Association of weight change with cerebrospinal fluid biomarkers and amyloid positron emission tomography in preclinical Alzheimer's disease

Oriol Grau-Rivera, Irene Navalpotro-Gomez, Gonzalo Sánchez-Benavides, Marc Suárez-Calvet, Marta Milà-Alomà, Eider M Arenaza-Urquijo, Gemma Salvadó, Aleix Sala-Vila, Mahnaz Shekari, José Maria González-de-Echávarri, Carolina Minguillón, Aida Niñerola-Baizán, Andrés Perissinotti, Maryline Simon, Gwendlyn Kollmorgen, Henrik Zetterberg, Kaj Blennow, Juan Domingo Gispert, José Luis Molinuevo, ALFA Study, Annabella Beteta, Raffaele Cacciaglia, Alba Cañas, Carme Deulofeu, Irene Cumplido, Ruth Dominguez, Maria Emilio, Carles Falcon, Sherezade Fuentes, Laura Hernandez, Gema Huesa, Jordi Huguet, Karine Fauria, Paula Marne, Tania Menchón, Grégory Operto, Albina Polo, Sandra Pradas, Anna Soteras, Marc Vilanova, Natàlia Vilor-Tejedor, Oriol Grau-Rivera, Irene Navalpotro-Gomez, Gonzalo Sánchez-Benavides, Marc Suárez-Calvet, Marta Milà-Alomà, Eider M Arenaza-Urquijo, Gemma Salvadó, Aleix Sala-Vila, Mahnaz Shekari, José Maria González-de-Echávarri, Carolina Minguillón, Aida Niñerola-Baizán, Andrés Perissinotti, Maryline Simon, Gwendlyn Kollmorgen, Henrik Zetterberg, Kaj Blennow, Juan Domingo Gispert, José Luis Molinuevo, ALFA Study, Annabella Beteta, Raffaele Cacciaglia, Alba Cañas, Carme Deulofeu, Irene Cumplido, Ruth Dominguez, Maria Emilio, Carles Falcon, Sherezade Fuentes, Laura Hernandez, Gema Huesa, Jordi Huguet, Karine Fauria, Paula Marne, Tania Menchón, Grégory Operto, Albina Polo, Sandra Pradas, Anna Soteras, Marc Vilanova, Natàlia Vilor-Tejedor

Abstract

Background: Recognizing clinical manifestations heralding the development of Alzheimer's disease (AD)-related cognitive impairment could improve the identification of individuals at higher risk of AD who may benefit from potential prevention strategies targeting preclinical population. We aim to characterize the association of body weight change with cognitive changes and AD biomarkers in cognitively unimpaired middle-aged adults.

Methods: This prospective cohort study included data from cognitively unimpaired adults from the ALFA study (n = 2743), a research platform focused on preclinical AD. Cognitive and anthropometric data were collected at baseline between April 2013 and November 2014. Between October 2016 and February 2020, 450 participants were visited in the context of the nested ALFA+ study and underwent cerebrospinal fluid (CSF) extraction and acquisition of positron emission tomography images with [18F]flutemetamol (FTM-PET). From these, 408 (90.1%) were included in the present study. We used data from two visits (average interval 4.1 years) to compute rates of change in weight and cognitive performance. We tested associations between these variables and between weight change and categorical and continuous measures of CSF and neuroimaging AD biomarkers obtained at follow-up. We classified participants with CSF data according to the AT (amyloid, tau) system and assessed between-group differences in weight change.

Results: Weight loss predicted a higher likelihood of positive FTM-PET visual read (OR 1.27, 95% CI 1.00-1.61, p = 0.049), abnormal CSF p-tau levels (OR 1.50, 95% CI 1.19-1.89, p = 0.001), and an A+T+ profile (OR 1.64, 95% CI 1.25-2.20, p = 0.001) and was greater among participants with an A+T+ profile (p < 0.01) at follow-up. Weight change was positively associated with CSF Aβ42/40 ratio (β = 0.099, p = 0.032) and negatively associated with CSF p-tau (β = - 0.141, p = 0.005), t-tau (β = - 0.147 p = 0.004) and neurogranin levels (β = - 0.158, p = 0.002). In stratified analyses, weight loss was significantly associated with higher t-tau, p-tau, neurofilament light, and neurogranin, as well as faster cognitive decline in A+ participants only.

