Nutrient Composition Comparison between a Modified Paleolithic Diet for Multiple Sclerosis and the Recommended Healthy U.S.-Style Eating Pattern

Catherine A Chenard, Linda M Rubenstein, Linda G Snetselaar, Terry L Wahls, Catherine A Chenard, Linda M Rubenstein, Linda G Snetselaar, Terry L Wahls

Abstract

Multiple sclerosis (MS) is a demyelinating disease that attacks the central nervous system. Evidence-based dietary guidelines do not exist for MS; the default advice is to follow the Dietary Guidelines for Americans (DGA). A modified Paleolithic Wahls Elimination (WahlsElim) diet promoted for MS excludes grains and dairy and encourages 9+ cups fruits and vegetables (F/V) and saturated fat for cooking. This study evaluated the nutritional adequacy of seven-day menus and modeled them with varying amounts of F/V for comparison with the DGA Healthy US-Style Eating Pattern (HEP) for ages 31⁻50 years. WahlsElim menus had low added sugar and glycemic index. Nutritional adequacy of the menus and modeled versions were similar to HEP for 17 vitamins and minerals (mean adequacy ratio ≥92%). Nutrient shortfalls for the modeled diet with 60% F/V were identical to HEP for vitamin D, iron (females), magnesium (marginally males), choline and potassium; this modeled diet was also low in dietary fiber and calcium but met vitamin E requirements while HEP did not. WahlsElim-prescribed supplements corrected vitamin D and magnesium shortfalls; careful selection of foods are needed to meet requirements of other shortfall nutrients and reduce saturated fat and sodium. Doctors should monitor nutritional status, supplement doses, and possible contraindications to high vitamin K intake in individuals following the WahlsElim diet.

Keywords: Paleolithic diet; Wahls Elimination diet; exemplary menus; multiple sclerosis; nutrient density; nutritional adequacy.

Conflict of interest statement

T.L.W. strongly advocates for a modified Paleolithic style diet in academic and business settings and follows variations of the Wahls Elimination diet and the various diet plans described in the Wahls Protocol® books and programs. T.L.W. has copyrights for The Wahls Protocol Cooking for Life, The Wahls Protocol, and Minding My Mitochondria, 2nd Edition and trademarked Wahls™ Diet, Wahls Paleo™ Diet and Wahls Paleo Plus™ Diet. T.L.W. has not trademarked Wahls Elimination Diet. T.L.W. has financial relationships with BioCeuticals; Genova Diagnostics; Institute for Health and Healing; Integrative Medicine for Mental Health; MCG Health Inc.; NCURA; Penguin Random House Inc.; Suttler Pacific, and an equity interest in Dr. Terry Wahls, LLC; TZ Press, LLC; The Wahls Institute, PLC; and www.terrywahls.com. T.L.W. received funding from the National Multiple Sclerosis Society to conduct a randomized clinical trial comparing the effect of the Wahls Elimination and Swank diets on multiple sclerosis-related fatigue. The University of Iowa prepared a conflict of interest management plan for this clinical trial that T.L.W. follows to mitigate conflicts of interest. L.M.R. was assigned to independently review the clinical trial data collection, analysis, and study results as part of T.L.W.’s conflict of interest management plan. L.M.R. has been a paid statistical consultant for T.L.W. since 2013 and does not follow a special diet. L.G.S. is a co-investigator on the clinical trial comparing Swank and Wahls Elimination diets, reports no other conflicts of interest, and does not follow a special diet. C.A.C. has been employed by T.L.W. since 2013, was paid to calculate the nutrient composition of the menus in The Wahls Protocol, was paid for the preparation of this manuscript, and does not follow any special diet. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

    1. Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Patejdl R., Penner I.K., Noack T.K., Zettl U.K. Multiple sclerosis and fatigue: A review on the contribution of inflammation and immune-mediated neurodegeneration. Autoimmun. Rev. 2016;15:210–220. doi: 10.1016/j.autrev.2015.11.005.
    1. Milo R., Miller A. Revised diagnostic criteria of multiple sclerosis. Autoimmun. Rev. 2014;13:518–524. doi: 10.1016/j.autrev.2014.01.012.
