Correlates of objectively measured sedentary time and self-reported screen time in Canadian children

Allana G LeBlanc, Stephanie T Broyles, Jean-Philippe Chaput, Geneviève Leduc, Charles Boyer, Michael M Borghese, Mark S Tremblay, Allana G LeBlanc, Stephanie T Broyles, Jean-Philippe Chaput, Geneviève Leduc, Charles Boyer, Michael M Borghese, Mark S Tremblay

Abstract

Background: Demographic, family, and home characteristics play an important role in determining childhood sedentary behaviour. The objective of this paper was to identify correlates of total sedentary time (SED) and correlates of self-reported screen time (ST) in Canadian children.

Methods: Child- and parent-reported household, socio-demographic, behavioural, and diet related data were collected; directly measured anthropometric and accelerometer data were also collected for each child. Participants with complete demographic, anthropometric, and either SED (n=524, 41% boys) or ST (n=567, 42% boys) data from the Canadian site of the International Study of Childhood Obesity Lifestyle and the Environment (ISCOLE) were included in analysis. Sixteen potential correlates of SED and ST were examined using multilevel general linear models, adjusting for sex, ethnicity, number of siblings, and socio-economic status. All explanatory variables moderately associated (p<0.10) with SED and/or ST in univariate analyses were included in the final, fully-adjusted models. Variables that remained significant in the final models (p<0.05) were considered correlates of SED and/or ST.

Results: Children averaged 8.5 hours of daily SED; no differences in total SED, or total ST were seen between girls and boys, but boys reported significantly more video game/computer usage than girls. Boys also had higher waist circumference and BMI z-scores than girls. In the final models, waist circumference and number of TVs in the home were the only common correlates of both SED and ST. SED was also negatively associated with sleep duration. ST was also positively associated with mother's weight status, father's education, and unhealthy eating pattern score and negatively associated with healthy eating pattern score, and weekend breakfast consumption. Few common correlates existed between boys and girls.

Conclusion: Several factors were identified as correlates of SED and/or of ST in Canadian children; however, few correlates were common for both SED and ST, and for both boys and girls. This suggests that a single strategy to reduce SED and ST is unlikely to be effective. Future work should examine a variety of other, non-screen based sedentary behaviours and their potential correlates in the hopes of creating tailored public health messages to reduce SED and ST in both boys, and girls.