Conclusions: Weight loss predicts AD CSF and PET biomarker results and may occur downstream to amyloid-β accumulation in preclinical AD, paralleling cognitive decline. Accordingly, it should be considered as an indicator of increased risk of AD-related cognitive impairment.

Trial registration: NCT01835717 , NCT02485730 , NCT02685969 .

Keywords: Alzheimer’s disease; Biomarkers; Cognitively unimpaired; Preclinical; Risk factors; Weight loss.

Conflict of interest statement

IN-G received honoraria for travel and accommodation to attend scientific meetings from Zambon, Teva, Bial, AbbVie, and Krka. MS and GK are full-time employees of Roche Diagnostics. HZ has served at scientific advisory boards for Denali, Roche Diagnostics, Wave, Samumed, Siemens Healthineers, Pinteon Therapeutics, and CogRx, has given lectures in symposia sponsored by Fujirebio, Alzecure, and Biogen, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). KB has served as a consultant, at advisory boards, or at data monitoring committees for Abcam, Axon, Biogen, JOMDD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis, Roche Diagnostics, and Siemens Healthineers and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program. JLM is currently a full- time employee of H. Lundbeck A/S and priory has served as a consultant or at advisory boards for the following for-profit companies, or has given lectures in symposia sponsored by the following for-profit companies: Roche Diagnostics, Genentech, Novartis, Lundbeck, Oryzon, Biogen, Lilly, Janssen, Green Valley, MSD, Eisai, Alector, BioCross, GE Healthcare, ProMIS Neurosciences. The remaining authors report no conflicts of interest.

Figures

Fig. 1
Fig. 1
Odds ratios (in logarithmic scale) and 95% confidence intervals for the association between weight loss (% weight loss during follow-up) and core-AD biomarker results. Weight loss refers to reversed values of the annualized weight change rate (i.e., positive values of weight change expressed weight loss)
Fig. 2
Fig. 2
Odds ratios (in logarithmic scale) and 95% confidence intervals for the association between weight loss (% weight loss during follow-up) and being A+T+ compared with A-T-. Weight loss refers to reversed values of the annualized weight change rate (i.e., positive values of weight change expressed weight loss)
Fig. 3
Fig. 3
Differences in the annualized rate of weight change across AT groups. Brackets and numbers above them indicate between-group statically significant differences and Bonferroni-adjusted P values
Fig. 4
Fig. 4
Interaction between amyloid status and the annualized rate of weight change on cognitive performance change, CSF biomarkers and Centiloids. std. Beta: standardized beta coefficients

