Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome

Md Ashraful Alam, Md Mahbubur Rahman, Md Ashraful Alam, Md Mahbubur Rahman

Abstract

Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson's disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications.

Keywords: Co-enzyme Q10; Inflammation; Metabolic syndrome; Obesity; Oxidative stress.

Figures

Figure 1
Figure 1
Schematic diagram of Co-Q10, Mito-Q and Idebenone.
Figure 2
Figure 2
Proposed mechanism of Co-Q supplementation on anti-inflammatory and lipid metabolism pathways in tissues in case of metabolic syndrome. AMPK, Adenosine monophosphate activated protein kinase; PPAR, Peroxisome proliferator activated receptor; PGC-1α, Peroxisome proliferator-activated receptor gamma coactivator-1; oxLDL, Oxidized Low density lipoprotein; NRF, nuclear respiration factor; LXR, Liver X receptor; PPRE PPAR response element.

References

    1. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009;2:231–237. doi: 10.1242/dmm.001180.
    1. Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84:705–712. doi: 10.1016/j.lfs.2009.02.026.
    1. Hopps E, Noto D, Caimi G, Averna MR. A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis. 2010;20:72–77. doi: 10.1016/j.numecd.2009.06.002.
    1. Patti M-E, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocrine Rev. 2010;31:364–395. doi: 10.1210/er.2009-0027.
    1. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994;43:1271–1278.
    1. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–1808. doi: 10.1172/JCI200319246.
    1. Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension. 2005;45:828–833. doi: 10.1161/01.HYP.0000163475.04421.e4.
    1. Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis. Circ Res. 2007;100:795–806. doi: 10.1161/01.RES.0000259591.97107.6c.
    1. Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, Palomba L, Cantoni O, Clementi E, Moncada S, Carruba MO, Nisoli E. TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest. 2006;116:2791–2798. doi: 10.1172/JCI28570..
    1. Bonakdar RA, Guarneri E. Coenzyme Q10. Am Fam Physician. 2005;72:1065–1070.
    1. Littarru GP, Tiano L. In: Mitochondrial Medicine. Gvozdjakova A, editor. Netherlands: Springer; 2008. Clinical aspects of coenzyme Q-10; in relationship with its bioenergetic and antioxidant properties; pp. 303–321.
    1. Pravst I, Žmitek K, Žmitek J. Coenzyme Q10 contents in foods and fortification strategies. Crit Rev Food Sci Nutr. 2010;50:269–280. doi: 10.1080/10408390902773037.
    1. Weber C, Bysted A, Hølmer G. Coenzyme Q10 in the diet-daily intake and relative bioavailability. Mol Aspects Med. 1997;18(Supplement 1):251–254.
    1. Greenberg S, Frishman WH. Co-enzyme Q10: a new drug for cardiovascular disease. J Clin Pharmacol. 1990;30:596–608. doi: 10.1002/j.1552-4604.1990.tb01862.x.
    1. Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res. 2006;40:445–453. doi: 10.1080/10715760600617843.
    1. Aberg F, Appelkvist EL, Dallner G, Ernster L. Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys. 1992;295:230–234. doi: 10.1016/0003-9861(92)90511-T.
    1. Langsjoen PH, Langsjoen PH, Folkers K. Long-term efficacy and safety of coenzyme Q10 therapy for idiopathic dilated cardiomyopathy. Am J Cardiol. 1990;65:521–523. doi: 10.1016/0002-9149(90)90824-K.
    1. Williams KD, Maneke JD, AbdelHameed M, Hall RL, Palmer TE, Kitano M, Hidaka T. 52-Week oral gavage chronic toxicity study with ubiquinone in rats with a 4-week recovery. J Agric Food Chem. 1999;47:3756–3763. doi: 10.1021/jf981194t.
    1. Langsjoen PH, Langsjoen AM. Coenzyme Q10 in cardiovascular disease with emphasis on heart failure and myocardial ischaemia. Asia Pacific Heart J. 1998;7:160–168. doi: 10.1016/S1328-0163(98)90022-7.
    1. Dallner G, Sindelar PJ. Regulation of ubiquinone metabolism. Free Radic Biol Med. 2000;29:285–294. doi: 10.1016/S0891-5849(00)00307-5.
