Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity

Shin J Lee, Graciela Sanchez-Watts, Jean-Philippe Krieger, Angelica Pignalosa, Puck N Norell, Alyssa Cortella, Klaus G Pettersen, Dubravka Vrdoljak, Matthew R Hayes, Scott E Kanoski, Wolfgang Langhans, Alan G Watts, Shin J Lee, Graciela Sanchez-Watts, Jean-Philippe Krieger, Angelica Pignalosa, Puck N Norell, Alyssa Cortella, Klaus G Pettersen, Dubravka Vrdoljak, Matthew R Hayes, Scott E Kanoski, Wolfgang Langhans, Alan G Watts

Abstract

Objective: Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function.

Methods: We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization.

Results: GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies.

Conclusions: Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity.

Keywords: Adipose tissue; Hypothalamus; Neuropeptide; Obesity; Sympathetic nerve.

Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

Figures

Figure 1
Figure 1
DMH GLP-1R stimulation increases BAT thermogenesis and TG mobilization from liver. (A) Experimental protocol. (B, C) Representative infrared pictures of the interscapular area before and 4 h after Veh or GLP-1 (0.5 μg) injection into the DMH (n = 7–8; Two-way ANOVA; ***p < 0.0001). (D) Rectal temperature (n = 7/8; Two-way ANOVA; **p < 0.005). (E) Relative mRNA expression in the BAT: n = 7/7; Student t-tests; *p < 0.05 for ADRB3, CIDEA, PGC1α, PPARγ, ns (p > 0.05): UCP1, iodothyronine deiodinase 2 (DIO2), and FGF21. (F) Respiratory exchange ratio before (basal: 0–4 h after dark onset) and after (post injection:4–8 h after dark onset) Veh or GLP-1 injection into the DMH (n = 7/7; Two-way ANOVA; *p < 0.05). (G) Plasma TG levels (n = 7/8; Student t-test; *p < 0.05). (H) Relative mRNA expression in liver: n = 7/7; Student t-tests; *p < 0.05 for FAS. ns: sterol regulatory element-binding protein 1(SREBP1), HSL, ATGL, PEPCK1, and G6Pase. (I) Relative mRNA expression in the DMH: n = 7/7; Student t-test; *p < 0.05 for NPY. ns: CART and GLP-1R. Data are mean ± SEM.
Figure 2
Figure 2
DMH Glp1r KD increases BW gain and adiposity. (A) Illustration of AAV injection site and GFP infected cells in the DMH. (B) Relative GLP-1R mRNA expression in the DMH, ARC, and PVH (n = 6/8; Student t-tests; *p < 0.001 for DMH). (C) BW gain (as % of BW) of AAV-control and AAV-GLP-1R rats on standard chow diet for 11 weeks (n = 7/9; Student t-tests; *p < 0.05). (D) Lean and fat mass of AAV-control and AAV-GLP-1R rats (n = 7/9; Student t-tests; *p < 0.01). (E) Plasma leptin levels (n = 6/6; Student t-test; p = 0.09). (F) Daily food intake of AAV-control and AAV-GLP-1R rats for 22 days after surgery. (G) 4 h food intake after 24 h fasting (n = 7/9; Student t-test; *p < 0.001). (H) BW change after 24 h fasting (n = 7/9; Student t-test; *p < 0.05). Data are mean ± SEM.
Figure 3
Figure 3
DMH Glp1r KD decreases EE and BAT thermogenesis. (A) EE over 24 h in AAV-control and AAV-GLP-1R rats. (B) Average EE in dark and light phases (n = 7/9; Two-way ANOVA; *p < 0.0001). (C) RER over 24 h in AAV-control and AAV-GLP-1R rats. (D) Average RER in dark and light phases. (E) BAT temperature during the dark phase (n = 7/8; Student t-test; *p < 0.01). (F) Rectal temperature during the dark phase. (G) BAT temperate change 2 h after β-3 receptor agonist CL316243 injection (1 μg/kg i.p.; n = 3–5; Two-way ANOVA; *p < 0.005). (H) Representative pictures of H&E staining (Scale bar: 100 μm) and lipid area fraction in BAT of AAV-control and AAV-GLP-1R rats (n = 6/5; Student t-test; *p < 0.05). (I) Relative mRNA expression of thermogenic markers in BAT: n = 7/8; Student t-test; *p < 0.005 for UCP1; *p < 0.05 for PGC1α, PPARγ. ns: ADRB3. (J) Relative UCP1 protein expression in BAT (n = 5/7; Student t-test; *p < 0.01). Data are mean ± SEM.