References

    1. McKhann GM, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–944. doi: 10.1212/WNL.34.7.939.
    1. White H, Pieper C, Schmader K, Fillenbaum G. Weight change in Alzheimer’s disease. J Am Geriatr Soc. 1996;44:265–272. doi: 10.1111/j.1532-5415.1996.tb00912.x.
    1. White H, Pieper C, Schmader K. The association of weight change in Alzheimer’s disease with severity of disease and mortality: a longitudinal analysis. J Am Geriatr Soc. 1998;46:1223–1227. doi: 10.1111/j.1532-5415.1998.tb04537.x.
    1. Cronin-Stubbs D, Beckett LA, Scherr PA, Field TS, Chown MJ, Pilgrim DM, et al. Weight loss in people with Alzheimer’s disease: a prospective population based analysis. BMJ. 1997;314:178. doi: 10.1136/bmj.314.7075.178.
    1. Besser LM, Gill DP, Monsell SE, Brenowitz W, Meranus DH, Kukull W, et al. Body mass index, weight change, and clinical progression in mild cognitive impairment and Alzheimer disease. Alzheimer Dis Assoc Disord. 2014;28:36–43. doi: 10.1097/WAD.0000000000000005.
    1. Barrett-Connor E, Edelstein SL, Corey-Bloom J, Wiederholt WC. Weight loss precedes dementia in community-dwelling older adults. J Am Geriatr Soc. 1996;44:1147–1152. doi: 10.1111/j.1532-5415.1996.tb01362.x.
    1. Stewart R, Masaki K, Xue Q-L, Peila R, Petrovitch H, White LR, et al. A 32-year prospective study of change in body weight and incident dementia: the Honolulu-Asia Aging Study. Arch Neurol. 2005;62:55. doi: 10.1001/archneur.62.1.55.
    1. Buchman AS, Wilson RS, Bienias JL, Shah RC, Evans DA, Bennett DA. Change in body mass index and risk of incident Alzheimer disease. Neurology. 2005;65:892–897. doi: 10.1212/01.wnl.0000176061.33817.90.
    1. Johnson DK, Wilkins CH, Morris JC. Accelerated weight loss may precede diagnosis in Alzheimer disease. Arch Neurol. 2006;63:1312. doi: 10.1001/archneur.63.9.1312.
    1. Knopman DS, Edland SD, Cha RH, Petersen RC, Rocca WA. Incident dementia in women is preceded by weight loss by at least a decade. Neurology. 2007;69:739–746. doi: 10.1212/01.wnl.0000267661.65586.33.
    1. Singh-Manoux A, Dugravot A, Shipley M, Brunner EJ, Elbaz A, Sabia S, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement. 2018;14:178–186. doi: 10.1016/j.jalz.2017.06.2637.
    1. Alhurani RE, Vassilaki M, Aakre JA, Mielke MM, Kremers WK, Machulda MM, et al. Decline in weight and incident mild cognitive impairment. JAMA Neurol. 2016;73:439. doi: 10.1001/jamaneurol.2015.4756.
    1. Buchman AS, Schneider JA, Wilson RS, Bienias JL, Bennett DA. Body mass index in older persons is associated with Alzheimer disease pathology. Neurology. 2006;67:1949–1954. doi: 10.1212/01.wnl.0000247046.90574.0f.
    1. Ishii M, Iadecola C. Metabolic and non-cognitive manifestations of Alzheimer’s disease: the hypothalamus as both culprit and target of pathology. Cell Metab. 2015;22:761–776. doi: 10.1016/j.cmet.2015.08.016.
    1. Jimenez A, Pegueroles J, Carmona-Iragui M, Vilaplana E, Montal V, Alcolea D, et al. Weight loss in the healthy elderly might be a non-cognitive sign of preclinical Alzheimer’s disease. Oncotarget. 2017;8:104706–104716. doi: 10.18632/oncotarget.22218.
    1. Rabin JS, Shirzadi Z, Swardfager W, MacIntosh BJ, Schultz A, Yang H, et al. Amyloid-beta burden predicts prospective decline in body mass index in clinically normal adults. Neurobiol Aging. 2020;93:124–130. doi: 10.1016/j.neurobiolaging.2020.03.002.
    1. Xu W, Sun F-R, Tan C-C, Tan L. Weight loss is a preclinical signal of cerebral amyloid deposition and could predict cognitive impairment in elderly adults. J Alzheimers Dis. 2020;77:449–456. doi: 10.3233/JAD-200524.
    1. Vidoni ED, Townley RA, Honea RA, Burns JM. Alzheimer disease biomarkers are associated with body mass index. Neurology. 2011;77:1913–1920. doi: 10.1212/WNL.0b013e318238eec1.