    1. Pérez-Cerdá F., Sánchez-Gómez M.V., Matute C. The link of inflammation and neurodegeneration in progressive multiple sclerosis. Mult. Scler. Demyelin. Disord. 2016;1:9. doi: 10.1186/s40893-016-0012-0.
    1. Olsson T., Barcellos L.F., Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017;13:25–36. doi: 10.1038/nrneurol.2016.187.
    1. Roman C., Menning K. Treatment and disease management of multiple sclerosis patients: A review for nurse practitioners. J. Am. Assoc. Nurse Pract. 2017;29:629–638. doi: 10.1002/2327-6924.12514.
    1. Dunn M., Bhargava P., Kalb R. Your patients with multiple sclerosis have set wellness as a high priority—and the National Multiple Sclerosis Society is responding. US Neurol. 2015;11:80–86. doi: 10.17925/USN.2015.11.02.80.
    1. The Wahls Diet for multiple sclerosis: A clinical conversation with Terry Wahls, MD, and Robert Rountree, MD. Altern. Complement. Ther. 2017;23:79–86. doi: 10.1089/act.2017.29109.twa.
    1. Eaton S., Cordain L. Evolutionary aspects of diet: Old genes, new fuels. Nutritional changes since agriculture. World Rev. Nutr. Diet. 1997;81:26–37.
    1. Cordain L. The nutritional characteristics of a contemporary diet based upon Paleolithic food groups. J. Am. Neutraceut. Assoc. 2002;5:15–24.
    1. Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O’Keefe J.H., Brand-Miller J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005;81:341–354. doi: 10.1093/ajcn.81.2.341.
    1. Bisht B., Darling W.G., Grossmann R.E., Shivapour E.T., Lutgendorf S.K., Snetselaar L.G., Hall M.J., Zimmerman M.B., Wahls T.L. A multimodal intervention for patients with secondary progressive multiple sclerosis: Feasibility and effect on fatigue. J. Altern. Complement. Med. 2014;20:347–355. doi: 10.1089/acm.2013.0188.
    1. Wahls T., Adamson E. The Wahls Protocol: How I Beat Progressive MS Using Paleo Principles and Functional Medicine. Avery; New York, NY, USA: 2014.
    1. Reese D., Shivapour E.T., Wahls T.L., Dudley-Javoroski S.D., Shields R. Neuromuscular electrical stimulation and dietary interventions to reduce oxidative stress in a secondary progressive multiple sclerosis patient leads to marked gains in function: A case report. Cases J. 2009;2:7601. doi: 10.4076/1757-1626-2-7601.
    1. Wahls T.L. Minding My Mitochondria: How I Overcame Secondary Progressive Multiple Sclerosis (MS) and Got out of My Wheelchair. 2nd ed. TZ Press LLC; Iowa City, IA, USA: 2010.
    1. Wahls T.L. The seventy percent solution. J. Gen. Intern. Med. 2011;26:1215–1216. doi: 10.1007/s11606-010-1631-3.
    1. Cordain L., Toohey L., Smith M.J., Hickey M.S. Modulation of immune function by dietary lectins in rheumatoid arthritis. Br. J. Nutr. 2000;83:207–217. doi: 10.1017/S0007114500000271.
    1. Vojdani A. Lectins, agglutinins, and their roles in autoimmune reactivities. Altern. Ther. Health Med. 2015;21:46–51.
    1. Vojdani A., Kharrazian D., Mukherjee P. The prevalence of antibodies against wheat and milk proteins in blood donors and their contribution to neuroimmune reactivities. Nutrients. 2014;6:15–36. doi: 10.3390/nu6010015.
    1. Mana P., Goodyear M., Bernard C., Tomioka R., Freire-Garabal M., Linares D. Tolerance induction by molecular mimicry: Prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. Int. Immunol. 2004;16:489–499. doi: 10.1093/intimm/dxh049.
    1. Guggenmos J., Schubart A.S., Ogg S., Andersson M., Olsson T., Mather I.H., Linington C. Antibody cross-reactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis. J. Immunol. 2004;172:661–668. doi: 10.4049/jimmunol.172.1.661.
    1. Bisht B., Darling W.G., Shivapour E.T., Lutgendorf S.K., Snetselaar L.G., Chenard C.A., Wahls T.L. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2015;5:19–35.
