Identification of natural compounds with antiviral activities against SARS-associated coronavirus

Shi-You Li, Cong Chen, Hai-Qing Zhang, Hai-Yan Guo, Hui Wang, Lin Wang, Xiang Zhang, Shi-Neng Hua, Jun Yu, Pei-Gen Xiao, Rong-Song Li, Xuehai Tan, Shi-You Li, Cong Chen, Hai-Qing Zhang, Hai-Yan Guo, Hui Wang, Lin Wang, Xiang Zhang, Shi-Neng Hua, Jun Yu, Pei-Gen Xiao, Rong-Song Li, Xuehai Tan

Abstract

More than 200 Chinese medicinal herb extracts were screened for antiviral activities against Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay for virus-induced cytopathic effect (CPE). Four of these extracts showed moderate to potent antiviral activities against SARS-CoV with 50% effective concentration (EC50) ranging from 2.4 +/- 0.2 to 88.2 +/- 7.7 microg/ml. Out of the four, Lycoris radiata was most potent. To identify the active component, L. radiata extract was subjected to further fractionation, purification, and CPE/MTS assays. This process led to the identification of a single substance lycorine as an anti-SARS-CoV component with an EC50 value of 15.7 +/- 1.2 nM. This compound has a CC50 value of 14980.0 +/- 912.0 nM in cytotoxicity assay and a selective index (SI) greater than 900. The results suggested that four herbal extracts and the compound lycorine are candidates for the development of new anti-SARS-CoV drugs in the treatment of SARS.

Figures

Fig. 1
Fig. 1
Effects of herb compound extracts on replication of SARS-CoV. The Vero E6 cell seeding, virus infection, compound addition, cell incubation, and measurement were described in the method. The percentage of CPE reduction was calculated by subtracting the mean of virus-infected cell control (0%) from the measured absorbance. The resulting number was divided by the uninfected cell control (100%). The mean values and the standard deviation (S.D.) are shown in the figures. Data presented are the average of duplicate values from three independent experiments. Magnification for visual observation: 200×.
Fig. 2
Fig. 2
Effect of fraction A, B, C, and D of L. radiata on inhibition of CPE caused by SARS-CoV in Vero E6 cells. OD value was measured in a CPE assay as described under experimental procedures. The percentage of CPE reduction was calculated by subtracting the mean of infected cell control (0%) from the measured absorbance. The resulting number was divided by the uninfected cell control (100%). The mean values and the standard deviation (S.D.) are shown in the figures. Data presented are the average of duplicate values from three independent experiments.
Fig. 3
Fig. 3
Chemical structure of lycorine.

