The many faces of the anti-COVID immune response

Santosha A Vardhana, Jedd D Wolchok, Santosha A Vardhana, Jedd D Wolchok

Abstract

The novel 2019 strain of coronavirus is a source of profound morbidity and mortality worldwide. Compared with recent viral outbreaks, COVID-19 infection has a relatively high mortality rate, the reasons for which are not entirely clear. Furthermore, treatment options for COVID-19 infection are currently limited. In this Perspective, we explore the contributions of the innate and adaptive immune systems to both viral control as well as toxicity during COVID-19 infections and offer suggestions to both understand and therapeutically modulate anti-COVID immunity.

Conflict of interest statement

Disclosures: S.A. Vardhana reported personal fees from Immunai and personal fees from ADC Therapeutics outside the submitted work; in addition, S.A. Vardhana had a patent to PCT/US19/27610 pending. J.D. Wolchok reported personal fees from Tizona Pharmaceuticals, Adaptive Biotechnologies, Imvaq, Beigene, and Linneaus; and grants from AstraZeneca, Bristol Myers Squibb, and Sephora outside the submitted work. In addition, J.D. Wolchok had a patent to alphavirus replicon particles expressing TRP2 issued, a patent to Newcastle disease viruses for cancer therapy issued, a patent to xenogeneic DNA vaccines with royalties paid "Merial," a patent to myeloid-derived suppressor cell (MDSC) assay with royalties paid "Serametrix," a patent to anti-PD1 antibody licensed "Agenus," a patent to anti-CTLA4 antibodies licensed "Agenus," a patent to anti-GITR antibodies and methods of use thereof licensed "Agenus/Incyte," a patent to genomic signature to identify responders to ipilimumab in melanoma pending, a patent to engineered vaccinia viruses for cancer immunotherapy pending, a patent to anti-CD40 agonist mAb fused to monophosphoryl lipid A (MPL) for cancer therapy pending, a patent to CAR+ T cells targeting differentiation antigens as means to treat cancer pending, a patent to identifying and treating subjects at risk for checkpoint blockade therapy associated colitis pending, a patent to immunosuppressive follicular helper-like T cells modulated by immune checkpoint blockade pending, and a patent to phosphatidylserine targeting agents and uses thereof for adoptive T-cell therapies pending. J.D. Wolchok is a paid consultant for: Adaptive Biotech, Amgen, Apricity, Ascentage Pharma, Astellas, AstraZeneca, Bayer, Beigene, Bristol Myers Squibb, Celgene, Chugai, Eli Lilly, Elucida, F Star, Imvaq, Janssen, Kyowa Hakko Kirin, Linneaus, Merck, Neon Therapuetics, Novaritis, Polynoma, Psioxus, Recepta, Takara Bio, Trieza, Truvax, Serametrix, Surface Oncology, Syndax, and Syntalogic.

© 2020 Vardhana and Wolchok.

Figures

Figure 1.
Figure 1.
Innate immune regulation of antiviral defense and tissue toxicity. Virally derived DAMPs and PAMPs activate tissue-resident macrophages. Downstream production of IL-6 and IL-1β recruit neutrophils and CD8+ T cells, which control viral growth (left) but also induce tissue damage, leading to alveolar flooding and fibrosis (right). MMP, matrix metalloproteases.
Figure 2.
Figure 2.
Distinctions between CAR-T and virally mediated hypercytokinemia.(A and B) During CAR-T cell–driven CRS (A), blockade of macrophage-derived IL-1 and IL-6 limits tissue toxicity without interfering with antitumor immunity. However, during viral infections (B), blockade of macrophage function may impair both innate and adaptive viral control.
Figure 3.
Figure 3.
Immune dysregulation during chronic viral infections.(A and B) During acute viral infections (A), early innate and adaptive immune function lead to viral suppression, followed by development of adaptive immunity. During chronic viral infections (B), persistent virus leads to T cell depletion and exhaustion while triggering ongoing innate immune inflammation. NK, natural killer.
Figure 4.
Figure 4.
Enhancing innate and adaptive immunity to combat COVID-19 infections.(A) Enhancing antiviral sensing through activation of type I interferon responses or adaptive immunity by rescuing T cells from exhaustion-dependent cell death may improve anti–COVID-19 immunity, particularly in the context of blocking macrophage-dependent cytokine production. (B) Distinct strategies for modulating innate and adaptive immune responses during early and late COVID-19 infection may lead to more effective viral control.