References

    1. Sedentary Behaviour Research Networ Letter to the Editor: Standardized use of the terms “sedentary” and “sedentary behaviours.”. Appl Physiol Nutr Metab. 2012;37:540–2. doi: 10.1139/h2012-024.
    1. Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35:725–40. doi: 10.1139/H10-079.
    1. Tremblay MS, LeBlanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian Sedentary Behaviour Guidelines for Children and Youth. Appl Physiol Nutr Metab. 2011;36:59–64. doi: 10.1139/H11-012.
    1. Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98. doi: 10.1186/1479-5868-8-98.
    1. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetol Clin Exp Diabetes Metab. 2012.
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in Sedentary Time Beneficial associations with metabolic risk. Diabetes Care. 2008;31:661–6. doi: 10.2337/dc07-2046.
    1. Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32:590–7. doi: 10.1093/eurheartj/ehq451.
    1. Saunders TJ, Chaput J-P, Goldfield GS, Colley RC, Kenny GP, Doucet E, et al. Prolonged sitting and markers of cardiometabolic disease risk in children and youth: a randomized crossover study. Metabolism. 2013;62:1423–8. doi: 10.1016/j.metabol.2013.05.010.
    1. Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian Health Measures Survey. BMC Public Health. 2013;13:200. doi: 10.1186/1471-2458-13-200.
    1. Biddle SJH, Gorely T, Marshall SJ. Is television viewing a suitable marker of sedentary behavior in young people? Ann Behav Med. 2009;38:147–53. doi: 10.1007/s12160-009-9136-1.
    1. Temmel CSD, Rhodes R. Correlates of Sedentary Behaviour in Children and Adolescents Aged 7–18: A Systematic Review. Health Fit J Can. 2013;6:119–99.
    1. Brodersen NH, Steptoe A, Williamson S, Wardle J. Sociodemographic, developmental, environmental, and psychological correlates of physical activity and sedentary behavior at age 11 to 12. Ann Behav Med. 2005;29:2–11. doi: 10.1207/s15324796abm2901_2.
    1. Van Der Horst K, Paw MJ CA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39:1241–50. doi: 10.1249/mss.0b013e318059bf35.
    1. van Sluijs EMF, Page A, Ommundsen Y, Griffin SJ. Behavioural and social correlates of sedentary time in young people. Br J Sports Med. 2010;44:747–55. doi: 10.1136/bjsm.2008.049783.
    1. Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, Sallis JF. Adults’ sedentary behavior: determinants and interventions. Am J Prev Med. 2011;41:189–96. doi: 10.1016/j.amepre.2011.05.013.
    1. Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput J-P, Fogelholm M, et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900. doi: 10.1186/1471-2458-13-900.
    1. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43:1360–8. doi: 10.1249/MSS.0b013e318206476e.
    1. Colley RC, Connor Gorber S, Tremblay MS. Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Rep. 2010;21:63–9.
    1. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65. doi: 10.1080/02640410802334196.
    1. U.S. Centers for Disease Control and Prevention. Youth Risk Behavior Surveillance System (YRBSS). 2012. Available at: .
    1. Hardy LL, Hills AP, Timperio A, Cliff D, Lubans D, Morgan PJ, et al. A hitchhiker’s guide to assessing sedentary behaviour among young people: Deciding what method to use. J Sci Med Sport. 2013;16:28–35. doi: 10.1016/j.jsams.2012.05.010.
    1. Barreira TV, Staiano AE, Katzmarzyk PT. Validity assessment of a portable bioimpedance scale to estimate body fat percentage in White and African–American children and adolescents. Pediatr Obes. 2013;8:e29–32. doi: 10.1111/j.2047-6310.2012.00122.x.
    1. Cenre for Disease Control and Prevention. Assessing Your Weight: Children’s BMI Tool for School. [Healthy Weight: It’s Not a Diet, It’s a Lifestyle]. 2014.
    1. Currie C, Nic Gabhainn S, Godeau E, Roberts C, Smith R, Currie D, et al. Inequalities in Children’s Health: HBSC International Report from the 2005/2006 Survey. Geneva: World Health Organization; 2008.
    1. Kenward MG, Roger JH. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics. 1997;53:983. doi: 10.2307/2533558.
    1. Craney TA, Surles JG. Model-dependent variance inflation factor cutoff values. Qual Eng. 2002;14:391. doi: 10.1081/QEN-120001878.
    1. Byun W, Dowda M, Pate RR. Correlates of objectively measured sedentary behavior in US preschool children. Pediatrics. 2011;128:937–45. doi: 10.1542/peds.2011-0748.
    1. Gorely T. Couch kids: Correlates of television viewing among youth. Int J Behav Med. 2004;11:152–63. doi: 10.1207/s15327558ijbm1103_4.
    1. Hjorth MF, Chaput J-P, Ritz C, Dalskov S-M, Andersen R, Astrup A, et al. Fatness predicts decreased physical activity and increased sedentary time, but not vice versa: support from a longitudinal study in 8- to 11-year-old children. Int J Obes. 2014;38:959–65. doi: 10.1038/ijo.2013.229.
    1. Saunders TJ, Larouche R, Colley RC, Tremblay MS. Acute sedentary behaviour and markers of cardiometabolic risk: a systematic review of intervention studies. J Nutr Metab. 2012;2012:712435.
    1. Saleh D, Janssen I. Interrelationships among sedentary time, sleep duration, and the metabolic syndrome in adults. BMC Public Health. 2014;14:666. doi: 10.1186/1471-2458-14-666.
    1. Thivel D, Tremblay MS, Chaput J-P. Modern sedentary behaviors favor energy consumption in children and adolescents. Curr Obes Rep. 2013;2:50–7. doi: 10.1007/s13679-012-0032-9.
    1. Utter J, Neumark-Sztainer D, Jeffery R, Story M. Couch potatoes or french fries: are sedentary behaviors associated with body mass index, physical activity, and dietary behaviors among adolescents? J Am Diet Assoc. 2003;103:1298–305. doi: 10.1016/S0002-8223(03)01079-4.
    1. Pearson N, Biddle SJH. Sedentary behavior and dietary intake in children, adolescents, and adults: a systematic review. Am J Prev Med. 2011;41:178–88. doi: 10.1016/j.amepre.2011.05.002.
    1. Borghese MM, Tremblay MS, Leduc G, Boyer C, Bélanger P, LeBlanc AG, et al. Independent and combined associations of total sedentary time and television viewing time with food intake patterns of 9- to 11-year-old Canadian children. Appl Physiol Nutr Metab. 2014:1–7.
    1. Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, et al. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41:1460–71. doi: 10.1093/ije/dys118.
    1. Tudor-Locke C, Barreira TV, Schuna JM, Mire EF, Katzmarzyk PT. Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl Physiol Nutr Metab. 2013;39:53–7. doi: 10.1139/apnm-2013-0173.
    1. Granich J, Rosenberg M, Knuiman M, Timperio A. Understanding children’s sedentary behaviour: a qualitative study of the family home environment. Health Educ Res. 2010;25:199–210. doi: 10.1093/her/cyn025.

Source: PubMed

3
Sottoscrivi