References

    1. Ali A.A., Kating H., Frahm A.W., El-moghazi A.M., Ramadan M.A. Two non-hydroxylated alkaloids in Crinum augustum. Phytochemistry. 1981;20:1121–1123.
    1. Chan-Yeung M., Yu W.C. Outbreak of severe acute respiratory syndrome in Hong Kong Special Administrative Region: case report. BMJ. 2003;326:850–852.
    1. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045–2046.
    1. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Treatment of SARS with human interferons. Lancet. 2003;362:293–294.
    1. Cortese I., Renna G., Siro-Brigiani G., Poli G., Cagiano R. Pharmacology of lycorine. 1. Effect on biliary secretion in the rat. Boll. Soc. Ital. Biol. Sper. 1983;59:1261–1264.
    1. Cory A.H., Owen T.C., Barltrop J.A., Cory J.G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991;3:207–212.
    1. Donnelly C.A., Ghani A.C., Leung G.M., Hedley A.J., Fraser C., Riley S., Abu-Raddad L.J., Ho L.M., Thach T.Q., Chau P., Chan K.P., Lam T.H., Tse L.Y., Tsang T., Liu S.H., Kong J.H., Lau E.M., Ferguson N.M., Anderson R.M. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet. 2003;361:1761–1766.
    1. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguiere A.M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Muller S., Rickerts V., Sturmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1967–1976.
    1. Hong S.H., Ma G.N. Studies on the alkaloids of Amaryllidaceae III: alkaloids and new alkaloids – Squamigerine isolated from Lycoris squamigera Maxim and two other Amaryllidaceae species. Acta Pharm. Sin. 1964;11:1–5.
    1. Ieven M., Vlietinck A.J., Vanden Berghe D.A., Totte J., Dommisse R., Esmans E., Alderweireldt F. Plant antiviral agents. III. Isolation of alkaloids from Clivia miniata Regel (Amaryllidaceae) J. Nat. Prod. 1982;45:564–573.
    1. Jassim S.A., Naji M.A. Novel antiviral agents: a medicinal plant perspective. J. Appl. Microbiol. 2003;95:412–427.
    1. Khabar K.S., al-Zoghaibi F., Dzimiri M., Taha M., al-Tuwaijri A., al-Ahdal M.N. MTS interferon assay: a simplified cellular dehydrogenase assay for interferon activity using a water-soluble tetrazolium salt. J. Interferon Cytokine Res. 1996;16:31–33.
    1. Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966.
    1. Lee N., Hui D., Wu A., Chan P., Cameron P., Joynt G.M., Ahuja A., Yung M.Y., Leung C.B., To K.F., Lui S.F., Szeto C.C., Chung S., Sung J.J. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003;348:1986–1994.
    1. Lin L., Han Y., Yang Z.M. Clinical observation on 103 patients of severe acute respiratory syndrome treated by integrative traditional Chinese and Western medicine. Zhong guo Zhong Xi Yi Jie He Za Zhi. 2003;23:409–413.
    1. McCutcheon A.R., Roberts T.E., Gibbons E., Ellis S.M., Babiuk L.A., Hancock R.E., Towers G.H. Antiviral screening of British Columbian medicinal plants. J. Ethnopharmacol. 1995;49:101–110.
    1. Miyasaka K., Hiramatsu Y. Pharmacological studies of lycorenine, an alkaloid of Lycoris radiata Herb: II. Effects of blood pressure in rats and dogs and the mechanism of tachyphylaxis to the vasodepressor action of lycorenine in rats. Jpn. J. Pharmacol. 1980;30:655–664.
    1. Peiris J.S., Chu C.M., Cheng V.C., Chan K.S., Hung I.F., Poon L.L., Law K.I., Tang B.S., Hon T.Y., Chan C.S., Chan K.H., Ng J.S., Zheng B.J., Ng W.L., Lai R.W., Guan Y., Yuen K.Y. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767–1772.
    1. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., Nicholls J., Yee W.K., Yan W.W., Cheung M.T., Cheng V.C., Chan K.H., Tsang D.N., Yung R.W., Ng T.K., Yuen K.Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325.
    1. Poutanen S.M., Low D.E., Henry B., Finkelstein S., Rose D., Green K., Tellier R., Draker R., Adachi D., Ayers M., Chan A.K., Skowronski D.M., Salit I., Simor A.E., Slutsky A.S., Doyle P.W., Krajden M., Petric M., Brunham R.C., McGeer A.J. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 2003;348:1995–2005.
    1. Renard-Nozaki J., Kim T., Imakura Y., Kihara M., Kobayashi S. Effect of alkaloids isolated from Amaryllidaceae on herpes simplex virus. Res. Virol. 1989;140:115–128.
    1. Scagnolari C., Vicenzi E., Bellomi F., Stillitano M.G., Pinna D., Poli G., Clementi M., Dianzani F., Antonelli G. Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antiviral Ther. 2004;9:1003–1011.
    1. Takagi S., Katagi T., Takebayashi K. Gas liquid chromatography of alkaloids. II. Quantitative analysis of alkaloids of Lycoris radiata herb. Chem. Pharm. Bull. (Tokyo) 1968;16:1121–1123.
    1. Tsang K.W., Ho P.L., Ooi G.C., Yee W.K., Wang T., Chan-Yeung M., Lam W.K., Seto W.H., Yam L.Y., Cheung T.M., Wong P.C., Lam B., Ip M.S., Chan J., Yuen K.Y., Lai K.N. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003;348:1977–1985.
    1. Vlietinck A.J., Vanden Berghe D.A. Can ethnopharmacology contribute to the development of antiviral drugs? J. Ethnopharmacol. 1991;32:141–153.
    1. Xiao Z., Li Y., Chen R., Li S., Zhong S., Zhong N. A retrospective study of 78 patients with severe acute respiratory syndrome. Chin. Med. J. 2003;116:805–810.
    1. Wu C.-Y., Jan J.-T., Ma S.-H., Kuo C.-J., Juan H.-F., Cheng Y.-S.E., Hsu H.-H., Huang H.-C., Wu D., Brik A., Liang F.-S., Liu R.-S., Fang J.-M., Chen S.-T., Liang P.-H., Wong C.-H. Small molecules targeting severe acute respiratory syndrome human coronavirus. PNAS. 2004;101:10012–10017.
    1. Zhao C.H., Guo Y.B., Wu H., Li X.H., Guo X.H., Jin R.H., Dign H.G., Meng Q.H., Lang Z.W., Wang W., Yan H.P., Huang C., Liu D.G. Clinical manifestation, treatment, and outcome of severe acute respiratory syndrome: analysis of 108 cases in Beijing. Zhonghua Yi Xue Za Zhi. 2003;83:897–901.
    1. Zhong N.S., Zeng G.Q. Our strategies for fighting severe acute respiratory syndrome (SARS) Am. J. Respir. Crit. Care Med. 2003;168:7–9.

Source: PubMed

3
Sottoscrivi