References

    1. Abeysekera R.A., Illangasekera U., Jayalath T., Sandeepana A.G., and Kularatne S.A.. 2012. Successful use of intravenous N-acetylcysteine in dengue haemorrhagic fever with acute liver failure. Ceylon Med. J. 57:166–167. 10.4038/cmj.v57i4.5085
    1. Ahmed R., Salmi A., Butler L.D., Chiller J.M., and Oldstone M.B.. 1984. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160:521–540. 10.1084/jem.160.2.521
    1. Akerlund B., Jarstrand C., Lindeke B., Sönnerborg A., Akerblad A.C., and Rasool O.. 1996. Effect of N-acetylcysteine(NAC) treatment on HIV-1 infection: a double-blind placebo-controlled trial. Eur. J. Clin. Pharmacol. 50:457–461. 10.1007/s002280050140
    1. Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., et al. ; Saudi Critical Care Trial Group . 2018. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am. J. Respir. Crit. Care Med. 197:757–767. 10.1164/rccm.201706-1172OC
    1. Assiri A., Al-Tawfiq J.A., Al-Rabeeah A.A., Al-Rabiah F.A., Al-Hajjar S., Al-Barrak A., Flemban H., Al-Nassir W.N., Balkhy H.H., Al-Hakeem R.F., et al. . 2013. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect. Dis. 13:752–761. 10.1016/S1473-3099(13)70204-4
    1. Bai Y., Yao L., Wei T., Tian F., Jin D.Y., Chen L., and Wang M.. 2020. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 323:1406 10.1001/jama.2020.2565
    1. Barber D.L., Wherry E.J., Masopust D., Zhu B., Allison J.P., Sharpe A.H., Freeman G.J., and Ahmed R.. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 439:682–687. 10.1038/nature04444
    1. Bautista E., Chotpitayasunondh T., Gao Z., Harper S.A., Shaw M., Uyeki T.M., Zaki S.R., Hayden F.G., Hui D.S., Kettner J.D., et al. ; Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza . 2010. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N. Engl. J. Med. 362:1708–1719. 10.1056/NEJMra1000449
    1. Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., Jerome K.R., Nalla A.K., Greninger A.L., Pipavath S., Wurfel M.M., Evans L., et al. . 2020. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N. Engl. J. Med. NEJMoa2004500 10.1056/NEJMoa2004500
    1. Blanco-Melo D., Nilsson-Payant B.E., Liu W., Moller R., Panis M., Sachs D., Albrecht R.A., and tenOever B.R.. 2020. SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems. bioRxiv (Preprint posted March 24, 2020).
    1. Bradley-Stewart A., Jolly L., Adamson W., Gunson R., Frew-Gillespie C., Templeton K., Aitken C., Carman W., Cameron S., and McSharry C.. 2013. Cytokine responses in patients with mild or severe influenza A(H1N1)pdm09. J. Clin. Virol. 58:100–107. 10.1016/j.jcv.2013.05.011
    1. Broers A.E., van Der Holt R., van Esser J.W., Gratama J.W., Henzen-Logmans S., Kuenen-Boumeester V., Löwenberg B., and Cornelissen J.J.. 2000. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood. 95:2240–2245. 10.1182/blood.V95.7.2240
    1. Cao B., Li X.W., Mao Y., Wang J., Lu H.Z., Chen Y.S., Liang Z.A., Liang L., Zhang S.J., Zhang B., et al. ; National Influenza A Pandemic (H1N1) 2009 Clinical Investigation Group of China . 2009. Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N. Engl. J. Med. 361:2507–2517. 10.1056/NEJMoa0906612
    1. Chandler J.D., Hu X., Ko E.J., Park S., Lee Y.T., Orr M., Fernandes J., Uppal K., Kang S.M., Jones D.P., et al. . 2016. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311:R906–R916. 10.1152/ajpregu.00298.2016
    1. Channappanavar R., Fett C., Zhao J., Meyerholz D.K., and Perlman S.. 2014. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 88:11034–11044. 10.1128/JVI.01505-14
    1. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., et al. . 2020a Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest.:137244 10.1172/JCI137244
    1. Chen X., Ling J., Mo P., Zhang Y., Jiang Q., Ma Z., Cao Q., Hu W., Zou S., Chen L., et al. . 2020. b. Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients. medRxiv 10.1101/2020.03.03.20030437 (Preprint posted March 6, 2020).