    1. Vankoningsloo S, Piens M, Lecocq C, Gilson A, De Pauw A, Renard P, Demazy C, Houbion A, Raes M, Arnould T. Mitochondrial dysfunction induces triglyceride accumulation in 3 T3-L1 cells: role of fatty acid beta-oxidation and glucose. J Lipid Res. 2005;46:1133–1149. doi: 10.1194/jlr.M400464-JLR200.
    1. Choo HJ, Kim JH, Kwon OB, Lee C, Mun J, Han S, Yoon YS, Yoon G, Choi KM, Ko YG. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia. 2006;49:784–791. doi: 10.1007/s00125-006-0170-2.
    1. Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol. 2008;44:968–975. doi: 10.1016/j.yjmcc.2008.03.021.
    1. Chinetti-Gbaguidi G, Fruchart J-C, Staels B. Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Curr Opin Pharmacol. 2005;5:177–183. doi: 10.1016/j.coph.2004.11.004.
    1. Wenz T. PGC-1α activation as a therapeutic approach in mitochondrial disease. Iubmb Life. 2009;61:1051–1062. doi: 10.1002/iub.261.
    1. López-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol. 2008;43:813–819. doi: 10.1016/j.exger.2008.06.014.
    1. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol. 2003;546:851–858. doi: 10.1113/jphysiol.2002.034850.
    1. Lira VA, Benton CR, Yan Z, Bonen A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab. 2010;299:E145–E161.
    1. Corton JC, Brown-Borg HM. Peroxisome proliferator-activated receptor gamma coactivator 1 in caloric restriction and other models of longevity. J Gerontol A Biol Sci Med Sci. 2005;60:1494–1509. doi: 10.1093/gerona/60.12.1494.
    1. Bastin J, Aubey F, Rötig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab. 2008;93:1433–1441. doi: 10.1210/jc.2007-1701.
    1. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127:1109–1122. doi: 10.1016/j.cell.2006.11.013.
    1. Lee SK, Lee JO, Kim JH, Kim N, You GY, Moon JW, Sha J, Kim SJ, Lee YW, Kang HJ, Park SH, Kim HS. Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated PPARα induction in 3 T3-L1 preadipocytes. Cell Signal. 2012;24:2329–2336. doi: 10.1016/j.cellsig.2012.07.022.
    1. Ogasahara S, Engel AG, Frens D, Mack D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci. 1989;86:2379–2382. doi: 10.1073/pnas.86.7.2379.
    1. Miles MV, Horn PS, Tang PH, Morrison JA, Miles L, DeGrauw T, Pesce AJ. Age-related changes in plasma coenzyme Q10 concentrations and redox state in apparently healthy children and adults. Clin Chim Acta. 2004;347:139–144. doi: 10.1016/j.cccn.2004.04.003.
    1. Menke T, Niklowitz P, de Sousa G, Reinehr T, Andler W. Comparison of coenzyme Q10 plasma levels in obese and normal weight children. Clin Chim Acta. 2004;349:121–127. doi: 10.1016/j.cccn.2004.06.015.
    1. Chew GT, Watts GF. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the ‘recoupling hypothesis’. QJM. 2004;97:537–548. doi: 10.1093/qjmed/hch089.
    1. McDonnell MG, Archbold GPR. Plasma ubiquinol/cholesterol ratios in patients with hyperlipidaemia, those with diabetes mellitus and in patients requiring dialysis. Clin Chim Acta. 1996;253:117–126. doi: 10.1016/0009-8981(96)06357-7.
    1. Lim SC, Tan HH, Goh SK, Subramaniam T, Sum CF, Tan IK, Lee BL, Ong CN. Oxidative burden in prediabetic and diabetic individuals: evidence from plasma coenzyme Q10. Diabetic Med. 2006;23:1344–1349. doi: 10.1111/j.1464-5491.2006.01996.x.
    1. El-ghoroury EA, Raslan HM, Badawy EA, El-Saaid GS, Agybi MH, Siam I, Salem SI. Malondialdehyde and coenzyme Q10 in platelets and serum in type 2 diabetes mellitus: correlation with glycemic control. Blood Coagul Fibrinolysis. 2009;20:248–251. doi: 10.1097/MBC.0b013e3283254549. 210.