    1. Irish A.K., Erickson C.M., Wahls T.L., Snetselaar L.G., Darling W.G. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2017;7:1–18. doi: 10.2147/DNND.S116949.
    1. De Punder K., Pruimboom L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients. 2013;5:771–787. doi: 10.3390/nu5030771.
    1. Wahls T., Scott M.O., Alshare Z., Rubenstein L., Darling W., Carr L., Smith K., Chenard C.A., LaRocca N., Snetselaar L. Dietary approaches to treat MS-related fatigue: Comparing the modified Paleolithic (Wahls Elimination) and low saturated fat (Swank) diets on perceived fatigue in persons with relapsing-remitting multiple sclerosis: Study protocol for a randomized controlled trial. Trials. 2018;19:309.
    1. Wahls T.L. Dietary Approaches to Treat Multiple Sclerosis-Related Fatigue Study. [(accessed on 15 June 2018)]; Available online: .
    1. Wahls T.L., Chenard C.A., Snetselaar L.G. Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic. Nutrients. 2019;11:352. doi: 10.3390/nu11020352.
    1. Russell R.D., Black L.J., Sherriff J.L., Begley A. Dietary responses to a multiple sclerosis diagnosis: A qualitative study. Eur. J. Clin. Nutr. 2018 doi: 10.1038/s41430-018-0252-5.
    1. Sumowski J.F., McDonnell G.V., Bourdette D. Diet in multiple sclerosis: Science takes a seat at the table. Neurology. 2018;90:14–15. doi: 10.1212/WNL.0000000000004775.
    1. Swank R.L., Goodwin J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition. 2003;19:161–162. doi: 10.1016/S0899-9007(02)00851-1.
    1. Yadav V., Marracci G., Kim E., Spain R., Cameron M., Overs S., Riddehough A., Li D.K.B., McDougall J., Lovera J., et al. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2016;9:80–90. doi: 10.1016/j.msard.2016.07.001.
    1. Sedaghat F., Jessri M., Behrooz M., Mirghotbi M., Rashidkhani B. Mediterranean diet adherence and risk of multiple sclerosis: A case-control study. Asia Pac. J. Clin. Nutr. 2016;25:377–384.
    1. Katz Sand I. The role of diet in multiple sclerosis: Mechanistic connections and current evidence. Curr. Nutr. Rep. 2018;7:150–160. doi: 10.1007/s13668-018-0236-z.
    1. Storoni M., Plant G.T. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Mult. Scler. Int. 2015;2015:681289. doi: 10.1155/2015/681289.
    1. Fitzgerald K.C., Vizthum D., Henry-Barron B., Schweitzer A., Cassard S.D., Kossoff E., Hartman A.L., Kapogiannis D., Sullivan P., Baer D.J., et al. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018;23:33–39. doi: 10.1016/j.msard.2018.05.002.
    1. Cignarella F., Cantoni C., Ghezzi L., Salter A., Dorsett Y., Chen L., Phillips D., Weinstock G.M., Fontana L., Cross A.H., et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 2018;27:1222–1235. doi: 10.1016/j.cmet.2018.05.006.
    1. Saadatnia M., Etemadifar M., Fatehi F., Ashtari F., Shaygannejad V., Chitsaz A., Maghzi A.H. Short-term effects of prolonged fasting on multiple sclerosis. Eur. Neurol. 2009;61:230. doi: 10.1159/000197108.
    1. Farinotti M., Vacchi L., Simi S., Di Pietrantonj C., Brait L., Filippini G. Dietary interventions for multiple sclerosis. Cochrane Database Syst. Rev. 2012;12:Cd004192. doi: 10.1002/14651858.CD004192.pub3.
    1. Venasse M., Edwards T., Pilutti L.A. Exploring wellness interventions in progressive multiple sclerosis: An evidence-based review. Curr. Treat. Opt. Neurol. 2018;20:13. doi: 10.1007/s11940-018-0497-2.
    1. Bhargava P. Diet and Multiple Sclerosis. [(accessed on 25 June 2015)]; Available online: .
    1. Diet & Nutrition. [(accessed on 16 October 2017)]; Available online: .
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture . 2015–2020 Dietary Guidelines for Americans. Skyhorse Publishing Inc.; Washington, DC, USA: 2015.
