(2):271–277. doi: 10.1016/s0735-1097(02)01967-8.
    1. Peterson L. R., Herrero P., Schechtman K. B., et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109(18):2191–2196. doi: 10.1161/01.cir.0000127959.28627.f8.
    1. Lopaschuk G. D., Ussher J. R., Folmes C. D. L., Jaswal J. S., Stanley W. C. Myocardial fatty acid metabolism in health and disease. Physiological Reviews. 2010;90(1):207–258. doi: 10.1152/physrev.00015.2009.
    1. Larsen T. S., Aasum E. Metabolic (in)flexibility of the diabetic heart. Cardiovascular Drugs and Therapy. 2008;22(2):91–95. doi: 10.1007/s10557-008-6083-1.
    1. Turer A. T., Malloy C. R., Newgard C. B., Podgoreanu M. V. Energetics and metabolism in the failing heart: important but poorly understood. Current Opinion in Clinical Nutrition and Metabolic Care. 2010;13(4):458–465. doi: 10.1097/mco.0b013e32833a55a5.
    1. Domanski M., Krause-Steinrauf H., Deedwania P., et al. The effect of diabetes on outcomes of patients with advanced heart failure in the BEST trial. Journal of the American College of Cardiology. 2003;42(5):914–922. doi: 10.1016/s0735-1097(03)00856-8.
    1. Issa V. S., Amaral A. F., Cruz F. D., et al. Glycemia and prognosis of patients with chronic heart failure—subanalysis of the long-term prospective randomized controlled study using repetitive education at six-month intervals and monitoring for adherence in heart failure outpatients (remadhe) trial. American Heart Journal. 2010;159(1):90–97. doi: 10.1016/j.ahj.2009.10.027.
    1. Osorio J. C., Stanley W. C., Linke A., et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid x receptor-α in pacing-induced heart failure. Circulation. 2002;106(5):606–612. doi: 10.1161/01.cir.0000023531.22727.c1.
    1. Cerqueira M. D., Weissman N. J., Dilsizian V., et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A Statement for Healthcare Professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–542. doi: 10.1161/hc0402.102975.
    1. Pereztol-Valdés O., Candell-Riera J., Santana-Boado C., et al. Correspondence between left ventricular 17 myocardial segments and coronary arteries. European Heart Journal. 2005;26(24):2637–2643. doi: 10.1093/eurheartj/ehi496.
    1. Recchia F. A., Osorio J. C., Chandler M. P., et al. Reduced synthesis of NO causes marked alterations in myocardial substrate metabolism in conscious dogs. American Journal of Physiology—Endocrinology and Metabolism. 2002;282(1):E197–E206.
    1. Ferrannini E., Santoro D., Bonadonna R., Natali A., Parodi O., Camici P. G. Metabolic and hemodynamic effects of insulin on human hearts. The American Journal of Physiology—Endocrinology & Metabolism. 1993;264(2):E308–E315.
    1. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37(3):287–301. doi: 10.1016/0026-0495(88)90110-2.
    1. Wisneski J. A., Gertz E. W., Neese R. A., Mayr M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. The Journal of Clinical Investigation. 1987;79(2):359–366. doi: 10.1172/jci112820.
    1. Funada J., Betts T. R., Hodson L., et al. Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS ONE. 2009;4(10) doi: 10.1371/journal.pone.0007533.e7533
    1. Camici P., Marraccini P., Marzilli M., et al. Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans. The American Journal of Physiology: Endocrinology and Metabolism. 1989;257(3, part 1):E309–E317.
    1. Bagger J. P., Thomassen A., Nielsen T. T. Cardiac energy metabolism in patients with chest pain and normal coronary angiograms. The American Journal of Cardiology. 2000;85(3):315–320. doi: 10.1016/s0002-9149(99)00739-0.
    1. Burkhoff D., Weiss R. G., Schulman S. P., Kalil-Filho R., Wannenburg T., Gerstenblith G. Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. American Journal of Physiology—Heart and Circulatory Physiology. 1991;261(3):H741–H750.
    1. Mazumder P. K., O'Neill B. T., Roberts M. W., et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004;53(9):2366–2374. doi: 10.2337/diabetes.53.9.2366.
    1. Carley A. N., Severson D. L. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids. 2005;1734(2):112–126. doi: 10.1016/j.bbalip.2005.03.005.
    1. Lei B., Lionetti V., Young M. E., et al. Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. Journal of Molecular and Cellular Cardiology. 2004;36(4):567–576. doi: 10.1016/j.yjmcc.2004.02.004.
    1. An D., Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. The American Journal of Physiology—Heart and Circulatory Physiology. 2006;291(4):H1489–H1506. doi: 10.1152/ajpheart.00278.2006.

Source: PubMed

3
Sottoscrivi