    1. Menke T, Niklowitz P, Wiesel T, Andler W. Antioxidant level and redox status of coenzyme Q10 in the plasma and blood cells of children with diabetes mellitus type 1. Pediatr Diabetes. 2008;9:540–545. doi: 10.1111/j.1399-5448.2008.00389.x.
    1. Silver MA, Langsjoen PH, Szabo S, Patil H, Zelinger A. Effect of atorvastatin on left ventricular diastolic function and ability of coenzyme Q10 to reverse that dysfunction. Am J Cardiol. 2004;94:1306–1310. doi: 10.1016/j.amjcard.2004.07.121.
    1. Folkers K, Langsjoen P, Willis R, Richardson P, Xia LJ, Ye CQ, Tamagawa H. Lovastatin decreases coenzyme Q levels in humans. Proc Natl Acad Sci. 1990;87:8931–8934. doi: 10.1073/pnas.87.22.8931.
    1. Bargossi AM, Battino M, Gaddi A, Fiorella PL, Grossi G, Barozzi G, Di Giulio R, Descovich G, Sassi S, Genova ML, Lenaz G. Exogenous CoQ10 preserves plasma ubiquinone levels in patients treated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Int J Clin Lab Res. 1994;24:171–176. doi: 10.1007/BF02592449.
    1. Troseid M, Henriksen OA, Lindal S. Statin-associated myopathy with normal creatine kinase levels. Case report from a Norwegian family. APMIS. 2005;113:635–637. doi: 10.1111/j.1600-0463.2005.apm_270.x.
    1. Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL, Kimura BJ, Vladutiu GD, England JD. Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med. 2002;137:581–585. doi: 10.7326/0003-4819-137-7-200210010-00009.
    1. Caso G, Kelly P, McNurlan MA, Lawson WE. Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. Am J Cardiol. 2007;99:1409–1412. doi: 10.1016/j.amjcard.2006.12.063.
    1. Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci. 1985;82:901–904. doi: 10.1073/pnas.82.3.901.
    1. Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA. Genetic determinants of statin intolerance. Lipids Health Dis. 2007;6:7. doi: 10.1186/1476-511X-6-7.
    1. Vladutiu GD, Simmons Z, Isackson PJ, Tarnopolsky M, Peltier WL, Barboi AC, Sripathi N, Wortmann RL, Phillips PS. Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve. 2006;34:153–162. doi: 10.1002/mus.20567.
    1. Tappel AL. Vitamin E and free radical peroxidation of lipids. Ann N Y Acad Sci. 1972;203:12–28. doi: 10.1111/j.1749-6632.1972.tb27851.x.
    1. Stocker R, Bowry VW, Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci. 1991;88:1646–1650. doi: 10.1073/pnas.88.5.1646.
    1. Shekelle P, Hardy ML, Coulter I, Udani J, Spar M, Oda K, Jungvig LK, Tu W, Suttorp MJ, Valentine D, Ramirez L, Shanman R, Newberry SJ. Effect of the supplemental use of antioxidants vitamin C, vitamin E, and coenzyme Q10 for the prevention and treatment of cancer. (Prepared by Southern California Evidence-based Practice Center under Contract No. 290-97-0001.) AHRQ Publication No. 04-E003. Rockville, MD: Agency for Healthcare Research and Quality; 2003.
    1. Sohal RS, Forster MJ. Coenzyme Q, oxidative stress and aging. Mitochondrion. 2007;7(Suppl):S103–S111.
    1. Roginsky VA, Tashlitsky VN, Skulachev VP. Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Aging. 2009;1:481–489.
    1. Abdin AA, Hamouda HE. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacol. 2008;55:1340–1346. doi: 10.1016/j.neuropharm.2008.08.033.
    1. Tomasetti M, Littarru GP, Stocker R, Alleva R. Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radic Biol Med. 1999;27:1027–1032. doi: 10.1016/S0891-5849(99)00132-X.
    1. Tomasetti M, Alleva R, Borghi B, Collins AR. In vivo supplementation with coenzyme Q10 enhances the recovery of human lymphocytes from oxidative DNA damage. FASEB J. 2001;15:1425–1427.
    1. Modi K, Santani DD, Goyal RK, Bhatt PA. Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biol Trace Elem Res. 2006;109:25–34. doi: 10.1385/BTER:109:1:025.