    1. Eckel R.H., Jakicic J.M., Ard J.D., de Jesus J.M., Miller N.H., Hubbard V.S., Lee I.-M., Lichtenstein A.H., Loria C.M., Millen B.E., et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American college of cardiology/American heart association task force on practice guidelines. Circulation. 2014;129:S76–S99. doi: 10.1161/01.cir.0000437740.48606.d1.
    1. Kushi L.H., Doyle C., McCullough M., Rock C.L., Demark-Wahnefried W., Bandera E.V., Gapstur S., Patel A.V., Andrews K., Gansler T. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2012;62:30–67. doi: 10.3322/caac.20140.
    1. Center for Nutrition Policy and Promotion Healthy US-Style Pattern: Recommended Intake Amounts. [(accessed on 19 September 2017)]; Available online: .
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture Nutrients in Healthy US-Style Food Pattern: Nutrients in the Pattern at Each Calorie Level and Comparison of Nutrient Content to the Nutritional Goals for That Pattern. [(accessed on 22 September 2017)]; Available online: .
    1. Dietary Guidelines Advisory Committee Scientific Report of the 2015 Dietary Guidelines Advisory Committee Appendix E-3.1: Adequacy of USDA Food Patterns. [(accessed on 7 May 2018)]; Available online: .
    1. Reedy J., Lerman J.L., Krebs-Smith S.M., Kirkpatrick S.I., Pannucci T.E., Wilson M.M., Subar A.F., Kahle L.L., Tooze J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018;118:1622–1633. doi: 10.1016/j.jand.2018.05.019.
    1. Krebs-Smith S.M., Pannucci T.E., Subar A.F., Kirkpatrick S.I., Lerman J.L., Tooze J.A., Wilson M.M., Reedy J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018;118:1591–1602. doi: 10.1016/j.jand.2018.05.021.
    1. U.S. News Staff [(accessed on 1 February 2019)];Paleo Diet Expert Reviews. Available online: .
    1. Eaton S.B., Konner M.J., Cordain L. Diet-dependent acid load, Paleolithic nutrition, and evolutionary health promotion. Am. J. Clin. Nutr. 2010;91:295–297. doi: 10.3945/ajcn.2009.29058.
    1. Ramsden C.E., Faurot K.R., Carrera-Bastos P., Cordain L., De Lorgeril M., Sperling L.S. Dietary fat quality and coronary heart disease prevention: A unified theory based on evolutionary, historical, global, and modern perspectives. Curr. Treat. Opt. Cardiovasc. Med. 2009;11:289–301. doi: 10.1007/s11936-009-0030-8.
    1. Lindeberg S., Cordain L., Boyd Eaton S. Biological and Clinical Potential of a Palaeolithic Diet. J. Nutr. Environ. Med. 2003;13:149–160. doi: 10.1080/13590840310001619397.
    1. Institute of Medicine Dietary Reference Intakes: EAR, RDA, AI, Acceptable Macronutrient Distribution Ranges, and UL. [(accessed on 16 June 2018)]; Available online: .
    1. Institute of Medicine . Dietary Reference Intakes: Applications in Dietary Planning. The National Academies Press; Washington, DC, USA: 2003.
    1. Wahls T.L. ((University of Iowa, Iowa City, IA, USA)). Personal communication. 2017.
    1. Nutrition Coordinating Center (NCC) Nutrition Data System for Research (NDSR) Software. University of Minnesota; Minneapolis, MN, USA: 2017.
    1. Bowman S.A., Clemens J.C., Shimizu M., Friday J.E., Alanna J., Moshfegh A.J. Food Patterns Equivalents Database 2015–2016: Methodology and User Guide. [(accessed on 27 September 2018)]; Available online: .
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture Estimated Calorie Needs Per Day—Energy Levels Used for Assignment of Individuals to USDA Food Patterns. [(accessed on 19 September 2017)]; Available online: .
    1. Murphy S.P. Using DRIs as the basis for dietary guidelines. Asia Pac. J. Clin. Nutr. 2008;17(Suppl. 1):52–54.
    1. Krebs-Smith S.M., Clark L.D. Validation of a nutrient adequacy score for use with women and children. J. Am. Diet. Assoc. 1989;89:775–783.
