Cardiovascular Autonomic Responses to Aerobic, Resistance and Combined Exercises in Resistance Hypertensive Patients

Nayara Fraccari-Pires, Hélio José Coelho-Júnior, Bruno Bavaresco Gambassi, Ana Paula Cabral de Faria, Alessandra Mileni Versuti Ritter, Carolina Souza Gasparetti, Mariana Rodrigues Pioli, Olívia Moraes Ruberti, Silvia Elaine Ferreira-Melo, Heitor Moreno, Bruno Rodrigues, Nayara Fraccari-Pires, Hélio José Coelho-Júnior, Bruno Bavaresco Gambassi, Ana Paula Cabral de Faria, Alessandra Mileni Versuti Ritter, Carolina Souza Gasparetti, Mariana Rodrigues Pioli, Olívia Moraes Ruberti, Silvia Elaine Ferreira-Melo, Heitor Moreno, Bruno Rodrigues

Abstract

Here, we report the acute effects of aerobic (AER), resistance (RES), and combined (COM) exercises on blood pressure, central blood pressure and augmentation index, hemodynamic parameters, and autonomic modulation of resistant (RH) and nonresistant hypertensive (NON-RH) subjects. Twenty participants (10 RH and 10 NON-RH) performed three exercise sessions (i.e., AER, RES, and COM) and a control session. Hemodynamic (Finometer®, Beatscope), office blood pressure (BP), and autonomic variables (accessed through spectral analysis of the pulse-to-pulse BP signal, in the time and frequency domain-Fast Fourrier Transform) were assessed before (T0), one-hour (T1), and twenty-four (T2) hours after each experimental session. There were no changes in office BP, pulse wave behavior, and hemodynamic parameters after (T0 and T1) exercise sessions. However, AER and COM exercises significantly reduced sympathetic modulation in RH patients. It is worth mentioning that more significant changes in sympathetic modulation were observed after AER as compared to COM exercise. These findings suggest that office blood pressure, arterial stiffness, and hemodynamic parameters returned to baseline levels in the first hour and remained stable in the 24 hours after the all-exercise sessions. Notably, our findings bring new light to the effects of exercise on RH, indicating that RH patients show different autonomic responses to exercise compared to NON-RH patients. This trial is registered with trial registration number NCT02987452.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this article.

Copyright © 2022 Nayara Fraccari-Pires et al.

Figures

Figure 1
Figure 1
Effects of exercise sessions on office blood pressure in RH (a–d) and NON-RH (e–h) at baseline (T0), postexercise (T1), and 24 hs (T2) after exercise sessions. AER: Aerobic; RES: resistance; COM: combined; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate.
Figure 2
Figure 2
Effects of exercise sessions on central blood pressure and augmentation index in RH (a–d) and NON-RH (e–h) at baseline (T0) and postexercise (T1). AER: aerobic; RES: resistance; COM: combined; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; AIx: augmentation index.
Figure 3
Figure 3
Effects of exercise sessions on hemodynamic parameters in RH (a–g) and NON-RH (h–n) at baseline (T0), postexercise (T1), and 24 hs (T2) after exercise sessions. AER: aerobic; RES: resistance; COM: combined; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; SV: stroke volume; CO: cardiac output; HR: heart rate; TRP: total peripheral vascular resistance.