    1. Fouad AA, Jresat I. Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environ Toxicol Pharmacol. 2012;33:158–167. doi: 10.1016/j.etap.2011.12.011.
    1. Lee B-J, Huang Y-C, Chen S-J, Lin P-T. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition. 2012;28:250–255. doi: 10.1016/j.nut.2011.06.004.
    1. Seitz CS, Kleindienst R, Xu Q, Wick G. Coexpression of heat-shock protein 60 and intercellular-adhesion molecule-1 is related to increased adhesion of monocytes and T cells to aortic endothelium of rats in response to endotoxin. Lab Invest. 1996;74:241–252.
    1. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–1830. doi: 10.1172/JCI200319451.
    1. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–1119. doi: 10.1172/JCI200525102.
    1. Milagro FI, Campion J, Martinez JA. Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity. 2006;14:1118–1123. doi: 10.1038/oby.2006.128.
    1. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterol. 2007;132:2169–2180. doi: 10.1053/j.gastro.2007.03.059.
    1. Abedini A, Shoelson SE. Inflammation and obesity: stamping out insulin resistance? Immunol Cell Biol. 2007;85:399–400. doi: 10.1038/sj.icb.7100107.
    1. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191–198. doi: 10.1038/nm1185.
    1. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–190. doi: 10.1038/nm1166.
    1. Bochud M, Marquant F, Marques-Vidal P-M, Vollenweider P, Beckmann JS, Mooser V, Paccaud F, Rousson V. Association between C-reactive protein and adiposity in women. J Clin Endocrinol Metab. 2009;94:3969–3977. doi: 10.1210/jc.2008-2428.
    1. Lapice E, Maione S, Patti L, Cipriano P, Rivellese AA, Riccardi G, Vaccaro O. Abdominal adiposity is associated with elevated C-reactive protein independent of BMI in healthy nonobese people. Diabetes Care. 2009;32:1734–1736. doi: 10.2337/dc09-0176.
    1. Nijhuis J, Rensen SS, Slaats Y, van Dielen FM, Buurman WA, Greve JW. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity. 2009;17:2014–2018. doi: 10.1038/oby.2009.113.
    1. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91. doi: 10.1126/science.7678183.
    1. Sethi JK, Hotamisligil GS. The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol. 1999;10:19–29. doi: 10.1006/scdb.1998.0273.
    1. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95:2409–2415. doi: 10.1172/JCI117936.
    1. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest. 1995;95:2111–2119. doi: 10.1172/JCI117899.
    1. El-Moselhy MA, Taye A, Sharkawi SS, El-Sisi SFI, Ahmed AF. The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem Toxicol. 2011;49:1129–1140. doi: 10.1016/j.fct.2011.02.004.
    1. Mehta NN, McGillicuddy FC, Anderson PD, Hinkle CC, Shah R, Pruscino L, Tabita-Martinez J, Sellers KF, Rickels MR, Reilly MP. Experimental Endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes. 2010;59:172–181. doi: 10.2337/db09-0367.
    1. Matarazzo S, Quitadamo MC, Mango R, Ciccone S, Novelli G, Biocca S. Cholesterol-lowering drugs inhibit lectin-like oxidized low-density lipoprotein-1 receptor function by membrane raft disruption. Mol Pharmacol. 2012;82:246–254. doi: 10.1124/mol.112.078915.
    1. Bieghs V, Van Gorp PJ, Wouters K, Hendrikx T, Gijbels MJ, van Bilsen M, Bakker J, Binder CJ, Lutjohann D, Staels B, Hofker MH, Shiri-Sverdlov R. LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. Plos One. 2012;7:e30668. doi: 10.1371/journal.pone.0030668.
    1. Flock MR, Green MH, Kris-Etherton PM. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Advances in Nutrition. 2011;2:261–274. doi: 10.3945/an.111.000422.
    1. Henninger DD, Gerritsen ME, Granger DN. Low-density lipoprotein receptor knockout mice exhibit exaggerated microvascular responses to inflammatory stimuli. Cir Res. 1997;81:274–281. doi: 10.1161/01.RES.81.2.274.