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture Nutrient Profiles for Food Groups and Subgroups in the 2015 USDA Food Patterns. [(accessed on 27 September 2017)]; Available online: .
    1. U.S. Department of Agriculture. A.R.S Item Clusters, Percent of Consumption, and Representative Foods for USDA Food Pattern Food Groups and Subgroups. [(accessed on 27 September 2017)]; Available online: .
    1. Britten P., Cleveland L.E., Koegel K.L., Kuczynski K.J., Nickols-Richardson S.M. Updated US Department of Agriculture Food Patterns meet goals of the 2010 dietary guidelines. J. Acad. Nutr. Diet. 2012;112:1648–1655. doi: 10.1016/j.jand.2012.05.021.
    1. Pannucci T.E. ((USDA, Alexandria, VA, USA)). Personal communication. 2018.
    1. NCI Usual Dietary Intakes: Food Intakes, U.S. Population, 2007–10; Total Fruit. [(accessed on 4 May 2018)]; Available online: .
    1. NCI Usual Dietary Intakes: Food Intakes, U.S. Population, 2007–10; Total Vegetables Including Beans and Peas. [(accessed on 4 May 2018)]; Available online: .
    1. NCI Usual Dietary Intakes: Food Intakes, U.S. Population, 2007–10; Dark-Green Vegetables. [(accessed on 4 May 2018)]; Available online: .
    1. Drewnowski A. New metrics of affordable nutrition: Which vegetables provide most nutrients for least cost? J. Acad. Nutr. Diet. 2013;113:1182–1187. doi: 10.1016/j.jand.2013.03.015.
    1. SAS Institute Inc. SAS 9.4. SAS Institute Inc.; Cary, NC, USA: 2015.
    1. Microsoft Corporation . Microsoft Excel. Microsoft Corporation; Albuquerque, NM, USA: 2010. 14.0.7208.5000 (32-bit)
    1. Institute of Medicine Dietary Reference Intakes: Macronutrients. [(accessed on 16 June 2018)]; Available online: .
    1. Crittenden A.N., Schnorr S.L. Current views on hunter-gatherer nutrition and the evolution of the human diet. Am. J. Phys. Anthropol. 2017;162:e23148. doi: 10.1002/ajpa.23148.
    1. Brooks G.A., Martin N.A. Cerebral metabolism following traumatic brain injury: New discoveries with implications for treatment. Front. Neurosci. 2014;8:408. doi: 10.3389/fnins.2014.00408.
    1. Rodriguez N.A., Jeschke M.G., Williams F.N., Kamolz L.P., Herndon D.N. Nutrition in burns: Galveston contributions. JPEN J. Parenter. Enteral Nutr. 2011;35:704–714. doi: 10.1177/0148607111417446.
    1. What We Eat in American, N—Table 1. Nutrient Intakes from Food and Beverages: Mean Amounts Consumed Per Individual, by Gender and Age, in the United States, 2015–2016. [(accessed on 11 September 2018)]; Available online: .
    1. Popescu D.C., Huang H., Singhal N.K., Shriver L., McDonough J., Clements R.J., Freeman E.J. Vitamin K enhances the production of brain sulfatides during remyelination. PLoS ONE. 2018;13:e0203057. doi: 10.1371/journal.pone.0203057.
    1. Ferland G. Vitamin K and brain function. Semin. Thromb. Hemost. 2013;39:849–855. doi: 10.1055/s-0033-1357481.
    1. Goudarzi S., Rivera A., Butt A.M., Hafizi S. Gas6 Promotes Oligodendrogenesis and Myelination in the Adult Central Nervous System and After Lysolecithin-Induced Demyelination. ASN Neurol. 2016;8:49. doi: 10.1177/1759091416668430.
    1. Ferland G. Vitamin K and the nervous system: An overview of its actions. Adv. Nutr. 2012;3:204–212. doi: 10.3945/an.111.001784.
    1. Lasemi R., Kundi M., Moghadam N.B., Moshammer H., Hainfellner J.A. Vitamin K2 in multiple sclerosis patients. Wiener Klinische Wochenschrift. 2018;130:307–313. doi: 10.1007/s00508-018-1328-x.