References

    1. Mozaffarian D., Benjamin E. J., Go A. S., et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation . 2015;131(4):e29–322. doi: 10.1161/CIR.0000000000000152.
    1. Judd E., Calhoun D. A. Apparent and true resistant hypertension: definition, prevalence and outcomes. Journal of Human Hypertension . 2014;28:463–468. doi: 10.1038/jhh.2013.140.
    1. Cornelissen V. A., Smart N. A. Exercise training for blood pressure: a systematic review and meta-analysis. Journal of the American Heart Association . 2013;2(1, article e004473) doi: 10.1161/JAHA.112.004473.
    1. Asano R. Y., Browne R. A. V., Sales M. M., et al. Bradykinin, insulin, and glycemia responses to exercise performed above and below lactate threshold in individuals with type 2 diabetes. Brazilian Journal of Medical and Biological Research . 2017;50(11, article 6400) doi: 10.1590/1414-431x20176400.
    1. Brito L. C., Queiroz A. C., Forjaz C. L. Influence of population and exercise protocol characteristics on hemodynamic determinants of post-aerobic exercise hypotension. Brazilian Journal of Medical and Biological Research . 2014;47(8):626–636. doi: 10.1590/1414-431x20143832.
    1. Coelho-Junior H. J., Irigoyen M., Silva Aguiar S., et al. Acute effects of power and resistance exercises on hemodynamic measurements of older women. Clinical Interventions in Aging . 2017;Volume 12:1103–1114. doi: 10.2147/CIA.S133838.
    1. Moraes M. R., Bacurau R. F. P., Simões H. G., et al. Effect of 12 weeks of resistance exercise on post-exercise hypotension in stage 1 hypertensive individuals. Journal of Human Hypertension . 2012;26:533–539. doi: 10.1038/jhh.2011.67.
    1. Gambassi B. B., Rodrigues B., de Jesus Furtado Almeida F., et al. Acute effect of resistance training without recovery intervals on the blood pressure of comorbidity-free elderly women: a pilot study. Sport Sciences for Health . 2016;12(3):315–320. doi: 10.1007/s11332-016-0290-0.
    1. Gambassi B. B., Queiroz C. O., Conceicao A. F., et al. Acute effect of resistance exercise using the German volume training method on blood pressure of prehypertensive subjects. Medicina dello Sport . 2020;73(3):443–452. doi: 10.23736/S0025-7826.20.03552-8.
    1. Pires N. F., Coelho-Júnior H. J., Gambassi B. B., et al. Combined aerobic and resistance exercises evokes longer reductions on ambulatory blood pressure in resistant hypertension: a randomized crossover trial. Cardiovascular Therapeutics . 2020;2020:11. doi: 10.1155/2020/8157858.8157858
    1. MacDonald J. R. Potential causes, mechanisms, and implications of post exercise hypotension. Journal of Human Hypertension . 2002;16(4):225–236. doi: 10.1038/sj.jhh.1001377.
    1. Boer-Martins L., Figueiredo V. N., Demacq C., et al. Relationship of autonomic imbalance and circadian disruption with obesity and type 2 diabetes in resistant hypertensive patients. Cardiovascular Diabetology . 2011;10(1, article 24) doi: 10.1186/1475-2840-10-24.
    1. Boer-Martins L., Figueiredo V. N., Demacq C., et al. Leptin and aldosterone in sympathetic activity in resistant hypertension with or without type 2 diabetes. Arquivos Brasileiros de Cardiologia . 2012;99(1):642–648. doi: 10.1590/S0066-782X2012005000047.
    1. Rodrigues B., Feriani D. J., Gambassi B. B., Irigoyen M. C., Angelis K. D., Hélio José Júnior C. Exercise training on cardiovascular diseases: role of animal models in the elucidation of the mechanisms. Motriz: Revista de Educação Física . 2017;23 doi: 10.1590/s1980-6574201700si0005.
    1. Eches E. H., Ribeiro A. S., Gerage A. M., et al. Twenty minutes of post-exercise hypotension are enough to predict chronic blood pressure reduction induced by resistance training in older women . 1. Vol. 24. Motriz: Revista de Educação Física; 2018.