    1. Zabalawi M, Bhat S, Loughlin T, Thomas MJ, Alexander E, Cline M, Bullock B, Willingham M, Sorci-Thomas MG. Induction of fatal inflammation in LDL receptor and ApoA-I double-knockout mice fed dietary fat and cholesterol. Am J Pathol. 2003;163:1201–1213. doi: 10.1016/S0002-9440(10)63480-3.
    1. Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. Peroxisome proliferator–activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor–deficient mice. J Clin Invest. 2000;106:523–531. doi: 10.1172/JCI10370.
    1. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-[gamma] is a negative regulator of macrophage activation. Nature. 1998;391:79–82. doi: 10.1038/34178.
    1. Cuzzocrea S, Mazzon E, Di Paola R, Peli A, Bonato A, Britti D, Genovese T, Muia C, Crisafulli C, Caputi AP. The role of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in the regulation of acute inflammation. J Leukoc Biol. 2006;79:999–1010. doi: 10.1189/jlb.0605341.
    1. Schmelzer C, Lorenz G, Rimbach G, Döring F. In vitro effects of the reduced form of coenzyme Q10 on secretion levels of TNF-α and chemokines in response to LPS in the human monocytic cell line THP-1. J Nutr Biochem. 2009;44:62–66. doi: 10.3164/jcbn.08-182.
    1. Schmelzer C, Lorenz G, Rimbach G, Döring F. Influence of Coenzyme Q10 on release of pro-inflammatory chemokines in the human monocytic cell line THP-1. BioFactors. 2007;31:211–217. doi: 10.1002/biof.5520310308.
    1. Carmona MC, Lefebvre P, Lefebvre B, Galinier A, Benani A, Jeanson Y, Louche K, Flajollet S, Ktorza A, Dacquet C, Penicaud L, Casteilla L. Coadministration of coenzyme Q prevents rosiglitazone-induced adipogenesis in ob/ob mice. Int J Obes. 2009;33:204–211. doi: 10.1038/ijo.2008.265.
    1. Sohet FM, Neyrinck AM, Pachikian BD, de Backer FC, Bindels LB, Niklowitz P, Menke T, Cani PD, Delzenne NM. Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol. 2009;78:1391–1400. doi: 10.1016/j.bcp.2009.07.008.
    1. Schmelzer C, Kitano M, Hosoe K, Doring F. Ubiquinol affects the expression of genes involved in PPARalpha signalling and lipid metabolism without changes in methylation of CpG promoter islands in the liver of mice. J Clin Biochem Nutr. 2012;50:119–126. doi: 10.3164/jcbn.11-19.
    1. Schmelzer C, Kubo H, Mori M, Sawashita J, Kitano M, Hosoe K, Boomgaarden I, Döring F, Higuchi K. Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-α gene expression signature in SAMP1 mice. Mol Nutr Food Res. 2010;54:805–815.
    1. Kunitomo M, Yamaguchi Y, Kagota S, Otsubo K. Beneficial effect of coenzyme Q10 on increased oxidative and nitrative stress and inflammation and individual metabolic components developing in a rat model of metabolic syndrome. J Pharmacol Sci. 2008;107:128–137. doi: 10.1254/jphs.FP0072365.
    1. Ozdogan S, Kaman D, Simsek BC. Effects of coenzyme Q10 and alpha-lipoic acid supplementation in fructose fed rats. J Clin Biochem Nutr. 2012;50:145–151. full_text.
    1. Hamilton SJ, Chew GT, Watts GF. Coenzyme Q10 improves endothelial dysfunction in statin-treated type 2 diabetic patients. Diabetes Care. 2009;32:810–812. doi: 10.2337/dc08-1736.
    1. Tsai KL, Huang YH, Kao CL, Yang DM, Lee HC, Chou HY, Chen YC, Chiou GY, Chen LH, Yang YP, Chiu TH, Tsai CS, Ou HC, Chiou SH. A novel mechanism of coenzyme Q10 protects against human endothelial cells from oxidative stress-induced injury by modulating NO-related pathways. J Nutr Biochem. 2012;23:458–468. doi: 10.1016/j.jnutbio.2011.01.011.
    1. Tiano L, Belardinelli R, Carnevali P, Principi F, Seddaiu G, Littarru GP. Effect of coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischaemic heart disease: a double-blind, randomized controlled study. Eur Heart J. 2007;28:2249–2255. doi: 10.1093/eurheartj/ehm267.
