An overview of sarcopenia: facts and numbers on prevalence and clinical impact

Stephan von Haehling, John E Morley, Stefan D Anker, Stephan von Haehling, John E Morley, Stefan D Anker

Abstract

Human muscle undergoes constant changes. After about age 50, muscle mass decreases at an annual rate of 1-2%. Muscle strength declines by 1.5% between ages 50 and 60 and by 3% thereafter. The reasons for these changes include denervation of motor units and a net conversion of fast type II muscle fibers into slow type I fibers with resulting loss in muscle power necessary for activities of daily living. In addition, lipids are deposited in the muscle, but these changes do not usually lead to a loss in body weight. Once muscle mass in elderly subjects falls below 2 standard deviations of the mean of a young control cohort and the gait speed falls below 0.8 m/s, a clinical diagnosis of sarcopenia can be reached. Assessment of muscle strength using tests such as the short physical performance battery test, the timed get-up-and-go test, or the stair climb power test may also be helpful in establishing the diagnosis. Sarcopenia is one of the four main reasons for loss of muscle mass. On average, it is estimated that 5-13% of elderly people aged 60-70 years are affected by sarcopenia. The numbers increase to 11-50% for those aged 80 or above. Sarcopenia may lead to frailty, but not all patients with sarcopenia are frail-sarcopenia is about twice as common as frailty. Several studies have shown that the risk of falls is significantly elevated in subjects with reduced muscle strength. Treatment of sarcopenia remains challenging, but promising results have been obtained using progressive resistance training, testosterone, estrogens, growth hormone, vitamin D, and angiotensin-converting enzyme inhibitors. Interesting nutritional interventions include high-caloric nutritional supplements and essential amino acids that support muscle fiber synthesis.

References

    1. Abellan van Kan G. Epidemiology and consequences of sarcopenia. J Nutr Health Aging. 2009;13:708–712. doi: 10.1007/s12603-009-0201-z.
    1. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95:1717–1727.
    1. Critchley M. The neurology of old age. Lancet. 1931;217:1331–1337. doi: 10.1016/S0140-6736(00)46849-2.
    1. Shock NW. Physiologic aspects of aging. J Am Diet Assoc. 1970;56:491–496.
    1. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127:990S–9901S.
    1. Morley JE. Aspects of the medical history unique to older persons. JAMA. 1993;269(675):677–678.
    1. Morley JE. Sarcopenia: diagnosis and treatment. J Nutr Health Aging. 2008;12:452–456. doi: 10.1007/BF02982705.
    1. von Haehling S, Anker SD. Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle. 2010;1:1–5. doi: 10.1007/s13539-010-0002-6.
    1. Morley JE, Kim MJ, Haren MT, Kevorkian R, Banks WA. Frailty and the aging male. Aging Male. 2005;8:135–140. doi: 10.1080/13685530500277232.
    1. Blake GM, Fogelman I. An update on dual-energy x-ray absorptiometry. Semin Nucl Med. 2010;40:62–73. doi: 10.1053/j.semnuclmed.2009.08.001.
    1. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–M94.
    1. Buchner DM, Larson EB, Wagner EH, Koepsell TD, de Lateur BJ. Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing. 1996;25:386–391. doi: 10.1093/ageing/25.5.386.
    1. Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–148.
    1. Bean JF, Kiely DK, LaRose S, Alian J, Frontera WR. Is stair climb power a clinically relevant measure of leg power impairments in at-risk older adults? Arch Phys Med Rehabil. 2007;88:604–609. doi: 10.1016/j.apmr.2007.02.004.
    1. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int. 2010;21:543–559. doi: 10.1007/s00198-009-1059-y.
    1. Kostka T. Quadriceps maximal power and optimal shortening velocity in 335 men aged 23–88 years. Eur J Appl Physiol. 2005;95:140–145. doi: 10.1007/s00421-005-1390-8.
    1. Wickham C, Cooper C, Margetts BM, Barker DJ. Muscle strength, activity, housing and the risk of falls in elderly people. Age Ageing. 1989;18:47–51. doi: 10.1093/ageing/18.1.47.
    1. Sayer AA, Syddall HE, Martin HJ, Dennison EM, Anderson FH, Cooper C. Falls, sarcopenia, and growth in early life: findings from the Hertfordshire cohort study. Am J Epidemiol. 2006;164:665–671. doi: 10.1093/aje/kwj255.
    1. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–763.
    1. Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by special interest groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29:154–159. doi: 10.1016/j.clnu.2009.12.004.
    1. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889–896. doi: 10.1046/j.1532-5415.2002.50216.x.
    1. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55:M221–M231. doi: 10.1093/gerona/55.4.M221.
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Sipilä S, Suominen H. Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol. 1995;78:334–340.
    1. Burton LA, Sumukadas D. Optimal management of sarcopenia. Clin Interv Aging. 2010;5:217–228.
    1. Lenk K, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2010;1:9–21. doi: 10.1007/s13539-010-0007-1.
    1. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009;3:CD002759.
    1. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) study. Am J Clin Nutr. 2008;87:150–155.
    1. Rozentryt P, von Haehling S, Lainscak M, Nowak JU, Kalantar-Zadeh K, Polonski L, et al. The effects of a high-caloric protein-rich oral nutritional supplement in patients with chronic heart failure and cachexia on quality of life, body composition, and inflammation markers: a randomized, double-blind pilot study. J Cachexia Sarcopenia Muscle. 2010;1:35–42. doi: 10.1007/s13539-010-0008-0.
    1. Scognamiglio R, Piccolotto R, Negut C, Tiengo A, Avogaro A. Oral amino acids in elderly subjects: effect on myocardial function and walking capacity. Gerontology. 2005;51:302–308. doi: 10.1159/000086366.
    1. Fülster S, von Haehling S. A prospective study of the associations between 25-hydroxyvitamin D, sarcopenia progression and physical activity in older adults. Clin Endocrinol. 2010. doi:10.1111/j.1365-2265.2010.03888.x
    1. Hagerty L, Lachey JL, Kumar R, Pearsall RS, Sherman M, Seehra J. Age-related lean tissue loss is attenuated by treatment with a form of soluble activin receptor type IIB. J Cachexia Sarcopenia Muscle. 2010;1:65–66.
    1. Murphy KT, Koopman R, Leger B, Trieu J, Ibebunjo C, Lynch GS. Novel effects of myostatin inhibition on skeletal muscles of aging mice: implications for sarcopenia. J Cachexia Sarcopenia Muscle. 2010;1:70–71.
    1. von Haehling S, Morley JE, Coats AJ, Anker SD. Ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle. J Cachexia Sarcopenia Muscle. 2010;1:7–8. doi: 10.1007/s13539-010-0003-5.
    1. Janssen I. Influence of sarcopenia on the development of physical disability: the cardiovascular health study. J Am Geriatr Soc. 2006;54:56–62. doi: 10.1111/j.1532-5415.2005.00540.x.
    1. Rolland Y, Lauwers-Cances V, Cournot M, Nourhashémi F, Reynish W, Rivière D, et al. Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc. 2003;51:1120–1124. doi: 10.1046/j.1532-5415.2003.51362.x.
    1. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851–1860.

Source: PubMed

3
Sottoscrivi