Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth

Giovanni Germano, Simona Lamba, Giuseppe Rospo, Ludovic Barault, Alessandro Magrì, Federica Maione, Mariangela Russo, Giovanni Crisafulli, Alice Bartolini, Giulia Lerda, Giulia Siravegna, Benedetta Mussolin, Roberta Frapolli, Monica Montone, Federica Morano, Filippo de Braud, Nabil Amirouchene-Angelozzi, Silvia Marsoni, Maurizio D'Incalci, Armando Orlandi, Enrico Giraudo, Andrea Sartore-Bianchi, Salvatore Siena, Filippo Pietrantonio, Federica Di Nicolantonio, Alberto Bardelli, Giovanni Germano, Simona Lamba, Giuseppe Rospo, Ludovic Barault, Alessandro Magrì, Federica Maione, Mariangela Russo, Giovanni Crisafulli, Alice Bartolini, Giulia Lerda, Giulia Siravegna, Benedetta Mussolin, Roberta Frapolli, Monica Montone, Federica Morano, Filippo de Braud, Nabil Amirouchene-Angelozzi, Silvia Marsoni, Maurizio D'Incalci, Armando Orlandi, Enrico Giraudo, Andrea Sartore-Bianchi, Salvatore Siena, Filippo Pietrantonio, Federica Di Nicolantonio, Alberto Bardelli

Abstract

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.

References

    1. Nature. 2012 Jan 18;481(7381):287-94
    1. Nature. 2015 Dec 17;528(7582):422-6
    1. Clin Genet. 2015 Jun;87(6):507-16
    1. BMC Bioinformatics. 2011 Aug 04;12:323
    1. Science. 2015 Apr 3;348(6230):124-8
    1. Nat Med. 2002 Mar;8(3):282-8
    1. Nat Rev Cancer. 2016 Feb;16(2):71-81
    1. Science. 2015 Apr 3;348(6230):56-61
    1. Science. 2017 Jul 28;357(6349):409-413
    1. Cancer Discov. 2015 Jan;5(1):43-51
    1. Science. 2017 Feb 17;355(6326):752-756
    1. Science. 2016 Mar 25;351(6280):1463-9
    1. BMC Genomics. 2014 Mar 13;15:190
    1. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5770-5
    1. Bioinformatics. 2009 Aug 15;25(16):2078-9
    1. Bioinformatics. 2010 Mar 1;26(5):589-95
    1. Clin Neurosurg. 2008;55:165-71
    1. Cancer Res. 1975 Sep;35(9):2434-9
    1. Nucleic Acids Res. 2010 Oct;38(18):e178
    1. Clin Cancer Res. 1998 Jan;4(1):1-6
    1. Clin Exp Metastasis. 1983 Oct-Dec;1(4):373-80
    1. J Exp Med. 2017 Apr 3;214(4):895-904
    1. Clin Cancer Res. 2009 Jul 15;15(14 ):4622-9
    1. Nat Rev Clin Oncol. 2010 Mar;7(3):153-62
    1. Nat Methods. 2014 Aug;11(8):783-784
    1. Nat Methods. 2016 Oct;13(10 ):868-74
    1. Bioinformatics. 2016 Feb 15;32(4):511-7
    1. J Clin Invest. 2012 May;122(5):1832-48
    1. Cancer Res. 2016 Dec 15;76(24):7181-7193
    1. Cold Spring Harb Perspect Biol. 2013 Apr 01;5(4):a012633
    1. Oncogene. 2016 Aug 11;35(32):4282-8
    1. Nature. 2014 Nov 27;515(7528):577-81
    1. Eur J Cancer. 2017 Jan;71:43-50
    1. Science. 2015 Apr 3;348(6230):69-74
    1. Nat Med. 2015 Jun;21(6):647-53
    1. Mol Carcinog. 2015 Nov;54(11):1376-86
    1. Nat Med. 2016 Apr;22(4):433-8
    1. N Engl J Med. 2015 Jun 25;372(26):2509-20
    1. Clin Cancer Res. 2007 Apr 1;13(7):2038-45
    1. Nat Commun. 2015 Apr 30;6:7002
    1. Br J Cancer. 2017 May 9;116(10 ):1279-1286
    1. Eur J Cancer. 2013 Jul;49(11):2587-95
    1. Nat Med. 2015 Jul;21(7):795-801

Source: PubMed

3
Sottoscrivi