    1. Yamagami T, Iwamoto Y, Folkers K, Blomqvist CG. Reduction by coenzyme Q10 of hypertension induced by deoxycorticosterone and saline in rats. Int J Vitam Nutr Res. 1974;44:487–496.
    1. Iwamoto Y, Yamagami T, Folkers K, Blomqvist CG. Deficiency of coenzyme Q10 in hypertensive rats and reduction of deficiency by treatment with coenzyme Q10. Biochem Biophys Res Commun. 1974;58:743–748. doi: 10.1016/S0006-291X(74)80480-8.
    1. Murad LB, Guimaraes MR, Vianna LM. Effects of decylubiquinone (coenzyme Q10 analog) supplementation on SHRSP. BioFactors. 2007;30:13–18. doi: 10.1002/biof.5520300102.
    1. Rosenfeldt FL, Haas SJ, Krum H, Hadj A, Ng K, Leong JY, Watts GF. Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trials. J Hum Hypertens. 2007;21:297–306.
    1. Young JM, Florkowski CM, Molyneux SL, McEwan RG, Frampton CM, Nicholls MG, Scott RS, George PM. A randomized, double-blind, placebo-controlled crossover study of coenzyme q10 therapy in hypertensive patients with the metabolic syndrome. Am J Hypertens. 2012;25:261–270. doi: 10.1038/ajh.2011.209.
    1. Digiesi V, Cantini F, Oradei A, Bisi G, Guarino GC, Brocchi A, Bellandi F, Mancini M, Littarru GP. Coenzyme Q10 in essential hypertension. Mol Aspects Med. 1994;15(Suppl):s257–s263.
    1. Pepe S, Marasco SF, Haas SJ, Sheeran FL, Krum H, Rosenfeldt FL. Coenzyme Q10 in cardiovascular disease. Mitochondrion. 2007;7(Suppl):S154–S167.
    1. Lonnrot K, Porsti I, Alho H, Wu X, Hervonen A, Tolvanen JP. Control of arterial tone after long-term coenzyme Q10 supplementation in senescent rats. Br J Pharmacol. 1998;124:1500–1506. doi: 10.1038/sj.bjp.0701970.
    1. Kumar A, Kaur H, Devi P, Mohan V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol Ther. 2009;124:259–268. doi: 10.1016/j.pharmthera.2009.07.003.
    1. Vogt AM, Kübler W. Heart failure: is there an energy deficit contributing to contractile dysfunction? Basic Res Cardiol. 1998;93:1–10. doi: 10.1007/s003950050055.
    1. Folkers K, Littarru GP, Ho L, Runge TM, Havanonda S, Cooley D. Evidence for a deficiency of coenzyme Q10 in human heart disease. Int Z Vitaminforsch. 1970;40:380–390.
    1. Langsjoen PH, Folkers K. A six-year clinical study of therapy of cardiomyopathy with coenzyme Q10. Int J Tissue React. 1990;12:169–171.
    1. Langsjoen PH, Langsjoen A, Willis R, Folkers K. Treatment of hypertrophic cardiomyopathy with coenzyme Q10. Mol Aspects Med. 1997;18(Suppl):S145–S151.
    1. Ohhara H, Kanaide H, Yoshimura R, Okada M, Nakamura M. A protective effect of coenzyme Q10 on ischemia and reperfusion of the isolated perfused rat heart. J Mol Cell Cardiol. 1981;13:65–74.
    1. Hano O, Thompson-Gorman SL, Zweier JL, Lakatta EG. Coenzyme Q10 enhances cardiac functional and metabolic recovery and reduces Ca2+ overload during postischemic reperfusion. Am J Physiol. 1994;266:H2174–H2181.
    1. Niibori K, Wroblewski KP, Yokoyama H, Crestanello JA, Whitman GJ. Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischemia reperfusion injury. BioFactors. 1999;9:307–313. doi: 10.1002/biof.5520090228.
    1. Combs AB, Choe JY, Truong DH, Folkers K. Reduction by coenzyme Q10 of the acute toxicity of adriamycin in mice. Res Commun Chem Pathol Pharmacol. 1977;18:565–568.
