New Insights From MRI and Cell Biology Into the Acute Vascular-Metabolic Implications of Electronic Cigarette Vaping

Felix W Wehrli, Alessandra Caporale, Michael C Langham, Shampa Chatterjee, Felix W Wehrli, Alessandra Caporale, Michael C Langham, Shampa Chatterjee

Abstract

The popularity of electronic cigarettes (e-cigs) has grown at a startling rate since their introduction to the United States market in 2007, with sales expected to outpace tobacco products within a decade. Spurring this trend has been the notion that e-cigs are a safer alternative to tobacco-based cigarettes. However, the long-term health impacts of e-cigs are not yet known. Quantitative magnetic resonance imaging (MRI) approaches, developed in the authors' laboratory, provide conclusive evidence of acute deleterious effects of e-cig aerosol inhalation in the absence of nicotine in tobacco-naïve subjects. Among the pathophysiologic effects observed are transient impairment of endothelial function, vascular reactivity, and oxygen metabolism. The culprits of this response are currently not fully understood but are likely due to an immune reaction caused by the aerosol containing thermal breakdown products of the e-liquid, including radicals and organic aldehydes, with particle concentrations similar to those emitted by conventional cigarettes. The acute effects observed following a single vaping episode persist for 1-3 h before subsiding to baseline and are paralleled by build-up of biological markers. Sparse data exist on long-term effects of vaping, and it is likely that repeated regular exposure to e-cig aerosol during vaping will lead to chronic conditions since there would be no return to baseline conditions as in the case of an isolated vaping episode. This brief review aims to highlight the potential of pairing MRI, with its extraordinary sensitivity to structure, physiology and metabolism at the holistic level, with biologic investigations targeting serum and cellular markers of inflammation and oxidative stress. Such a multi-modal framework should allow interpretation of the impact of e-cigarette vaping on vascular health at the organ level in the context of the underlying biological alterations. Applications of this approach to the study of other lifestyle-initiated pathologies including hypertension, hypercholesterolemia, and metabolic syndrome are indicated.

Keywords: E-cigarette; MRI; endothelium; vaping; vascular.

Copyright © 2020 Wehrli, Caporale, Langham and Chatterjee.

Figures

FIGURE 1
FIGURE 1
Cascade of events following e-cigarette inhalation, initiating vascular inflammation and dysfunction. Ultra-fine particles (UFP) and free radicals, deposited on the respiratory tract are taken up by endothelial cells. This process drives endothelial activation that triggers inflammation signaling, eventually leading to vascular dysfunction (original figure).
FIGURE 2
FIGURE 2
Multi-vascular MRI protocol. The 50-min MRI protocol included a measure of peripheral vascular reactivity (PVR) to cuff-induced ischemia, followed by cerebrovascular reactivity (CVR) and aortic pulse wave velocity (PWV) quantification. PVR was assessed in the femoral vessels via multiple techniques. To stimulate reactive hyperemia the cuff was placed around the upper thigh and inflated for 5 min. CVR to hypercapnia in the form of volitional apnea was measured in the superior sagittal sinus (artwork modified from Caporale et al., 2019; Supplementary Figure B1, with permission from RSNA publisher).
FIGURE 3
FIGURE 3
Arterial velocimetry at baseline and hyperemia. (A) Blood flow velocity in the superficial femoral artery, during baseline and post-cuff occlusion (reactive hyperemia). Systolic, retrograde, and baseline velocities are indicated (Vs, Vr, and Vb, respectively). Post-ischemia, hyperemia is evaluated in terms of hyperemic index (HI) as the slope of the initial part of the velocity-time curve, peak average velocity (VP), and duration of hyperemia, referred to as time of forward flow (TFF). (B) Axial MR image of the thigh perpendicular to the femoral artery. (C) Pre- vs. post-electronic cigarette (e-cig) vaping differences for two parameters, in non-smokers, after a single episode of non-nicotinized e-cig vaping. The same MRI protocol was executed before and after e-cig use (modified from Caporale et al., 2019; Figures 2, 5, with permission from RSNA publisher).
FIGURE 4
FIGURE 4
Venous oximetry and flow-mediated dilation. (A) Post-cuff release venous oxygen saturation (SvO2) interleaved with vessel wall imaging to derive femoral artery flow-mediated dilation (FMD) measurement at 60, 90, and 120 s following cuff deflation, with respect to the lumen at rest (B). (B–D) Pre vs. post-e-cig vaping differences for the extracted metrics: (B,D) luminal FMD (FMDL), (C) pre-cuff occlusion baseline SvO2 [SvO2(b)], washout time (TW), and overshoot (A,B are original, produced from data already published in Caporale et al., 2019; (C,D) are modified from Caporale et al., 2019; Figure 5, with permission from RSNA publisher).