Figure 4
Figure 4
DMH Glp1r KD rats develop hepatic steatosis and insulin resistance. (A) Plasma TG levels (n = 6/8; Student t-test; *p < 0.001). (B) Representative pictures of oil red O staining (Scale bar: 100 μm) and ORO area quantification in liver of AAV-control and AAV-GLP-1R rats (n = 5/5; Student t-test; p < 0.0005). (C) Relative mRNA expression in liver: n = 6/8; Student t-test; *p < 0.05 for FAS * p < 0.01 for PEPCK1; *p < 0.005 for G6Pase. p = 0.06 for ACC, ns: FGF21 and PGC1α. (D) Western blot for enzymes involved in do-novo lipogenesis: n = 7/8; Student t-test; *p < 0.05 for FAS and ACC. ns: pACC and pACC/ACC. (E) Relative mRNA expression in inguinal fat pad: n = 6/8; Student t-test; *p < 0.05 for FAS. ns: ATGL, HSL, and ACC. (F) Blood glucose profile during an IPGTT (2 g/kg glucose) in AAV-control and AAV-GLP-1R rats. The bar graph shows the area under curve. (G) Blood insulin profile during an IPGTT in AAV-control and AAV-GLP-1R rats. The bar graph shows the area under curve (n = 4/6; Student t-test; *p < 0.05). (H) Fasting plasma insulin levels in AAV-control and AAV-GLP-1R rats (n = 4/6; Student t-test; *p < 0.05). Data are mean ± SEM.
Figure 5
Figure 5
DMH GLP-1R signaling regulates NPY gene expression indirectly. (A) Relative mRNA expression in the DMH in AAV-control and AAV-GLP-1R rats: n = 6/9; Student t-test; *p < 0.0005 for NPY. ns: CART, LEPR, and CCKR. (B) Relative mRNA expression in the PVH. ns: CRH, TRH, TH (p = 0.07), and CART. (C) Relative mRNA expression in the ARC. ns: NPY, CART, POMC, and AgRP. (D) ISH/FISH for GLP-1R and NPY mRNA. Top (DMH) and bottom (ARC) panels: Left-GLP-1R mRNA (red), Middle-GLP-1R (red) and NPY (green), Right-co-localization in yellow. (E) ISH/FISH for GLP-1R and GAD-65 mRNA. Top (DMH) and bottom (ARC) panels: Left-GLP-1R mRNA (red), Middle-GLP-1R (red) and GAD-65 (green), Right-co-localization in yellow. Scale bar for all panels = 200 μm. Data are mean ± SEM.
Figure 6
Figure 6
Long term DMH Glp1r KD attenuates the anorexigenic response to Ex-4. (A) 24 h food intake after PBS or Ex-4 (1.0 μg/kg, i.p.) treatment in AAV-control and AAV-GLP-1R rats (n = 7/9; Two-way ANOVA; drug effect * p < 0.001, group effect #p < 0.05). (B) 24 h BW change after PBS or Ex-4 treatment in AAV-control and AAV-GLP-1R rats (n = 7/9; Two-way ANOVA; drug effect * p < 0.0005). (C) EE over 24 h after PBS or Ex-4 treatment in AAV-control and AAV-GLP-1R rats. (D) Average EE in dark phase after PBS or Ex-4 treatment in AAV-control and AAV-GLP-1R rats (n = 7/9; Two-way ANOVA; drug effect p < 0.01, group effect p < 0.0001, *p < 0.005). (E) RER over 24 h after PBS or Ex-4 treatment in AAV-control and AAV-GLP-1R rats. (F) Average RER in dark phase after PBS or Ex-4 treatment in AAV-control and AAV-GLP-1R rats (n = 7/9; Two-way ANOVA; drug effect p < 0.0005, *p < 0.001). Data are mean ± SEM.
figs1
figs1
figs2
figs2
figs3
figs3
figs4
figs4
figs5
figs5
figs6
figs6