    1. Institute of Medicine . Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press (US); Washington, DC, USA: 2001.
    1. NIH Office of Dietary Supplements Vitamin K Fact Sheet for Health Professionals. [(accessed on 30 January 2018)]; Available online:
    1. Azary S., Schreiner T., Graves J., Waldman A., Belman A., Guttman B.W., Aaen G., Tillema J.M., Mar S., Hart J., et al. Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2018;89:28–33. doi: 10.1136/jnnp-2017-315936.
    1. Holick M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017;18:153–165. doi: 10.1007/s11154-017-9424-1.
    1. Fitzgerald K.C., Munger K.L., Kochert K., Arnason B.G., Comi G., Cook S., Goodin D.S., Filippi M., Hartung H.P., Jeffery D.R., et al. Association of Vitamin D Levels with Multiple Sclerosis Activity and Progression in Patients Receiving Interferon Beta-1b. JAMA Neurol. 2015;72:1458–1465. doi: 10.1001/jamaneurol.2015.2742.
    1. Dietary Guidelines Advisory Committee Scientific Report of the 2015 Dietary Guidelines Advisory Committee Appendix E-3.6: Dairy Group and Alternatives. [(accessed on 5 July 2018)]; Available online: .
    1. Jonsson T., Granfeldt Y., Erlanson-Albertsson C., Ahren B., Lindeberg S. A paleolithic diet is more satiating per calorie than a Mediterranean-like diet in individuals with ischemic heart disease. Nutr. Metab. 2010;7:85. doi: 10.1186/1743-7075-7-85.
    1. Tankeu A.T., Ndip Agbor V., Noubiap J.J. Calcium supplementation and cardiovascular risk: A rising concern. J. Clin. Hypertens. 2017;19:640–646. doi: 10.1111/jch.13010.
    1. Fleet J.C. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol. Cell. Endocrinol. 2017;453:36–45. doi: 10.1016/j.mce.2017.04.008.
    1. Akbari S., Rasouli-Ghahroudi A.A. Vitamin K and bone metabolism: A review of the latest evidence in preclinical studies. BioMed Res. Int. 2018;2018:4629383. doi: 10.1155/2018/4629383.
    1. Huang Z.B., Wan S.L., Lu Y.J., Ning L., Liu C., Fan S.W. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: A meta-analysis of randomized controlled trials. Osteoporos. Int. 2015;26:1175–1186. doi: 10.1007/s00198-014-2989-6.
    1. Stephenson E., Nathoo N., Mahjoub Y., Dunn J.F., Yong V.W. Iron in multiple sclerosis: Roles in neurodegeneration and repair. Nat. Rev. Neurol. 2014;10:459–468. doi: 10.1038/nrneurol.2014.118.
    1. Zivadinov R., Weinstock-Guttman B., Pirko I. Iron deposition and inflammation in multiple sclerosis. Which one comes first? BMC Neurosci. 2011;12:60. doi: 10.1186/1471-2202-12-60.
    1. Thau-Zuchman O., Gomes R.N., Dyall S.C., Davies M., Priestley J.V., Groenendijk M., De Wilde M.C., Tremoleda J.L., Michael-Titus A.T. Brain phospholipid precursors administered post-injury reduce tissue damage and improve neurological outcome in experimental traumatic brain injury. J. Neurotrauma. 2019;36:25–42. doi: 10.1089/neu.2017.5579.
    1. Skripuletz T., Manzel A., Gropengiesser K., Schafer N., Gudi V., Singh V., Salinas Tejedor L., Jorg S., Hammer A., Voss E., et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398–413. doi: 10.1093/brain/awu358.
    1. Skripuletz T., A Linker R., Stangel M. The choline pathway as a strategy to promote central nervous system (CNS) remyelination. Neural Regener. Res. 2015;10:1369–1370.
    1. NIH Office of Dietary Supplements Choline Fact Sheet for Health Professionals. [(accessed on 25 September 2018)]; Available online: .
    1. Miyake S., Yamamura T. Gut environmental factors and multiple sclerosis. J. Neuroimmunol. 2018 doi: 10.1016/j.jneuroim.2018.07.015.