    1. Chen X., Zhao B., Qu Y., Chen Y., Xiong J., Feng Y., Men D., Huang Q., Liu Y., Yang B., et al. . 2020. c. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely associated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. medRxiv 10.1101/2020.02.29.20029520 (Preprint posted March 3, 2020).
    1. Chen Y., Feng Z., Diao B., Wang R., Wang G., Wang C., Tan Y., Liu L., Wang C., Liu Y., et al. . 2020. d. The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes. medRxiv 10.1101/2020.03.27.20045427 (Preprint posted March 31, 2020).
    1. Day C.L., Kaufmann D.E., Kiepiela P., Brown J.A., Moodley E.S., Reddy S., Mackey E.W., Miller J.D., Leslie A.J., DePierres C., et al. . 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 443:350–354. 10.1038/nature05115
    1. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen L., Li M., Liu Y., Wang G., et al. . 2020. a. Reduction and functional exhaustion of T-cells in patients with Coronavirus disease 2019 (COVID-19). medRxiv 10.1101/2020.02.18.20024364 (Preprint posted February 20, 2020).
    1. Diao B., Wang C., Wang R., Feng Z., Tan Y., Wang H., Wang C., Liu L., Liu Y., Liu Y., et al. . 2020. b. Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. medRxiv 10.1101/2020.03.04.20031120 (Preprint posted April 10, 2020).
    1. Diebold S.S., Kaisho T., Hemmi H., Akira S., and Reis e Sousa C.. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 303:1529–1531. 10.1126/science.1093616
    1. Duan K., Liu B., Li C., Zhang H., Yu T., Qu J., Zhou M., Chen L., Meng S., Hu Y., et al. . 2020. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA. 202004168 10.1073/pnas.2004168117
    1. Erickson J.J., Gilchuk P., Hastings A.K., Tollefson S.J., Johnson M., Downing M.B., Boyd K.L., Johnson J.E., Kim A.S., Joyce S., et al. . 2012. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J. Clin. Invest. 122:2967–2982. 10.1172/JCI62860
    1. Eylar E., Rivera-Quinones C., Molina C., Báez I., Molina F., and Mercado C.M.. 1993. N-acetylcysteine enhances T cell functions and T cell growth in culture. Int. Immunol. 5:97–101. 10.1093/intimm/5.1.97
    1. Fisicaro P., Barili V., Montanini B., Acerbi G., Ferracin M., Guerrieri F., Salerno D., Boni C., Massari M., Cavallo M.C., et al. . 2017. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 23:327–336. 10.1038/nm.4275
    1. Gao R., Bhatnagar J., Blau D.M., Greer P., Rollin D.C., Denison A.M., Deleon-Carnes M., Shieh W.J., Sambhara S., Tumpey T.M., et al. . 2013. Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza A (H1N1): role of the host immune response in pathogenesis. Am. J. Pathol. 183:1258–1268. 10.1016/j.ajpath.2013.06.023
    1. Giamarellos-Bourboulis E.J., Raftogiannis M., Antonopoulou A., Baziaka F., Koutoukas P., Savva A., Kanni T., Georgitsi M., Pistiki A., Tsaganos T., et al. . 2009. Effect of the novel influenza A (H1N1) virus in the human immune system. PLoS One. 4 e8393 10.1371/journal.pone.0008393
    1. Giavridis T., van der Stegen S.J.C., Eyquem J., Hamieh M., Piersigilli A., and Sadelain M.. 2018. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24:731–738. 10.1038/s41591-018-0041-7
    1. Gritti G., Raimondi F., Ripamonti D., Riva I., Landi F., Alborghetti L., Frigeni M., Damiani M., Mico C., Fagiuoli S., et al. . 2020. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv 10.1101/2020.04.01.20048561 (Preprint posted April 15, 2020).