References

    1. Drucker D.J. Glucagon-like peptides. Diabetes. 1998;47:159–169.
    1. Holst J.J. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology. 1994;107:1848–1855.
    1. Trapp S., Richards J.E. The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant? Current Opinion in Pharmacology. 2013;13:964–969.
    1. Cork S.C., Richards J.E., Holt M.K., Gribble F.M., Reimann F., Trapp S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Molecular Metabolism. 2015;4:718–731.
    1. Gu G., Roland B., Tomaselli K., Dolman C.S., Lowe C., Heilig J.S. Glucagon-like peptide-1 in the rat brain: distribution of expression and functional implication. The Journal of Comparative Neurology. 2013;521:2235–2261.
    1. Llewellyn-Smith I.J., Reimann F., Gribble F.M., Trapp S. Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience. 2011;180:111–121.
    1. Rajeev S.P., Wilding J. GLP-1 as a target for therapeutic intervention. Current Opinion in Pharmacology. 2016;31:44–49.
    1. Sisley S., Gutierrez-Aguilar R., Scott M., D'Alessio D.A., Sandoval D.A., Seeley R.J. Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. Journal of Clinical Investigation. 2014;124:2456–2463.
    1. Secher A., Jelsing J., Baquero A.F., Hecksher-Sorensen J., Cowley M.A., Dalboge L.S. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. Journal of Clinical Investigation. 2014;124:4473–4488.
    1. Burmeister M.A., Ayala J.E., Smouse H., Landivar-Rocha A., Brown J.D., Drucker D.J. The hypothalamic glucagon-like Peptide-1 (GLP-1) receptor (GLP-1R) is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes. 2017 Feb;66(2):372–384.
    1. Kanoski S.E., Fortin S.M., Arnold M., Grill H.J., Hayes M.R. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology. 2011;152:3103–3112.
    1. Baggio L.L., Huang Q., Brown T.J., Drucker D.J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology. 2004;127:546–558.
    1. Hwa J.J., Ghibaudi L., Williams P., Witten M.B., Tedesco R., Strader C.D. Differential effects of intracerebroventricular glucagon-like peptide-1 on feeding and energy expenditure regulation. Peptides. 1998;19:869–875.
    1. Lockie S.H., Heppner K.M., Chaudhary N., Chabenne J.R., Morgan D.A., Veyrat-Durebex C. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61:2753–2762.
    1. Geerling J.J., Boon M.R., Kooijman S., Parlevliet E.T., Havekes L.M., Romijn J.A. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. The Journal of Lipid Research. 2014;55:180–189.
    1. Beiroa D., Imbernon M., Gallego R., Senra A., Herranz D., Villarroya F. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63:3346–3358.
    1. Heppner K.M., Marks S., Holland J., Ottaway N., Smiley D., Dimarchi R. Contribution of brown adipose tissue activity to the control of energy balance by GLP-1 receptor signalling in mice. Diabetologia. 2015;58:2124–2132.
    1. Kooijman S., Wang Y., Parlevliet E.T., Boon M.R., Edelschaap D., Snaterse G. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia. 2015;58:2637–2646.
    1. Wei Q., Li L., Chen J.A., Wang S.H., Sun Z.L. Exendin-4 improves thermogenic capacity by regulating fat metabolism on brown adipose tissue in mice with diet-induced obesity. Annals of Clinical and Laboratory Science. 2015;45:158–165.
    1. Nogueiras R., Perez-Tilve D., Veyrat-Durebex C., Morgan D.A., Varela L., Haynes W.G. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2009;29:5916–5925.
    1. Panjwani N., Mulvihill E.E., Longuet C., Yusta B., Campbell J.E., Brown T.J. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE(-/-) mice. Endocrinology. 2013;154:127–139.
