MTN-001: randomized pharmacokinetic cross-over study comparing tenofovir vaginal gel and oral tablets in vaginal tissue and other compartments

Craig W Hendrix, Beatrice A Chen, Vijayanand Guddera, Craig Hoesley, Jessica Justman, Clemensia Nakabiito, Robert Salata, Lydia Soto-Torres, Karen Patterson, Alexandra M Minnis, Sharavi Gandham, Kailazarid Gomez, Barbra A Richardson, Namandje N Bumpus, Craig W Hendrix, Beatrice A Chen, Vijayanand Guddera, Craig Hoesley, Jessica Justman, Clemensia Nakabiito, Robert Salata, Lydia Soto-Torres, Karen Patterson, Alexandra M Minnis, Sharavi Gandham, Kailazarid Gomez, Barbra A Richardson, Namandje N Bumpus

Abstract

Background: Oral and vaginal preparations of tenofovir as pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection have demonstrated variable efficacy in men and women prompting assessment of variation in drug concentration as an explanation. Knowledge of tenofovir concentration and its active form, tenofovir diphosphate, at the putative vaginal and rectal site of action and its relationship to concentrations at multiple other anatomic locations may provide key information for both interpreting PrEP study outcomes and planning future PrEP drug development.

Objective: MTN-001 was designed to directly compare oral to vaginal steady-state tenofovir pharmacokinetics in blood, vaginal tissue, and vaginal and rectal fluid in a paired cross-over design.

Methods and findings: We enrolled 144 HIV-uninfected women at 4 US and 3 African clinical research sites in an open label, 3-period crossover study of three different daily tenofovir regimens, each for 6 weeks (oral 300 mg tenofovir disoproxil fumarate, vaginal 1% tenofovir gel [40 mg], or both). Serum concentrations after vaginal dosing were 56-fold lower than after oral dosing (p<0.001). Vaginal tissue tenofovir diphosphate was quantifiable in ≥90% of women with vaginal dosing and only 19% of women with oral dosing. Vaginal tissue tenofovir diphosphate was ≥130-fold higher with vaginal compared to oral dosing (p<0.001). Rectal fluid tenofovir concentrations in vaginal dosing periods were higher than concentrations measured in the oral only dosing period (p<0.03).

Conclusions: Compared to oral dosing, vaginal dosing achieved much lower serum concentrations and much higher vaginal tissue concentrations. Even allowing for 100-fold concentration differences due to poor adherence or less frequent prescribed dosing, vaginal dosing of tenofovir should provide higher active site concentrations and theoretically greater PrEP efficacy than oral dosing; randomized topical dosing PrEP trials to the contrary indicates that factors beyond tenofovir's antiviral effect substantially influence PrEP efficacy.

Trial registration: ClinicalTrials.gov NCT00592124.

Conflict of interest statement

Competing Interests: CONRAD provided regulatory support for the tenofovir gel IND given their ongoing management of tenofvoir gel development. However, NIH held the IND for the tenofovir gel in this study, not CONRAD, not Gilead. CONRAD did not provide financial support. Gilead had no role in this study - neither the design, drug supply, data collection and analysis, decision to publish, or preparation of the manuscript. MTN paid for the tenofovir gel. Finally, there are no restrictions to data from MTN-001 which is controlled by CONRAD or Gilead Sciences. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Accounting of research participants from…
Figure 1. Accounting of research participants from screening to data analysis.
Figure 2. Serum TFV and TFV-DP concentration…
Figure 2. Serum TFV and TFV-DP concentration versus time.
Serum TFV (panel A) and PBMC TFV-DP (panel B) concentration versus time plots are shown for the observed 8 hour interval following a dose in clinic according to dosing regimen. Median with asymmetric upper and lower quartiles is shown. Values are only for the 70 US participants where all 6 PK samples were collected.
Figure 3. Boxplots of TFV and TFV-DP…
Figure 3. Boxplots of TFV and TFV-DP concentrations by anatomic site.
Side-by-side boxplots of end-of-period visit data for all participants by anatomic site and dosing regimen are shown. Each box indicates the interquartile range with center bar as median and whiskers 1.5 times the quartile. *Lower quartile (LQ) is below the limit of quantitation (LOQ), only median and above are shown. **Median is below LOQ, so the median of values above the LOQ are shown as a single bar. X-axis key: anatomic location, PBMC peripheral blood mononuclear cells, CVL cervicovaginal lavage, ECC endocervical cytobrush; drug moiety, TFV tenofovir, TFV-DP tenofovir diphosphate; sample timing, Cmax peak concentration following dose at clinic visit, Cpre-dose concentration prior to dose at clinic visit, Call pools values from all participants regardless of scheduled time relative to dose.