    1. Rezk C. C., Marrache R. C. B., Tinucci T., Mion D., Jr., Forjaz C. L. M. Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. European Journal of Applied Physiology . 2006;98(1):105–112. doi: 10.1007/s00421-006-0257-y.
    1. Figueiredo T., Menezes P., Kattenbraker M., Polito M. D., Reis V. M., Simão R. Influence of exercise order on blood pressure and heart rate variability after a strength training session. The Journal of Sports Medicine and Physical Fitness . 2013;53(1):12–17.
    1. Figueiredo T., Rhea M. R., Peterson M., et al. Influence of number of sets on blood pressure and heart rate variability after a strength training session. The Journal of Strength & Conditioning Research . 2015;29(6):1556–1563. doi: 10.1519/JSC.0000000000000774.
    1. Figueiredo T., Willardson J. M., Miranda H., et al. Influence of rest interval length between sets on blood pressure and heart rate variability after a strength training session performed by prehypertensive men. Journal of Strength and Conditioning Research . 2016;30(7):1813–1824. doi: 10.1519/JSC.0000000000001302.
    1. Santos L. P., Moraes R. S., Vieira P. J. C., et al. Effects of aerobic exercise intensity on ambulatory blood pressure and vascular responses in resistant hypertension: a crossover trial. Journal of Hypertension . 2016;34(7):1317–1324. doi: 10.1097/HJH.0000000000000961.
    1. Dimeo F., Pagonas N., Seibert F., Arndt R., Zidek W., Westhoff T. H. Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension . 2012;60(3):653–658. doi: 10.1161/HYPERTENSIONAHA.112.197780.
    1. Lopes S., Mesquita-Bastos J., Garcia C., et al. Effect of exercise training on ambulatory blood pressure among patients with resistant Hypertension. JAMA Cardiology . 2021;6(11):1317–1323. doi: 10.1001/jamacardio.2021.2735.
    1. American College of Sports Medicine. ACSM's health-related physical fitness assessment manual . Philadelphia: Lippincott Williams & Wilkins; 2013.
    1. Williams B., Mancia G., Spiering W., et al. 2018 practice guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Journal of Hypertension . 2018;36(12):2284–2309. doi: 10.1097/HJH.0000000000001961.
    1. Gedikli O., Ozturk S., Yilmaz H., et al. Relationship between arterial stiffness and myocardial damage in patients with newly diagnosed essential hypertension. American Journal of Hypertension . 2008;21(9):989–993. doi: 10.1038/ajh.2008.235.
    1. Pernice R., Javorka M., Krohova J., et al. Reliability of short-term heart rate variability indexes assessed through photoplethysmography. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . 2018;2018:5513–5610. doi: 10.1109/EMBC.2018.8513634.
    1. Schafer A., Vagedes J. How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photoplethysmographic technology with an electrocardiogram. International Journal of Cardiology . 2013;166(1):15–29. doi: 10.1016/j.ijcard.2012.03.119.
    1. Rodrigues B., Barboza C. A., Moura E. G., et al. Transcranial direct current stimulation modulates autonomic nervous system and reduces ambulatory blood pressure in hypertensives. Clinical and Experimental Hypertension . 2021;43(4):320–327. doi: 10.1080/10641963.2021.1871916.
    1. Heart rate Variability. Circulation . 1996;93(5):1043–1065. doi: 10.1161/01.CIR.93.5.1043.
    1. Stauss H. M. Identification of blood pressure control mechanisms by power spectral analysis. Clinical and Experimental Pharmacology & Physiology . 2007;34(4):362–368. doi: 10.1111/j.1440-1681.2007.04588.x.
    1. Parati G., Ochoa J. E., Lombardi C., Bilo G. Assessment and management of blood-pressure variability. Nature Reviews. Cardiology . 2013;10(3):143–155. doi: 10.1038/nrcardio.2013.1.