References

    1. Asmar R., Benetos A., Topouchian J., Laurent P., Pannier B., Brisac A. M. (1995). Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension 26 485–490. 10.1161/01.hyp.26.3.485
    1. Bakand S., Hayes A., Dechsakulthorn F. (2012). Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal. Toxicol. 24 125–135. 10.3109/08958378.2010.642021
    1. Bekki K., Uchiyama S., Ohta K., Inaba Y., Nakagome H., Kunugita N. (2014). Carbonyl compounds generated from electronic cigarettes. Intern. J. Environ. Res. Public Health 11 11192–11200. 10.3390/ijerph111111192
    1. Biondi-Zoccai G., Sciarretta S., Bullen C., Nocella C., Violi F., Loffredo L. (2019). Acute Effects of heat-not-burn, electronic vaping, and traditional tobacco combustion cigarettes: the sapienza university of rome-vascular assessment of proatherosclerotic effects of smoking (SUR - VAPES) 2 randomized trial. J. Am. Heart Assoc. 8:e010455 10.1161/JAHA.118.010455
    1. Bleakley C., Hamilton P. K., Pumb R., Harbinson M., Mcveigh G. E. (2015). Endothelial function in hypertension: victim or culprit? J. Clin. Hypertens. 17 651–654. 10.1111/jch.12546
    1. Bourdrel T., Bind M. A., Bejot Y., Morel O., Argacha J. F. (2017). Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 634–642.
    1. Cannon R. O., III (1998). Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clin. Chem. 44 1809–1819.
    1. Caporale A., Langham M. C., Guo W., Johncola A., Chatterjee S., Wehrli F. W. (2019). Acute effects of e-cigarette aerosol inhalation on vascular function detected by quantitative MRI. Radiology 293 97–106. 10.1148/radiol.2019190562
    1. Carnevale R., Sciarretta S., Violi F., Nocella C., Loffredo L., Perri L. (2016). Acute impact of tobacco vs electronic cigarette smoking on oxidative stress and vascular function. Chest 150 606–612. 10.1016/j.chest.2016.04.012
    1. Chatterjee S., Pietrofesa R. A., Park K., Tao J. Q., Carabe-Fernandez A., Berman A. T., et al. (2019a). LGM2605 reduces space radiation-induced NLRP3 inflammasome activation and damage in vitro lung vascular networks. Intern. J. Mol. Sci. 20:176 10.3390/ijms20010176
    1. Chatterjee S., Tao J. Q., Johncola A., Guo W., Caporale A., Langham M. C., et al. (2019b). Acute exposure to e-cigarettes causes inflammation and pulmonary endothelial oxidative stress in nonsmoking, healthy young subjects. Am. J. Physiol. Lung. Cell Mol. Physiol. 317 L155–L166. 10.1152/ajplung.00110.2019
    1. Defago M. D., Elorriaga N., Irazola V. E., Rubinstein A. L. (2014). Influence of food patterns on endothelial biomarkers: a systematic review. J. Clin. Hypertens. 16 907–913. 10.1111/jch.12431
    1. Detre J. A., Wang J., Wang Z., Rao H. (2009). Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr. Opin. Neurol. 22 348–355. 10.1097/WCO.0b013e32832d9505
    1. Doerschuk C. M., Mizgerd J. P., Kubo H., Qin L., Kumasaka T. (1999). Adhesion molecules and cellular biomechanical changes in acute lung injury: giles F. Filley Lecture Chest. 116 37S–43S. 10.1378/chest.116.suppl_1.37s-a
    1. Franzen K. F., Willig J., Cayo Talavera S., Meusel M., Sayk F., Reppel M., et al. (2018). E-cigarettes and cigarettes worsen peripheral and central hemodynamics as well as arterial stiffness: a randomized, double-blinded pilot study. Vasc. Med. 23 419–425. 10.1177/1358863X18779694
    1. Furchgott R., Zawadzki J. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288 373–376. 10.1038/288373a0
    1. Ghiadoni L., Faita F., Salvetti M., Cordiano C., Biggi A., Puato M., et al. (2012). Assessment of flow-mediated dilation reproducibility: a nationwide multicenter study. J. Hypertens. 30 1399–1405. 10.1097/HJH.0b013e328353f222