References

    1. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, et al. (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329: 1168–1174.
    1. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, et al. (2010) Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 363: 2587–2599.
    1. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, et al... (2012) Antiretroviral Prophylaxis for HIV Prevention in Heterosexual Men and Women. N Engl J Med.
    1. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, et al... (2012) Antiretroviral Preexposure Prophylaxis for Heterosexual HIV Transmission in Botswana. N Engl J Med.
    1. Van Damme L, Corneli A, Ahmed K, Agot K, Lombaard J, et al... (2012) Preexposure Prophylaxis for HIV Infection among African Women. N Engl J Med.
    1. MTN. (2011) MTN Statement on Decision to Discontinue Use of Oral Tenofovir Tablets in VOICE, a Major HIV Prevention Study in Women. In: Network MT, editor. Web site article.
    1. MTN. (2011) MTN Statement on Decision to Discontinue Use of Tenofovir Gel in VOICE, a Major HIV Prevention Study in Women.
    1. Donnell D, Baeten J, Hendrix CW, Bumpus N, Bangsberg D, et al... (2012) Detectable plasma levels over time in a pre-exposure prophylaxis clinical trial: the Partners PrEP Study. Microbicides 2012. Sydney.
    1. Karim SS, Kashuba AD, Werner L, Karim QA (2011) Drug concentrations after topical and oral antiretroviral pre-exposure prophylaxis: implications for HIV prevention in women. Lancet 378: 279–281.
    1. Minnis AM, Gandham S, Richardson BA, Guddera V, Chen BA, et al. (2012 (In Press)) Adherence and acceptability in MTN 001: A randomized cross-over trial of daily oral and topical tenofovir for HIV prevention in women. AIDS Behav.
    1. Mitchell C, Paul K, Agnew K, Gaussman R, Coombs RW, et al. (2011) Estimating volume of cervicovaginal secretions in cervicovaginal lavage fluid collected for measurement of genital HIV-1 RNA levels in women. J Clin Microbiol 49: 735–736.
    1. Keller MJ, Madan RP, Torres NM, Fazzari MJ, Cho S, et al. (2011) A randomized trial to assess anti-HIV activity in female genital tract secretions and soluble mucosal immunity following application of 1% tenofovir gel. PLoS One 6: e16475.
    1. King T, Bushman L, Kiser J, Anderson PL, Ray M, et al. (2006) Liquid chromatography-tandem mass spectrometric determination of tenofovir-diphosphate in human peripheral blood mononuclear cells. J Chromatogr B Analyt Technol Biomed Life Sci 843: 147–156.
    1. Simiele M, D’Avolio A, Baietto L, Siccardi M, Sciandra M, et al. (2011) Evaluation of the mean corpuscular volume of peripheral blood mononuclear cells of HIV patients by a coulter counter to determine intracellular drug concentrations. Antimicrob Agents Chemother 55: 2976–2978.
    1. Reagan JW, Hamonic MJ, Wentz WB (1957) Analytical study of the cells in cervical squamous-cell cancer. Lab Invest 6: 241–250.
    1. Reagan JW, Bell BA, Neuman JL, Scott RB, Patten SF (1961) Dysplasia in the uterine cervix during pregnancy: an analytical study of the cells. Acta Cytol 5: 17–29.
    1. Blaskewicz CD, Pudney J, Anderson DJ (2011) Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod 85: 97–104.
    1. Hendrix CW, Minnis A, Guddera V, Riddler S, Salata R, et al... (2011) MTN-001: A Phase 2 Cross-Over Study of Daily Oral and Vaginal Tenofovir in Healthy, Sexually Active Women Results in Significantly Different Product Acceptability and Vaginal Tissue Drug Concentrations. 18th Conference on Retroviruses and Opportunistic Infections February 27-March 2, 2011 Boston, MA (Abstract 35LB). Boston, MA.
    1. Barditch-Crovo P, Deeks SG, Collier A, Safrin S, Coakley DF, et al. (2001) Phase i/ii trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 45: 2733–2739.