    1. Shinozawa S, Etowo K, Araki Y, Oda T. Effect of coenzyme Q10 on the survival time and lipid peroxidation of adriamycin (doxorubicin) treated mice. Acta Med Okayama. 1984;38:57–63.
    1. Kucharska J, Braunova Z, Ulicna O, Zlatos L, Gvozdjakova A. Deficit of coenzyme Q in heart and liver mitochondria of rats with streptozotocin-induced diabetes. Physiol Res. 2000;49:411–418.
    1. Gvozdjakova A, Kucharska J, Mizera S, Braunova Z, Schreinerova Z, Schramekova E, Pechan I, Fabian J. Coenzyme Q10 depletion and mitochondrial energy disturbances in rejection development in patients after heart transplantation. BioFactors. 1999;9:301–306. doi: 10.1002/biof.5520090227.
    1. Eriksson JG, Forsen TJ, Mortensen SA, Rohde M. The effect of coenzyme Q10 administration on metabolic control in patients with type 2 diabetes mellitus. BioFactors. 1999;9:315–318. doi: 10.1002/biof.5520090229.
    1. Henriksen JE, Andersen CB, Hother-Nielsen O, Vaag A, Mortensen SA, Beck-Nielsen H. Impact of ubiquinone (coenzyme Q10) treatment on glycaemic control, insulin requirement and well-being in patients with Type 1 diabetes mellitus. Diabet Med. 1999;16:312–318. doi: 10.1046/j.1464-5491.1999.00064.x.
    1. Sena CM, Nunes E, Gomes A, Santos MS, Proença T, Martins MI, Seiça RM. Supplementation of coenzyme Q10 and α-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutr Res. 2008;28:113–121. doi: 10.1016/j.nutres.2007.12.005.
    1. Repa JJ, Mangelsdorf DJ. The liver X receptor gene team: potential new players in atherosclerosis. Nat Med. 2002;8:1243–1248. doi: 10.1038/nm1102-1243.
    1. Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park M-G, Steffensen KR, Stulnig TM, Gustafsson JÅ, Park SD, Kim JB. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor γ expression. Mol Cell Biol. 2004;24:3430–3444. doi: 10.1128/MCB.24.8.3430-3444.2004.
    1. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 2003;9:213–219. doi: 10.1038/nm820.
    1. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998;93:693–704. doi: 10.1016/S0092-8674(00)81432-4.
    1. Ide T, Shimano H, Yoshikawa T, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Yatoh S, Iizuka Y, Tomita S, Ohashi K, Takahashi A, Sone H, Gotoda T, Osuga J-i, Ishibashi S, Yamada N. Cross-talk between peroxisome proliferator-activated receptor (PPAR) α and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol. 2003;17:1255–1267. doi: 10.1210/me.2002-0191.
    1. Schmelzer C, Okun JG, Haas D, Higuchi K, Sawashita J, Mori M, Doring F. The reduced form of coenzyme Q10 mediates distinct effects on cholesterol metabolism at the transcriptional and metabolite level in SAMP1 mice. Iubmb Life. 2010;62:812–818. doi: 10.1002/iub.388.
    1. Bentinger M, Tekle M, Dallner G, Brismar K, Gustafsson J, Steffensen K, Catrina SB. Influence of liver-X-receptor on tissue cholesterol, coenzyme Q and dolichol content. Molec Membrane Biol. 2012;29:299–308. doi: 10.3109/09687688.2012.694484.
    1. Quiles JL, Ochoa JJ, Battino M, Gutierrez-Rios P, Nepomuceno EA, Frias ML, Huertas JR, Mataix J. Life-long supplementation with a low dosage of coenzyme Q10 in the rat: effects on antioxidant status and DNA damage. BioFactors. 2005;25:73–86. doi: 10.1002/biof.5520250109.
    1. Quiles JL, Ochoa JJ, Huertas JR, Mataix J. Coenzyme Q supplementation protects from age-related DNA double-strand breaks and increases lifespan in rats fed on a PUFA-rich diet. Exp Gerontol. 2004;39:189–194. doi: 10.1016/j.exger.2003.10.002.