    1. Ten Kulve J.S., van Bloemendaal L., Balesar R., IJzerman R.G., Swaab D.F., Diamant M. Decreased hypothalamic glucagon-like Peptide-1 receptor expression in type 2 diabetes patients. Journal of Clinical Endocrinology & Metabolism. 2016;101:2122–2129.
    1. Morrison S.F., Madden C.J., Tupone D. Central control of brown adipose tissue thermogenesis. Frontiers in Endocrinology. 2012;3
    1. Renner E., Puskas N., Dobolyi A., Palkovits M. Glucagon-like peptide-1 of brainstem origin activates dorsomedial hypothalamic neurons in satiated rats. Peptides. 2012;35:14–22.
    1. Trapp S., Cork S.C. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 2015;309:R795–R804.
    1. Bamshad M., Song C.K., Bartness T.J. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. American Journal of Physiology. 1999;276:R1569–R1578.
    1. Cano G., Passerin A.M., Schiltz J.C., Card J.P., Morrison S.F., Sved A.F. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. The Journal of Comparative Neurology. 2003;460:303–326.
    1. Lee S.J., Kirigiti M., Lindsley S.R., Loche A., Madden C.J., Morrison S.F. Efferent projections of neuropeptide Y-expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models. The Journal of Comparative Neurology. 2013;521:1891–1914.
    1. Oldfield B.J., Giles M.E., Watson A., Anderson C., Colvill L.M., McKinley M.J. The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience. 2002;110:515–526.
    1. Cao W.H., Fan W., Morrison S.F. Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience. 2004;126:229–240.
    1. Zaretskaia M.V., Zaretsky D.V., Shekhar A., DiMicco J.A. Chemical stimulation of the dorsomedial hypothalamus evokes non-shivering thermogenesis in anesthetized rats. Brain Research. 2002;928:113–125.
    1. Ulrich-Lai Y.M., Herman J.P. Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience. 2009;10:397–409.
    1. Simonds S.E., Pryor J.T., Ravussin E., Greenway F.L., Dileone R., Allen A.M. Leptin mediates the increase in blood pressure associated with obesity. Cell. 2014;159:1404–1416.
    1. Enriori P.J., Sinnayah P., Simonds S.E., Garcia Rudaz C., Cowley M.A. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011;31:12189–12197.
    1. Rezai-Zadeh K., Yu S., Jiang Y., Laque A., Schwartzenburg C., Morrison C.D. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Molecular Metabolism. 2014;3:681–693.
    1. Zhang Y., Kerman I.A., Laque A., Nguyen P., Faouzi M., Louis G.W. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011;31:1873–1884.
    1. Elmquist J.K., Bjorbaek C., Ahima R.S., Flier J.S., Saper C.B. Distributions of leptin receptor mRNA isoforms in the rat brain. The Journal of Comparative Neurology. 1998;395:535–547.
    1. Merchenthaler I., Lane M., Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. The Journal of Comparative Neurology. 1999;403:261–280.
    1. Bellinger L.L., Bernardis L.L. The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiology & Behavior. 2002;76:431–442.
    1. Grove K.L., Brogan R.S., Smith M.S. Novel expression of neuropeptide Y (NPY) mRNA in hypothalamic regions during development: region-specific effects of maternal deprivation on NPY and Agouti-related protein mRNA. Endocrinology. 2001;142:4771–4776.
    1. Guan X.M., Yu H., Trumbauer M., Frazier E., Van der Ploeg L.H., Chen H. Induction of neuropeptide Y expression in dorsomedial hypothalamus of diet-induced obese mice. NeuroReport. 1998;9:3415–3419.
    1. Kesterson R.A., Huszar D., Lynch C.A., Simerly R.B., Cone R.D. Induction of neuropeptide Y gene expression in the dorsal medial hypothalamic nucleus in two models of the agouti obesity syndrome. Molecular Endocrinology. 1997;11:630–637.