    1. Kearney BP, Flaherty JF, Shah J (2004) Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet 43: 595–612.
    1. Hawkins T, Veikley W, St Claire RL, 3rd, Guyer B, Clark N, et al (2005) Intracellular pharmacokinetics of tenofovir diphosphate, carbovir triphosphate, and lamivudine triphosphate in patients receiving triple-nucleoside regimens. J Acquir Immune Defic Syndr 39: 406–411.
    1. Pruvost A, Negredo E, Theodoro F, Puig J, Levi M, et al. (2009) Pilot pharmacokinetic study of human immunodeficiency virus-infected patients receiving tenofovir disoproxil fumarate (TDF): investigation of systemic and intracellular interactions between TDF and abacavir, lamivudine, or lopinavir-ritonavir. Antimicrob Agents Chemother 53: 1937–1943.
    1. Nuttall J, Kashuba A, Wang R, White N, Allen P, et al. (2012) Pharmacokinetics of tenofovir following intravaginal and intrarectal administration of tenofovir gel to rhesus macaques. Antimicrob Agents Chemother 56: 103–109.
    1. Dumond JB, Yeh RF, Patterson KB, Corbett AH, Jung BH, et al. (2007) Antiretroviral drug exposure in the female genital tract: implications for oral pre- and post-exposure prophylaxis. AIDS 21: 1899–1907.
    1. Schwartz JL, Rountree W, Kashuba AD, Brache V, Creinin MD, et al. (2011) A multi-compartment, single and multiple dose pharmacokinetic study of the vaginal candidate microbicide 1% tenofovir gel. PLoS One 6: e25974.
    1. Anderson PL, Kiser JJ, Gardner EM, Rower JE, Meditz A, et al. (2011) Pharmacological considerations for tenofovir and emtricitabine to prevent HIV infection. J Antimicrob Chemother 66: 240–250.
    1. Louissaint N, Cao Y, Tannenbaum S, Skipper P, Liberman R, et al... (2011) Single dose 14C-Tenofovir Distribution into Blood, Colon, and Vagina in Healthy Volunteers. Keystone Symposium: Protection from HIV: Targeted Intervention Strategies. Whistler, British Columbia, Canada.
    1. Patterson KB, Prince HA, Kraft E, Jenkins AJ, Shaheen NJ, et al. (2011) Penetration of tenofovir and emtricitabine in mucosal tissues: implications for prevention of HIV-1 transmission. Sci Transl Med 3: 112re114.
    1. Naranbhai V, Abdool Karim SS, Altfeld M, Samsunder N, Durgiah R, et al. (2012) Innate Immune Activation Enhances HIV Acquisition in Women, Diminishing the Effectiveness of Tenofovir Microbicide Gel. J Infect Dis 206: 993–1001.
    1. Robbins BL, Wilcox CK, Fridland A, Rodman JH (2003) Metabolism of tenofovir and didanosine in quiescent or stimulated human peripheral blood mononuclear cells. Pharmacotherapy 23: 695–701.
    1. Balzarini J, Van Herrewege Y, Vanham G (2002) Metabolic activation of nucleoside and nucleotide reverse transcriptase inhibitors in dendritic and Langerhans cells. AIDS 16: 2159–2163.
    1. Robbins BL, Srinivas RV, Kim C, Bischofberger N, Fridland A (1998) Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleoside phosphonate 9-R-(2-phosphonomethoxypropyl)adenine (PMPA), Bis(isopropyloxymethylcarbonyl)PMPA. Antimicrob Agents Chemother 42: 612–617.
    1. Gao WY, Agbaria R, Driscoll JS, Mitsuya H (1994) Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2′,3′-dideoxynucleoside analogs in resting and activated human cells. J Biol Chem 269: 12633–12638.
    1. Mohamed AS, Becquart P, Hocini H, Metais P, Kazatchkine M, et al. (1997) Dilution assessment of cervicovaginal secretions collected by vaginal washing to evaluate mucosal shedding of free human immunodeficiency virus. Clinical and Diagnostic Laboratory Immunology 4: 624–626.
    1. Belec L, Meillet D, Levy M, Georges A, Tevi-Benissan C, et al. (1995) Dilution assessment of cervicovaginal secretions obtained by vaginal washing for immunological assays. Clin Diagn Lab Immunol 2: 57–61.

Source: PubMed

3
Sottoscrivi