    1. Grupp S.A., Kalos M., Barrett D., Aplenc R., Porter D.L., Rheingold S.R., Teachey D.T., Chew A., Hauck B., Wright J.F., et al. . 2013. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368:1509–1518. 10.1056/NEJMoa1215134
    1. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., et al. ; China Medical Treatment Expert Group for Covid-19 . 2020. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. NEJMoa2002032 10.1056/NEJMoa2002032
    1. Guerrero C.A., Torres D.P., García L.L., Guerrero R.A., and Acosta O.. 2014. N-Acetylcysteine treatment of rotavirus-associated diarrhea in children. Pharmacotherapy. 34:e333–e340. 10.1002/phar.1489
    1. Hagau N., Slavcovici A., Gonganau D.N., Oltean S., Dirzu D.S., Brezoszki E.S., Maxim M., Ciuce C., Mlesnite M., Gavrus R.L., et al. . 2010. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection. Crit. Care. 14:R203 10.1186/cc9324
    1. Harker J.A., Lewis G.M., Mack L., and Zuniga E.I.. 2011. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science. 334:825–829. 10.1126/science.1208421
    1. Hay K.A., Hanafi L.A., Li D., Gust J., Liles W.C., Wurfel M.M., López J.A., Chen J., Chung D., Harju-Baker S., et al. . 2017. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 130:2295–2306. 10.1182/blood-2017-06-793141
    1. Hon K.L., Leung C.W., Cheng W.T., Chan P.K., Chu W.C., Kwan Y.W., Li A.M., Fong N.C., Ng P.C., Chiu M.C., et al. . 2003. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet. 361:1701–1703. 10.1016/S0140-6736(03)13364-8
    1. Hornung V., Ellegast J., Kim S., Brzózka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann K.K., Schlee M., et al. . 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 314:994–997. 10.1126/science.1132505
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. . 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 10.1016/S0140-6736(20)30183-5
    1. Imai Y., Kuba K., Neely G.G., Yaghubian-Malhami R., Perkmann T., van Loo G., Ermolaeva M., Veldhuizen R., Leung Y.H., Wang H., et al. . 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 133:235–249. 10.1016/j.cell.2008.02.043
    1. Jacobs R.F., Tabor D.R., Burks A.W., and Campbell G.D.. 1989. Elevated interleukin-1 release by human alveolar macrophages during the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 140:1686–1692. 10.1164/ajrccm/140.6.1686
    1. Kim E.S., Choe P.G., Park W.B., Oh H.S., Kim E.J., Nam E.Y., Na S.H., Kim M., Song K.H., Bang J.H., et al. . 2016. Clinical Progression and Cytokine Profiles of Middle East Respiratory Syndrome Coronavirus Infection. J. Korean Med. Sci. 31:1717–1725. 10.3346/jkms.2016.31.11.1717
    1. Ko J.H., Park G.E., Lee J.Y., Lee J.Y., Cho S.Y., Ha Y.E., Kang C.I., Kang J.M., Kim Y.J., Huh H.J., et al. . 2016. Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients. J. Infect. 73:468–475. 10.1016/j.jinf.2016.08.005
    1. Kotenko S.V., Gallagher G., Baurin V.V., Lewis-Antes A., Shen M., Shah N.K., Langer J.A., Sheikh F., Dickensheets H., and Donnelly R.P.. 2003. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4:69–77. 10.1038/ni875
    1. Kuipers M.T., van der Poll T., Schultz M.J., and Wieland C.W.. 2011. Bench-to-bedside review: Damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit. Care. 15:235 10.1186/cc10437
    1. Kumarasena R.S., Mananjala Senanayake S., Sivaraman K., de Silva A.P., Dassanayake A.S., Premaratna R., Wijesiriwardena B., and de Silva H.J.. 2010. Intravenous N-acetylcysteine in dengue-associated acute liver failure. Hepatol. Int. 4:533–534. 10.1007/s12072-010-9176-4
    1. Lagunas-Rangel F.A. 2020. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J. Med. Virol. 10.1002/jmv.25819
    1. Lai K.Y., Ng W.Y., Osburga Chan P.K., Wong K.F., and Cheng F.. 2010. High-dose N-acetylcysteine therapy for novel H1N1 influenza pneumonia. Ann. Intern. Med. 152:687–688. 10.7326/0003-4819-152-10-201005180-00017
    1. Lansbury L., Rodrigo C., Leonardi-Bee J., Nguyen-Van-Tam J., and Lim W.S.. 2019. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst. Rev. 2 CD010406.