    1. Safwat GM, Pisano S, D'Amore E, Borioni G, Napolitano M, Kamal AA, Ballanti P, Botham KM, Bravo E. Induction of non-alcoholic fatty liver disease and insulin resistance by feeding a high-fat diet in rats: does coenzyme Q monomethyl ether have a modulatory effect? Nutrition. 2009;25:1157–1168. doi: 10.1016/j.nut.2009.02.009.
    1. Sutken E, Aral E, Ozdemir F, Uslu S, Alatas O, Colak O. Protective role of melatonin and coenzyme Q10 in ochratoxin A toxicity in rat liver and kidney. Int J Toxicol. 2007;26:81–87. doi: 10.1080/10915810601122893.
    1. Bello RI, Gomez-Diaz C, Buron MI, Alcain FJ, Navas P, Villalba JM. Enhanced anti-oxidant protection of liver membranes in long-lived rats fed on a coenzyme Q10-supplemented diet. Exp Gerontol. 2005;40:694–706. doi: 10.1016/j.exger.2005.07.003.
    1. Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH. The metabolic syndrome. Endocrine Rev. 2008;29:777–822. doi: 10.1210/er.2008-0024.
    1. Mehmetoglu I, Yerlikaya FH, Kurban S. Correlation between vitamin A, E, coenzyme Q-10 and degree of insulin resistance in obese and non-obese subjects. J Clin Biochem Nutr. 2011;49:159–163. doi: 10.3164/jcbn.11-08.
    1. Bour S, Carmona MC, Galinier A, Caspar-Bauguil S, Van Gaal L, Staels B, Penicaud L, Casteilla L. Coenzyme Q as an antiadipogenic factor. Antioxid Redox Signal. 2011;14:403–413. doi: 10.1089/ars.2010.3350.
    1. Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, le Lièpvre X, Berthelier-Lubrano C, Spiegelman B, Kim JB, Ferré P, Foufelle F. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol. 1999;19:3760–3768.
    1. Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev. 2000;41:235–250. doi: 10.1016/S0169-409X(99)00069-1.
    1. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088–1095. doi: 10.1096/fj.05-3718com.
    1. Lowes DA, Thottakam BM, Webster NR, Murphy MP, Galley HF. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic Biol Med. 2008;45:1559–1565. doi: 10.1016/j.freeradbiomed.2008.09.003.
    1. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RAJ, Cochemé HM, Murphy MP, Dominiczak AF. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54:322–328. doi: 10.1161/HYPERTENSIONAHA.109.130351.
    1. Vergeade A, Mulder P, Vendeville-Dehaudt C, Estour F, Fortin D, Ventura-Clapier R, Thuillez C, Monteil C. Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: prevention by the targeted antioxidant MitoQ. Free Radical Biol Med. 2010;49:748–756. doi: 10.1016/j.freeradbiomed.2010.05.024.
    1. Chacko BK, Srivastava A, Johnson MS, Benavides GA, Chang MJ, Ye Y, Jhala N, Murphy MP, Kalyanaraman B, Darley-Usmar VM. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. J Hepatol. 2011;54:153–163.
    1. Mercer JR, Yu E, Figg N, Cheng K-K, Prime TA, Griffin JL, Masoodi M, Vidal-Puig A, Murphy MP, Bennett MR. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice. Free Radical Biol Med. 2012;52:841–849. doi: 10.1016/j.freeradbiomed.2011.11.026.
    1. Kutz K, Drewe J, Vankan P. Pharmacokinetic properties and metabolism of idebenone. J Neurol. 2009;256(Suppl 1):31–35.
    1. Sugiyama Y, Fujita T, Matsumoto M, Okamoto K, Imada I. Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs. J Pharmacobiodyn. 1985;8:1006–1017. doi: 10.1248/bpb1978.8.1006.
    1. Suno M, Nagaoka A. Inhibition of lipid peroxidation by idebenone in brain mitochondria in the presence of succinate. Arch Gerontol Geriatr. 1989;8:291–297. doi: 10.1016/0167-4943(89)90010-1.
    1. Suno M, Shibota M, Nagaoka A. Effects of idebenone on lipid peroxidation and hemolysis in erythrocytes of stroke-prone spontaneously hypertensive rats. Arch Gerontol Geriatr. 1989;8:307–311. doi: 10.1016/0167-4943(89)90012-5.

Source: PubMed

3
Sottoscrivi