    1. Li C., Chen P., Smith M.S. Neuropeptide Y (NPY) neurons in the arcuate nucleus (ARH) and dorsomedial nucleus (DMH), areas activated during lactation, project to the paraventricular nucleus of the hypothalamus (PVH) Regulatory Peptides. 1998;75–76:93–100.
    1. Chao P.T., Yang L., Aja S., Moran T.H., Bi S. Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metabolism. 2011;13:573–583.
    1. Li L., de La Serre C.B., Zhang N., Yang L., Li H., Bi S. Knockdown of neuropeptide Y in the dorsomedial hypothalamus promotes hepatic insulin sensitivity in male rats. Endocrinology. 2016 en20161662.
    1. Kim Y.J., Bi S. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 2016;310:R134–R142.
    1. Bartness T.J. A potential link between dorsomedial hypothalamic nucleus NPY and energy balance. Cell Metabolism. 2011;13:493–494.
    1. Schmidt H.D., Mietlicki-Baase E.G., Ige K.Y., Maurer J.J., Reiner D.J., Zimmer D.J. Glucagon-Like Peptide-1 receptor activation in the ventral tegmental area decreases the reinforcing efficacy of cocaine. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2016 Jun;41(7):1917–1928.
    1. Alhadeff A.L., Mergler B.D., Zimmer D.J., Turner C.A., Reiner D.J., Schmidt H.D. Endogenous glucagon-like Peptide-1 receptor signaling in the nucleus tractus solitarius is required for food intake control. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2017 Jun;42(7):1471–1479.
    1. Even P.C., Nadkarni N.A. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. American Journal of Physiology–Regulatory, Integrative and Comparative Physiology. 2012;303:R459–R476.
    1. Tschop M.H., Speakman J.R., Arch J.R., Auwerx J., Bruning J.C., Chan L. A guide to analysis of mouse energy metabolism. Nature Methods. 2011;9:57–63.
    1. Ruttimann E.B., Arnold M., Hillebrand J.J., Geary N., Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology. 2009;150:1174–1181.
    1. Hillebrand J.J., Langhans W., Geary N. Validation of computed tomographic estimates of intra-abdominal and subcutaneous adipose tissue in rats and mice. Obesity (Silver Spring) 2010;18:848–853.
    1. Mehlem A., Hagberg C.E., Muhl L., Eriksson U., Falkevall A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nature Protocols. 2013;8:1149–1154.
    1. Langhans W. Hepatic and intestinal handling of metabolites during feeding in rats. Physiology & Behavior. 1991;49:1203–1209.
    1. Schober G., Arnold M., Birtles S., Buckett L.K., Pacheco-Lopez G., Turnbull A.V. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats. The Journal of Lipid Research. 2013;54:1369–1384.
    1. Watts A.G., Sanchez-Watts G. Physiological regulation of peptide messenger RNA colocalization in rat hypothalamic paraventricular medial parvicellular neurons. The Journal of Comparative Neurology. 1995;352:501–514.
    1. Swanson L.W. Elsevier; Amsterdam: 2004. Brain maps: structure of the rat brain. A laboratory guide with printed and electronic templates for data, models and schematics. 3rd revised edition.
    1. Watts A.G., Sanchez-Watts G. Rapid and preferential activation of Fos protein in hypocretin/orexin neurons following the reversal of dehydration-anorexia. The Journal of Comparative Neurology. 2007;502:768–782.
    1. Hsu T.M., Noble E.E., Liu C.M., Cortella A.M., Konanur V.R., Suarez A.N. A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Molecular Psychiatry. 2017 [Advance online publication]
    1. Ziegler D.R., Cullinan W.E., Herman J.P. Distribution of vesicular glutamate transporter mRNA in rat hypothalamus. The Journal of Comparative Neurology. 2002;448:217–229.