    1. Grotenhuis H. B., Westenberg J. J., Steendijk P., Van Der Geest R. J., Ottenkamp J., Bax J. J., et al. (2009). Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J. Magn. Reson. Imaging 30 521–526. 10.1002/jmri.21886
    1. Hardie K. L., Kinlay S., Hardy D. B., Wlodarczyk J., Silberberg J. S., Fletcher P. J. (1997). Reproducibility of brachial ultrasonography and flow-mediated dilatation (FMD) for assessing endothelial function. Aust. N. Z. J. Med. 27 649–652. 10.1111/j.1445-5994.1997.tb00992.x
    1. Herrmann J., Lerman A. (2001). The endothelium: dysfunction and beyond. J. Nucl. Cardiol. 8 197–206.
    1. Jain V., Langham M. C., Wehrli F. W. (2010). MRI estimation of global brain oxygen consumption rate. J. Cereb. Blood Flow Metab. 30 1598–1607. 10.1038/jcbfm.2010.49
    1. Jensen R. P., Strongin R. M., Peyton D. H. (2017). Solvent chemistry in the electronic cigarette reaction vessel. Sci. Rep. 7:42549 10.1038/srep42549
    1. Kerekes G., Szekanecz Z., Der H., Sandor Z., Lakos G., Muszbek L., et al. (2008). Endothelial dysfunction and atherosclerosis in rheumatoid arthritis: a multiparametric analysis using imaging techniques and laboratory markers of inflammation and autoimmunity. J. Rheumatol. 35 398–406.
    1. Kligerman S., Raptis C., Larsen B. T., Henry T. S., Caporale A., Tazelaar H. D., et al. (2020). Radiologic, pathologic, clinical, and physiologic findings of evali: evolving knowledge and remaining questions. Radiology 294 491–505. 10.1148/radiol.2020192585
    1. Kooijman M., Thijssen D. H., De Groot P. C., Bleeker M. W., Van Kuppevelt H. J., Green D. J. (2008). Flow-mediated dilatation in the superficial femoral artery is nitric oxide mediated in humans. J. Physiol. 586 1137–1145. 10.1113/jphysiol.2007.145722
    1. Langham M. C., Li C., Magland J. F., Wehrli F. W. (2011). Nontriggered MRI quantification of aortic pulse-wave velocity. Magn. Reson. Med. 65 750–755. 10.1002/mrm.22651
    1. Langham M. C., Zhou Y., Chirico E. N., Magland J. F., Sehgal C. M., Englund E. K. (2015). Effects of age and smoking on endothelial function assessed by quantitative cardiovascular magnetic resonance in the peripheral and central vasculature. J. Cardiovasc. Magn. Reson. 17:19 10.1186/s12968-015-0110-8
    1. Lerner C. A., Sundar I. K., Yao H., Gerloff J., Ossip D. J., Mcintosh S., et al. (2015). Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One 10:e0116732 10.1371/journal.pone.0116732
    1. Lewis N., Mccaffrey K., Sage K., Cheng C.-J., Green J., Goldstein L., et al. (2019). E-cigarette use, or vaping, practices and characteristics among persons with associated lung injury - utah, April-October 2019. Morbid. Mortal. Weekly Rep. 68 953–956. 10.15585/mmwr.mm6842e1
    1. Markl M., Chan F. P., Alley M. T., Wedding K. L., Draney M. T., Elkins C. J., et al. (2003). Time-resolved three-dimensional phase-contrast MRI. J. Magnet. Reson. Imaging 17 499–506.
    1. McEvoy J. W., Nasir K., Defilippis A. P., Lima J. A., Bluemke D. A., Hundley W. G., et al. (2015). Relationship of cigarette smoking with inflammation and subclinical vascular disease: the multi-ethnic study of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35 1002–1010. 10.1161/ATVBAHA.114.304960
    1. Miech R., Johnston L., O’malley P. M., Bachman J. G., Patrick M. E. (2019). Trends in adolescent vaping, 2017–2019. N. Engl. J. Med. 381 1490–1491. 10.1056/NEJMc1910739
    1. Mohiaddin R. H., Underwood S. R., Bogren H. G., Firmin D. N., Klipstein R. H., Rees R. S., et al. (1989). Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br. Heart J. 62 90–96. 10.1136/hrt.62.2.90