    1. Lee N., Hui D., Wu A., Chan P., Cameron P., Joynt G.M., Ahuja A., Yung M.Y., Leung C.B., To K.F., et al. . 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348:1986–1994. 10.1056/NEJMoa030685
    1. Lee D.W., Gardner R., Porter D.L., Louis C.U., Ahmed N., Jensen M., Grupp S.A., and Mackall C.L.. 2014. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 124:188–195. 10.1182/blood-2014-05-552729
    1. Lenz A.G., Jorens P.G., Meyer B., De Backer W., Van Overveld F., Bossaert L., and Maier K.L.. 1999. Oxidatively modified proteins in bronchoalveolar lavage fluid of patients with ARDS and patients at-risk for ARDS. Eur. Respir. J. 13:169–174. 10.1034/j.1399-3003.1999.13a31.x
    1. Li Y., Chen M., Cao H., Zhu Y., Zheng J., and Zhou H.. 2013. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes Infect. 15:88–95. 10.1016/j.micinf.2012.10.008
    1. Look M.P., Rockstroh J.K., Rao G.S., Barton S., Lemoch H., Kaiser R., Kupfer B., Sudhop T., Spengler U., and Sauerbruch T.. 1998. Sodium selenite and N-acetylcysteine in antiretroviral-naive HIV-1-infected patients: a randomized, controlled pilot study. Eur. J. Clin. Invest. 28:389–397. 10.1046/j.1365-2362.1998.00301.x
    1. Martinon F., Burns K., and Tschopp J.. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell. 10:417–426. 10.1016/S1097-2765(02)00599-3
    1. Maude S.L., Frey N., Shaw P.A., Aplenc R., Barrett D.M., Bunin N.J., Chew A., Gonzalez V.E., Zheng Z., Lacey S.F., et al. . 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–1517. 10.1056/NEJMoa1407222
    1. Medzhitov R., Preston-Hurlburt P., and Janeway C.A. Jr.. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 388:394–397. 10.1038/41131
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., and Manson J.J.; HLH Across Speciality Collaboration, UK . 2020. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 10.1016/S0140-6736(20)30628-0
    1. Min C.K., Cheon S., Ha N.Y., Sohn K.M., Kim Y., Aigerim A., Shin H.M., Choi J.Y., Inn K.S., Kim J.H., et al. . 2016. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci. Rep. 6:25359 10.1038/srep25359
    1. Moskophidis D., Lechner F., Pircher H., and Zinkernagel R.M.. 1993. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 362:758–761. 10.1038/362758a0
    1. Neelapu S.S., Tummala S., Kebriaei P., Wierda W., Gutierrez C., Locke F.L., Komanduri K.V., Lin Y., Jain N., Daver N., et al. . 2018. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15:47–62. 10.1038/nrclinonc.2017.148
    1. Norelli M., Camisa B., Barbiera G., Falcone L., Purevdorj A., Genua M., Sanvito F., Ponzoni M., Doglioni C., Cristofori P., et al. . 2018. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24:739–748. 10.1038/s41591-018-0036-4
    1. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., Nicholls J., Yee W.K., Yan W.W., Cheung M.T., et al. ; SARS study group . 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 361:1319–1325. 10.1016/S0140-6736(03)13077-2
    1. Pellegrini M., Calzascia T., Toe J.G., Preston S.P., Lin A.E., Elford A.R., Shahinian A., Lang P.A., Lang K.S., Morre M., et al. . 2011. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell. 144:601–613. 10.1016/j.cell.2011.01.011
    1. Peng H., Yang L.T., Li J., Lu Z.Q., Wang L.Y., Koup R.A., Bailer R.T., and Wu C.Y.. 2006. Human memory T cell responses to SARS-CoV E protein. Microbes Infect. 8:2424–2431. 10.1016/j.micinf.2006.05.008
    1. Perez-Padilla R., de la Rosa-Zamboni D., Ponce de Leon S., Hernandez M., Quiñones-Falconi F., Bautista E., Ramirez-Venegas A., Rojas-Serrano J., Ormsby C.E., Corrales A., et al. ; INER Working Group on Influenza . 2009. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N. Engl. J. Med. 361:680–689. 10.1056/NEJMoa0904252