    1. Esclapez M., Tillakaratne N.J., Tobin A.J., Houser C.R. Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. The Journal of Comparative Neurology. 1993;331:339–362.
    1. Watts A.G., Sanchez-Watts G., Kelly A.B. Distinct patterns of neuropeptide gene expression in the lateral hypothalamic area and arcuate nucleus are associated with dehydration-induced anorexia. Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 1999;19:6111–6121.
    1. Yamamoto H., Kishi T., Lee C.E., Choi B.J., Fang H., Hollenberg A.N. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2003;23:2939–2946.
    1. Townsend K.L., Tseng Y.H. Brown fat fuel utilization and thermogenesis. Trends in Endocrinology and Metabolism. 2014;25:168–177.
    1. Shi Y.C., Lau J., Lin Z., Zhang H., Zhai L., Sperk G. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metabolism. 2013;17:236–248.
    1. Osaka T., Endo M., Yamakawa M., Inoue S. Energy expenditure by intravenous administration of glucagon-like peptide-1 mediated by the lower brainstem and sympathoadrenal system. Peptides. 2005;26:1623–1631.
    1. Shalev A., Holst J.J., Keller U. Effects of glucagon-like peptide 1 (7-36 amide) on whole-body protein metabolism in healthy man. European Journal of Clinical Investigation. 1997;27:10–16.
    1. Flint A., Raben A., Rehfeld J.F., Holst J.J., Astrup A. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. International Journal of Obesity and Related Metabolic Disorders. 2000;24:288–298.
    1. Mietlicki-Baase E.G., Ortinski P.I., Reiner D.J., Sinon C.G., McCutcheon J.E., Pierce R.C. Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic AMPA/kainate signaling. Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2014;34:6985–6992.
    1. Dossat A.M., Diaz R., Gallo L., Panagos A., Kay K., Williams D.L. Nucleus accumbens GLP-1 receptors influence meal size and palatability. American Journal of Physiology. Endocrinology and Metabolism. 2013;304:E1314–E1320.
    1. Skibicka K.P. The central GLP-1: implications for food and drug reward. Frontiers in Neuroscience. 2013;7:181.
    1. Morrison S.F., Madden C.J., Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metabolism. 2014;19:741–756.
    1. Dampney R.A., Coleman M.J., Fontes M.A., Hirooka Y., Horiuchi J., Li Y.W. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clinical and Experimental Pharmacology and Physiology. 2002;29:261–268.
    1. Weston C., Lu J., Li N., Barkan K., Richards G.O., Roberts D.J. Modulation of glucagon receptor pharmacology by receptor activity-modifying Protein-2 (RAMP2) Journal of Biological Chemistry. 2015;290:23009–23022.
    1. Weston C., Poyner D., Patel V., Dowell S., Ladds G. Investigating G protein signalling bias at the glucagon-like peptide-1 receptor in yeast. British journal of pharmacology. 2014;171:3651–3665.
    1. Ravussin E., Galgani J.E. The implication of brown adipose tissue for humans. Annual Review of Nutrition. 2011;31:33–47.
    1. Liu X., Rossmeisl M., McClaine J., Riachi M., Harper M.E., Kozak L.P. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. Journal of Clinical Investigation. 2003;111:399–407.
    1. Knauf C., Cani P.D., Perrin C., Iglesias M.A., Maury J.F., Bernard E. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. Journal of Clinical Investigation. 2005;115:3554–3563.
    1. Titchenell P.M., Lazar M.A., Birnbaum M.J. Unraveling the regulation of hepatic metabolism by insulin. Trends in Endocrinology and Metabolism. 2017;28:497–505.
    1. Poekes L., Legry V., Schakman O., Detrembleur C., Bol A., Horsmans Y. Defective adaptive thermogenesis contributes to metabolic syndrome and liver steatosis in obese mice. Clinical Science(London) 2017;131:285–296.