    1. Ewers M, Schmitz S, Hansson O, Walsh C, Fitzpatrick A, Bennett D, et al. Body mass index is associated with biological CSF markers of core brain pathology of Alzheimer’s disease. Neurobiol Aging. 2012;33:1599–1608. doi: 10.1016/j.neurobiolaging.2011.05.005.
    1. Hsu DC, Mormino EC, Schultz AP, Amariglio RE, Donovan NJ, Rentz DM, et al. Lower late-life body-mass index is associated with higher cortical amyloid burden in clinically normal elderly. J Alzheimers Dis. 2016;53:1097–1105. doi: 10.3233/JAD-150987.
    1. Sun Z, Wang Z, Sun F, Shen X, Xu W, Ma Y, et al. Late-life obesity is a protective factor for prodromal Alzheimer’s disease: a longitudinal study. Aging (Albany NY) 2020;12:2005–2017. doi: 10.18632/aging.102738.
    1. Milà-Alomà M, Salvadó G, Gispert JD, Vilor-Tejedor N, Grau-Rivera O, Sala-Vila A, et al. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement. 2020;16:1358–1371. doi: 10.1002/alz.12131.
    1. Molinuevo JL, Gramunt N, Gispert JD, Fauria K, Esteller M, Minguillon C, et al. The ALFA project: a research platform to identify early pathophysiological features of Alzheimer’s disease. Alzheimer’s Dement (NY) 2016;2:82–92. doi: 10.1016/j.trci.2016.02.003.
    1. Papp KV, Rentz DM, Orlovsky I, Sperling RA, Mormino EC. Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: the PACC5. Alzheimer’s Dement (NY) 2017;3:668–677. doi: 10.1016/j.trci.2017.10.004.
    1. Lim YY, Snyder PJ, Pietrzak RH, Ukiqi A, Villemagne VL, Ames D, et al. Sensitivity of composite scores to amyloid burden in preclinical Alzheimer’s disease: introducing the Z-scores of attention, verbal fluency, and episodic memory for nondemented older adults composite score. Alzheimer’s Dement (Amst) 2016;2:19–26. doi: 10.1016/j.dadm.2015.11.003.
    1. Jonaitis EM, Koscik RL, Clark LR, Ma Y, Betthauser TJ, Berman SE, et al. Measuring longitudinal cognition: individual tests versus composites. Alzheimer’s Dement (Amst) 2019;11:74–84. doi: 10.1016/j.dadm.2018.11.006.
    1. Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, et al. The preclinical Alzheimer cognitive composite. JAMA Neurol. 2014;71:961. doi: 10.1001/jamaneurol.2014.803.
    1. Quintana JM, Padierna A, Esteban C, Arostegui I, Bilbao A, Ruiz I. Evaluation of the psychometric characteristics of the Spanish version of the Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 2003;107:216–221. doi: 10.1034/j.1600-0447.2003.00062.x.
    1. Molina L, Sarmiento M, Peñafiel J, Donaire D, Garcia-Aymerich J, Gomez M, et al. Validation of the Regicor Short Physical Activity Questionnaire for the adult population. Lucía A, editor. Plos One. 2017;12:e0168148.
    1. Schröder H, Fitó M, Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr. 2011;141:1140–1145. doi: 10.3945/jn.110.135566.
    1. Palmqvist S, Mattsson N, Hansson O. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain. 2016;139:1226–1236. doi: 10.1093/brain/aww015.
    1. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018.
    1. Salvadó G, Molinuevo JL, Brugulat-Serrat A, Falcon C, Grau-Rivera O, Suárez-Calvet M, et al. Centiloid cut-off values for optimal agreement between PET and CSF core AD biomarkers. Alzheimers Res Ther. 2019;11:27. doi: 10.1186/s13195-019-0478-z.
    1. Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s Dement. 2015;11:1–15.e4. doi: 10.1016/j.jalz.2014.07.003.
    1. Bays HE, Chapman RH, Grandy S. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int J Clin Pract. 2007;61:737–747. doi: 10.1111/j.1742-1241.2007.01336.x.
    1. Varkevisser RDM, van Stralen MM, Kroeze W, Ket JCF, Steenhuis IHM. Determinants of weight loss maintenance: a systematic review. Obes Rev. 2019;20:171–211. doi: 10.1111/obr.12772.
    1. Brumpton B, Langhammer A, Romundstad P, Chen Y, Mai X-M. The associations of anxiety and depression symptoms with weight change and incident obesity: the HUNT study. Int J Obes. 2013;37:1268–1274. doi: 10.1038/ijo.2012.204.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