    1. Pichlmair A., Schulz O., Tan C.P., Näslund T.I., Liljeström P., Weber F., and Reis e Sousa C.. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 314:997–1001. 10.1126/science.1132998
    1. Pison U., Brand M., Joka T., Obertacke U., and Bruch J.. 1988. Distribution and function of alveolar cells in multiply injured patients with trauma-induced ARDS. Intensive Care Med. 14:602–609. 10.1007/BF00256763
    1. Poutanen S.M., Low D.E., Henry B., Finkelstein S., Rose D., Green K., Tellier R., Draker R., Adachi D., Ayers M., et al. ; Canadian Severe Acute Respiratory Syndrome Study Team . 2003. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 348:1995–2005. 10.1056/NEJMoa030634
    1. Rayamajhi M., Zhang Y., and Miao E.A.. 2013. Detection of pyroptosis by measuring released lactate dehydrogenase activity. Methods Mol. Biol. 1040:85–90. 10.1007/978-1-62703-523-1_7
    1. Reis L.F., Le J.M., Hirano T., Kishimoto T., and Vilcek J.. 1988. Antiviral action of tumor necrosis factor in human fibroblasts is not mediated by B cell stimulatory factor 2/IFN-beta 2, and is inhibited by specific antibodies to IFN-beta. J. Immunol. 140:1566–1570.
    1. Revel M., and Zilberstein A.. 1987. Interferon-beta 2 living up to its name. Nature. 325:581–582. 10.1038/325581b0
    1. Rhim J.W., Lee K.Y., Youn Y.S., Kang J.H., and Kim J.C.. 2011. Epidemiological and clinical characteristics of childhood pandemic 2009 H1N1 virus infection: an observational cohort study. BMC Infect. Dis. 11:225 10.1186/1471-2334-11-225
    1. Rothe C., Schunk M., Sothmann P., Bretzel G., Froeschl G., Wallrauch C., Zimmer T., Thiel V., Janke C., Guggemos W., et al. . 2020. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N. Engl. J. Med. 382:970–971. 10.1056/NEJMc2001468
    1. Sade-Feldman M., Yizhak K., Bjorgaard S.L., Ray J.P., de Boer C.G., Jenkins R.W., Lieb D.J., Chen J.H., Frederick D.T., Barzily-Rokni M., et al. . 2018. Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell. 175:998–1013.e20. 10.1016/j.cell.2018.10.038
    1. Senanayake M.P., Jayamanne M.D., and Kankananarachchi I.. 2013. N-acetylcysteine in children with acute liver failure complicating dengue viral infection. Ceylon Med. J. 58:80–82. 10.4038/cmj.v58i2.5684
    1. Shah K.V., Daniel R.W., Zeigel R.F., and Murphy G.P.. 1974. Search for BK and SV40 virus reactivation in renal transplant recipients. Transplantation. 17:131–134. 10.1097/00007890-197401000-00022
    1. Shin H., and Wherry E.J.. 2007. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19:408–415. 10.1016/j.coi.2007.06.004
    1. Sotelo N., de los Angeles Durazo M., Gonzalez A., and Dhanakotti N.. 2009. Early treatment with N-acetylcysteine in children with acute liver failure secondary to hepatitis A. Ann. Hepatol. 8:353–358. 10.1016/S1665-2681(19)31749-1
    1. Stelekati E., Shin H., Doering T.A., Dolfi D.V., Ziegler C.G., Beiting D.P., Dawson L., Liboon J., Wolski D., Ali M.A., et al. . 2014. Bystander chronic infection negatively impacts development of CD8(+) T cell memory. Immunity. 40:801–813. 10.1016/j.immuni.2014.04.010
    1. Sun L., Wu J., Du F., Chen X., and Chen Z.J.. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339:786–791. 10.1126/science.1232458
    1. Suter P.M., Domenighetti G., Schaller M.D., Laverrière M.C., Ritz R., and Perret C.. 1994. N-acetylcysteine enhances recovery from acute lung injury in man. A randomized, double-blind, placebo-controlled clinical study. Chest. 105:190–194. 10.1378/chest.105.1.190