    1. Dodd G.T., Worth A.A., Nunn N., Korpal A.K., Bechtold D.A., Allison M.B. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metabolism. 2014;20:639–649.
    1. Jeong J.H., Lee D.K., Blouet C., Ruiz H.H., Buettner C., Chua S., Jr. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Molecular Metabolism. 2015;4:483–492.
    1. Kataoka N., Hioki H., Kaneko T., Nakamura K. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metabolism. 2014;20:346–358.
    1. Madden C.J., Morrison S.F. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 2009;296:R831–R843.
    1. Egawa M., Yoshimatsu H., Bray G.A. Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats. American Journal of Physiology. 1991;260:R328–R334.
    1. Zheng F., Kim Y.J., Chao P.T., Bi S. Overexpression of neuropeptide Y in the dorsomedial hypothalamus causes hyperphagia and obesity in rats. Obesity. 2013;21:1086–1092.
    1. Bartelt A., Bruns O.T., Reimer R., Hohenberg H., Ittrich H., Peldschus K. Brown adipose tissue activity controls triglyceride clearance. Nature Medicine. 2011;17:200–205.
    1. Stanford K.I., Middelbeek R.J., Townsend K.L., An D., Nygaard E.B., Hitchcox K.M. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation. 2013;123:215–223.
    1. Lee S.J., Diener K., Kaufman S., Krieger J.P., Pettersen K.G., Jejelava N. Limiting glucocorticoid secretion increases the anorexigenic property of Exendin-4. Molecular Metabolism. 2016;5:552–565.
    1. Yang Y., Moghadam A.A., Cordner Z.A., Liang N.C., Moran T.H. Long term exendin-4 treatment reduces food intake and body weight and alters expression of brain homeostatic and reward markers. Endocrinology. 2014;155:3473–3483.
    1. Bi S., Kim Y.J., Zheng F. Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides. 2012;46:309–314.
    1. Draper S., Kirigiti M., Glavas M., Grayson B., Chong C.N., Jiang B. Differential gene expression between neuropeptide Y expressing neurons of the dorsomedial nucleus of the hypothalamus and the arcuate nucleus: microarray analysis study. Brain Research. 2010;1350:139–150.
    1. Swanson L.W., Sanchez-Watts G., Watts A.G. Comparison of melanin-concentrating hormone and hypocretin/orexin mRNA expression patterns in a new parceling scheme of the lateral hypothalamic zone. Neuroscience Letters. 2005;387:80–84.
    1. Lee S.J., Verma S., Simonds S.E., Kirigiti M.A., Kievit P., Lindsley S.R. Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice. Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2013;33:15306–15317.
    1. Pi-Sunyer X., Astrup A., Fujioka K., Greenway F., Halpern A., Krempf M. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. New England Journal of Medicine. 2015;373:11–22.
    1. Williams D.L., Baskin D.G., Schwartz M.W. Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes. 2006;55:3387–3393.
    1. Williams D.L., Hyvarinen N., Lilly N., Kay K., Dossat A., Parise E. Maintenance on a high-fat diet impairs the anorexic response to glucagon-like-peptide-1 receptor activation. Physiology & Behavior. 2011;103:557–564.
    1. Sandoval D.A., Bagnol D., Woods S.C., D'Alessio D.A., Seeley R.J. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes. 2008;57:2046–2054.
    1. Hany T.F., Gharehpapagh E., Kamel E.M., Buck A., Himms-Hagen J., von Schulthess G.K. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. European Journal of Nuclear Medicine and Molecular Imaging. 2002;29:1393–1398.
    1. Virtanen K.A., Lidell M.E., Orava J., Heglind M., Westergren R., Niemi T. Functional brown adipose tissue in healthy adults. New England Journal of Medicine. 2009;360:1518–1525.

Source: PubMed

3
Sottoscrivi