    1. Garber C. E., Blissmer B., Deschenes M. R., et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise . 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Pescatello L. S., Franklin B. A., Fagard R., Farquhar W. B., Kelley G. A., Ray C. A. Exercise and hypertension. Medicine and Science in Sports and Exercise . 2004;36(3):533–553. doi: 10.1249/01.MSS.0000115224.88514.3A.
    1. Foster C., Florhaug J. A., Franklin J., et al. A new approach to monitoring exercise training. Journal of Strength and Conditioning Research . 2001;15(1):109–115.
    1. Day M. L., McGuigan M., Brice G., Foster C. Monitoring exercise intensity during resistance training using the session RPE scale. Journal of Strength and Conditioning Research . 2004;18(2):353–358.
    1. Uchida M. C., Nishida M. M., Sampaio R. A. C., Moritani T., Arai H. Thera-band<sup>®</sup> elastic band tension: reference values for physical activity. Journal of Physical Therapy Science . 2016;28(4):1266–1271. doi: 10.1589/jpts.28.1266.
    1. Gambassi B. Basic guide for the application of the main variables of resistance training in elderly. Aging Clinical and Experimental Research . 2019;31(7):1019–1020. doi: 10.1007/s40520-019-01181-y.
    1. Coelho-Júnior H. J., Uchida M. C., Picca A., et al. Evidence-based recommendations for resistance and power training to prevent frailty in community-dwellers. Aging Clinical And Experimental Research . 2021;33(8):2069–2086. doi: 10.1007/s40520-021-01802-5.
    1. de Brito L. C., Rezende R. A., da Silva Junior N. D., et al. Post-exercise hypotension and its mechanisms differ after morning and evening exercise: a randomized crossover study. PLoS One . 2015;10(7, article e0132458) doi: 10.1371/journal.pone.0132458.
    1. Queiroz A. C., Sousa J. C. S., Cavalli A. A. P., et al. Post-resistance exercise hemodynamic and autonomic responses: comparison between normotensive and hypertensive men. Scandinavian Journal of Medicine & Science in Sports . 2015;25(4):486–494. doi: 10.1111/sms.12280.
    1. Keese F., Farinatti P., Pescatello L., Monteiro W. A comparison of the immediate effects of resistance, aerobic, and concurrent exercise on postexercise hypotension. Journal of Strength and Conditioning Research . 2011;25(5):1429–1436. doi: 10.1519/JSC.0b013e3181d6d968.
    1. Teixeira L., Ritti-Dias R. M., Tinucci T., Mion Júnior D., Forjaz C. L. . M. Post-concurrent exercise hemodynamics and cardiac autonomic modulation. European Journal of Applied Physiology . 2011;111(9):2069–2078. doi: 10.1007/s00421-010-1811-1.
    1. Queiroz A. C., Rezk C. C., Teixeira L., Tinucci T., Mion D., Forjaz C. L. Gender influence on post-resistance exercise hypotension and hemodynamics. International Journal of Sports Medicine . 2013;34(11):939–944. doi: 10.1055/s-0033-1337948.
    1. Mota M. R., Oliveira R. J., Terra D. F., et al. Acute and chronic effects of resistance exercise on blood pressure in elderly women and the possible influence of ACE I/D polymorphism. Int J Gen Med . 2013;6:581–587. doi: 10.2147/IJGM.S40628.
    1. Queiroz A. C., Sousa JC Jr, Silva ND Jr, et al. Captopril does not potentiate post-exercise hypotension: a randomized crossover study. International Journal of Sports Medicine . 2017;38(4):270–277. doi: 10.1055/s-0042-123044.
    1. Keese F., Farinatti P., Pescatello L., Cunha F. A., Monteiro W. D. Aerobic exercise intensity influences hypotension following concurrent exercise sessions. International Journal of Sports Medicine . 2012;33(2):148–153. doi: 10.1055/s-0031-1291321.
    1. Queiroz A. C., Kanegusuku H., Chehuen M. R., et al. Cardiac work remains high after strength exercise in elderly. International Journal of Sports Medicine . 2013;34(5):391–397. doi: 10.1055/s-0032-1323779.
    1. Grassi G., Quarti-Trevano F., Dell’Oro R., Mancia G. Essential hypertension and the sympathetic nervous system. Neurological Sciences . 2008;29(Suppl 1):33–36. doi: 10.1007/s10072-008-0882-9.

Source: PubMed

3
Sottoscrivi