    1. Tate M.D., Ong J.D.H., Dowling J.K., McAuley J.L., Robertson A.B., Latz E., Drummond G.R., Cooper M.A., Hertzog P.J., and Mansell A.. 2016. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci. Rep. 6:27912 10.1038/srep27912
    1. Thompson B.T., Chambers R.C., and Liu K.D.. 2017. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 377:562–572. 10.1056/NEJMra1608077
    1. Traub E. 1936. Persistence of Lymphocytic Choriomeningitis Virus in Immune Animals and Its Relation to Immunity. J. Exp. Med. 63:847–861. 10.1084/jem.63.6.847
    1. Tsang K.W., Ho P.L., Ooi G.C., Yee W.K., Wang T., Chan-Yeung M., Lam W.K., Seto W.H., Yam L.Y., Cheung T.M., et al. . 2003. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348:1977–1985. 10.1056/NEJMoa030666
    1. Valero-Pacheco N., Arriaga-Pizano L., Ferat-Osorio E., Mora-Velandia L.M., Pastelin-Palacios R., Villasís-Keever M.A., Alpuche-Aranda C., Sánchez-Torres L.E., Isibasi A., Bonifaz L., et al. . 2013. PD-L1 expression induced by the 2009 pandemic influenza A(H1N1) virus impairs the human T cell response. Clin. Dev. Immunol. 2013 989673 10.1155/2013/989673
    1. Wen W., Su W., Tang H., Le W., Zhang X., Zheng Y., Liu X., Xie L., Li J., Ye J., et al. . 2020. Immune Cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. medRxiv 10.1101/2020.03.23.20039362 (Preprint posted March 31, 2020).
    1. Wherry E.J., Ha S.J., Kaech S.M., Haining W.N., Sarkar S., Kalia V., Subramaniam S., Blattman J.N., Barber D.L., and Ahmed R.. 2007. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 27:670–684. 10.1016/j.immuni.2007.09.006
    1. Wong R.S., Wu A., To K.F., Lee N., Lam C.W., Wong C.K., Chan P.K., Ng M.H., Yu L.M., Hui D.S., et al. . 2003. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 326:1358–1362. 10.1136/bmj.326.7403.1358
    1. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., and McLellan J.S.. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367:1260–1263. 10.1126/science.abb2507
    1. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., et al. . 2020. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 10.1001/jamainternmed.2020.0994
    1. Xu X.H.M., Li T., Sun W., Wang D., Fu B., Zhou Y., Zheng X., Yang Y., Li X., Zhang X., et al. . 2020a Effective treatment of severe COVID-19 patients with tocilizumab. chinaxiv (Preprint posted March 5, 2020).
    1. Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Guo Q., Sun X., Zhao D., Shen J., et al. . 2020b Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 26:502–505. 10.1038/s41591-020-0817-4
    1. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C., Mou H.M., Wang L.H., Zhang H.R., Fu W.J., et al. . 2020. [A pathological report of three COVID-19 cases by minimally invasive autopsies]. Zhonghua Bing Li Xue Za Zhi. 49 E009.
    1. Youm Y.H., Kanneganti T.D., Vandanmagsar B., Zhu X., Ravussin A., Adijiang A., Owen J.S., Thomas M.J., Francis J., Parks J.S., et al. . 2012. The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep. 1:56–68. 10.1016/j.celrep.2011.11.005
    1. Zhang Y., Ding S., Li C., Wang Y., Chen Z., and Wang Z.. 2017. Effects of N-acetylcysteine treatment in acute respiratory distress syndrome: A meta-analysis. Exp. Ther. Med. 14:2863–2868. 10.3892/etm.2017.4891
    1. Zhang D., Guo R., Lei L., Liu H., Wang Y., Wang Y., Dai T., Zhang T., Lai Y., Wang J., et al. . 2020. COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. medRxiv 10.1101/2020.03.24.20042655 (Preprint posted March 26, 2020).
    1. Zhao J., Alshukairi A.N., Baharoon S.A., Ahmed W.A., Bokhari A.A., Nehdi A.M., Layqah L.A., Alghamdi M.G., Al Gethamy M.M., Dada A.M., et al. . 2017. Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Sci. Immunol. 2:2 10.1126/sciimmunol.aan5393

Source: PubMed

3
Sottoscrivi