    1. Nakane H. (2012). Translocation of particles deposited in the respiratory system: a systematic review and statistical analysis. Environ. Health Prevent. Med. 17:263 10.1007/s12199-011-0252-8
    1. Neunteufl T., Heher S., Kostner K., Mitulovic G., Lehr S., Khoschsorur G., et al. (2002). Contribution of nicotine to acute endothelial dysfunction in long-term smokers. J. Am. Coll. Cardiol. 39 251–256. 10.1016/s0735-1097(01)01732-6
    1. Olmedo P., Goessler W., Tanda S., Grau-Perez M., Jarmul S., Aherrera A., et al. (2018). Metal concentrations in e-cigarette liquid and aerosol samples: the contribution of metallic coils. Environ. Health Perspect. 126:027010 10.1289/EHP2175
    1. Omaiye E. E., Mcwhirter K. J., Luo W., Pankow J. F., Talbot P. (2019). High-nicotine electronic cigarette products: toxicity of JUUL fluids and aerosols correlates strongly with nicotine and some flavor chemical concentrations. Chem. Res. Toxicol. 32 1058–1069. 10.1021/acs.chemrestox.8b00381
    1. Schweitzer K. S., Chen S. X., Law S., Van Demark M., Poirier C., Justice M. J., et al. (2015). Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am. J. Physiol. Lung. Cell Mol. Physiol. 309 L175–L187. 10.1152/ajplung.00411.2014
    1. Sutton-Tyrrell K., Mackey R. H., Holubkov R., Vaitkevicius P. V., Spurgeon H. A., Lakatta E. G. (2001). Measurement variation of aortic pulse wave velocity in the elderly. Am. J. Hypertens. 14 463–468. 10.1016/s0895-7061(00)01289-9
    1. Tabit C. E., Chung W. B., Hamburg N. M., Vita J. A. (2010). Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev. Endocr. Metab. Disord. 11 61–74. 10.1007/s11154-010-9134-4
    1. Vlachopoulos C., Ioakeimidis N., Abdelrasoul M., Terentes-Printzios D., Georgakopoulos C., Pietri P., et al. (2016). Electronic cigarette smoking increases aortic stiffness and blood pressure in young smokers. J. Am. Coll. Cardiol. 67 2802–2803. 10.1016/j.jacc.2016.03.569
    1. Wang P., Chen W., Liao J., Matsuo T., Ito K., Fowles J., et al. (2017). A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS One 12:e0169811 10.1371/journal.pone.0169811
    1. Widlansky M. E., Gokce N., Keaney J. F., Jr., Vita J. A. (2003). The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 42 1149–1160.
    1. Wilkinson I. B., Fuchs S. A., Jansen I. M., Spratt J. C., Murray G. D., Cockcroft J. R., et al. (1998). Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J. Hypertens. 16 2079–2084. 10.1097/00004872-199816121-00033
    1. Williams M., Bozhilov K., Ghai S., Talbot P. (2017). Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS One 12:e0175430 10.1371/journal.pone.0175430
    1. Williams M., Villarreal A., Bozhilov K., Lin S., Talbot P. (2013). Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS One 8:e57987 10.1371/journal.pone.057987
    1. Wu P. H., Rodriguez-Soto A. E., Rodgers Z. B., Englund E. K., Wiemken A., Langham M. C., et al. (2019). MRI evaluation of cerebrovascular reactivity in obstructive sleep apnea. J. Cereb. Blood Flow Metab. 15:0271678X19862182 10.1177/0271678X19862182
    1. Wu W.-C., Mohler E., III, Ratcliffe S. J., Wehrli F. W., Detre J. A., Floyd T. F. (2009). Skeletal muscle microvascular flow in progressive peripheral artery disease: assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J. Am. Coll. Cardiol. 53 2372–2377. 10.1016/j.jacc.2009.03.033
    1. Xu F., Ge Y., Lu H. (2009). Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn. Reson. Med. 62 141–148. 10.1002/mrm.21994

Source: PubMed

3
Sottoscrivi