    1. Farrer LA. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA J Am Med Assoc. 1997;278:1349–1356. doi: 10.1001/jama.1997.03550160069041.
    1. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006;5:735–741. doi: 10.1016/S1474-4422(06)70537-3.
    1. Li J, Ogrodnik M, Devine S, Auerbach S, Wolf PA, Au R. Practical risk score for 5-, 10-, and 20-year prediction of dementia in elderly persons: Framingham Heart Study. Alzheimers Dement. 2018;14:35–42. doi: 10.1016/j.jalz.2017.04.013.
    1. Jessen F, Wolfsgruber S, Wiese B, Bickel H, Mösch E, Kaduszkiewicz H, et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimers Dement. 2014;10:76–83. doi: 10.1016/j.jalz.2012.09.017.
    1. Sánchez-Benavides G, Salvadó G, Arenaza-Urquijo EM, Grau-Rivera O, Suárez-Calvet M, Milà-Alomà M, et al. Quantitative informant- and self-reports of subjective cognitive decline predict amyloid beta PET outcomes in cognitively unimpaired individuals independently of age and APOE ε4. Alzheimer’s Dement (Amst) 2020;12:1–10.
    1. Müller S, Preische O, Sohrabi HR, Gräber S, Jucker M, Dietzsch J, et al. Decreased body mass index in the preclinical stage of autosomal dominant Alzheimer’s disease. Sci Rep. 2017;7:1–7. doi: 10.1038/s41598-016-0028-x.
    1. Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA. Olfactory impairment in presymptomatic Alzheimer’s disease. Ann N Y Acad Sci. 2009;1170:730–735. doi: 10.1111/j.1749-6632.2009.04013.x.
    1. Albanese E, Taylor C, Siervo M, Stewart R, Prince MJ, Acosta D. Dementia severity and weight loss: a comparison across eight cohorts. The 10/66 study. Alzheimers Dement. 2013;9:649–656. doi: 10.1016/j.jalz.2012.11.014.
    1. Giudici K, Guyonnet S, Rolland Y, Vellas B, de Souto BP, Nourhashemi F. Body weight variation patterns as predictors of cognitive decline over a 5 year follow-up among community-dwelling elderly (MAPT study) Nutrients. 2019;11:1371. doi: 10.3390/nu11061371.
    1. Jack CR, Wiste HJ, Therneau TM, Weigand SD, Knopman DS, Mielke MM, et al. Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia. JAMA. 2019;321:2316. doi: 10.1001/jama.2019.7437.
    1. Soldan A, Pettigrew C, Fagan AM, Schindler SE, Moghekar A, Fowler C, et al. ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology. 2019;92:E1567–E1579. doi: 10.1212/WNL.0000000000007248.
    1. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29:2102–2107. doi: 10.2337/dc06-0560.
    1. Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385:2255–2263. doi: 10.1016/S0140-6736(15)60461-5.
    1. Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP, Yaffe K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ. 2005;330:1360. doi: 10.1136/bmj.38446.466238.E0.
    1. Fitzpatrick AL, Kuller LH, Lopez OL, Diehr P, O’Meara ES, Longstreth WT, et al. Midlife and late-life obesity and the risk of dementia. Arch Neurol. 2009;66:336–342. doi: 10.1001/archneurol.2008.582.
    1. Tolppanen A-M, Ngandu T, Kåreholt I, Laatikainen T, Rusanen M, Soininen H, et al. Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. J Alzheimers Dis. 2013;38:201–209. doi: 10.3233/JAD-130698.
    1. Kivimäki M, Luukkonen R, Batty GD, Ferrie JE, Pentti J, Nyberg ST, et al. Body mass index and risk of dementia: analysis of individual-level data from 1.3 million individuals. Alzheimers Dement. 2018;14:601–609. doi: 10.1016/j.jalz.2017.09.016.
    1. Floud S, Simpson RF, Balkwill A, Brown A, Goodill A, Gallacher J, et al. Body mass index, diet, physical inactivity, and the incidence of dementia in 1 million UK women. Neurology. 2020;94:e123–e132. doi: 10.1212/WNL.0000000000008779.
    1. Qizilbash N, Gregson J, Johnson ME, Pearce N, Douglas I, Wing K, et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol. 2015;3:431–436. doi: 10.1016/S2213-8587(15)00033-9.

Source: PubMed

3
Sottoscrivi