    1. Berer K., Martinez I., Walker A., Kunkel B., Schmitt-Kopplin P., Walter J., Krishnamoorthy G. Dietary non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. Sci. Rep. 2018;8:10431. doi: 10.1038/s41598-018-28839-3.
    1. Lombardi V.C., De Meirleir K.L., Subramanian K., Nourani S.M., Dagda R.K., Delaney S.L., Palotás A. Nutritional modulation of the intestinal microbiota: Future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J. Nutr. Biochem. 2018;61:1–16. doi: 10.1016/j.jnutbio.2018.04.004.
    1. Shahi S.K., Freedman S.N., Mangalam A.K. Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes. 2017;8:607–615. doi: 10.1080/19490976.2017.1349041.
    1. Freedman S.N., Shahi S.K., Mangalam A.K. The “gut feeling”: Breaking down the role of gut microbiome in multiple sclerosis. Neurotherapeutics. 2018;15:109–125. doi: 10.1007/s13311-017-0588-x.
    1. Whelan J., Fritsche K. Linoleic acid. Adv. Nutr. 2013;4:311–312. doi: 10.3945/an.113.003772.
    1. Jandacek R.J. Linoleic acid: A nutritional quandary. Healthcare. 2017;5:25. doi: 10.3390/healthcare5020025.
    1. Osterdahl M., Kocturk T., Koochek A., Wandell P.E. Effects of a short-term intervention with a paleolithic diet in healthy volunteers. Eur. J. Clin. Nutr. 2008;62:682–685. doi: 10.1038/sj.ejcn.1602790.
    1. Jonsson T., Granfeldt Y., Ahren B., Branell U.C., Palsson G., Hansson A., Soderstrom M., Lindeberg S. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: A randomized cross-over pilot study. Cardiovasc. Diabetol. 2009;8:35. doi: 10.1186/1475-2840-8-35.
    1. Pastore R.L., Brooks J.T., Carbone J.W. Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy dietary recommendations. Nutr. Res. 2015;35:474–479. doi: 10.1016/j.nutres.2015.05.002.
    1. Genoni A., Lyons-Wall P., Lo J., Devine A. Cardiovascular, metabolic effects and dietary composition of ad-libitum Paleolithic vs. Australian guide to healthy eating diets: A 4-week randomised trial. Nutrients. 2016;8:314. doi: 10.3390/nu8050314.
    1. Jonsson T., Granfeldt Y., Lindeberg S., Hallberg A.C. Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes. Nutr. J. 2013;12:105. doi: 10.1186/1475-2891-12-105.
    1. Ledikwe J.H., Blanck H.M., Khan L.K., Serdula M.K., Seymour J.D., Tohill B.C., Rolls B.J. Dietary energy density determined by eight calculation methods in a nationally representative United States population. J. Nutr. 2005;135:273–278. doi: 10.1093/jn/135.2.273.
    1. Pérez-Escamilla R., Obbagy J.E., Altman J.M., Essery E.V., McGrane M.M., Wong Y.P., Spahn J.M., Williams C.L. Dietary energy density and body weight in adults and children: A systematic review. J. Acad. Nutr. Diet. 2012;112:671–684. doi: 10.1016/j.jand.2012.01.020.
    1. Vernarelli J.A., Mitchell D.C., Rolls B.J., Hartman T.J. Dietary energy density and obesity: How consumption patterns differ by body weight status. Eur. J. Nutr. 2018;57:351–361. doi: 10.1007/s00394-016-1324-8.
    1. Mokry L.E., Ross S., Timpson N.J., Sawcer S., Davey Smith G., Richards J.B. Obesity and multiple sclerosis: A Mendelian randomization study. PLoS Med. 2016;13:e1002053. doi: 10.1371/journal.pmed.1002053.
    1. Tettey P., Simpson S., Taylor B., Ponsonby A.L., Lucas R.M., Dwyer T., Kostner K., van der Mei I.A. An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J. Neurol. Neurosurg. Psychiatry. 2017;88:395–401. doi: 10.1136/jnnp-2016-315037.
    1. Pasquinelli S., Solaro C. Nutritional assessment and malnutrition in multiple sclerosis. Neurol. Sci. 2008;29(Suppl. 4):S367. doi: 10.1007/s10072-008-1046-7.
    1. Cunningham E. Are there evidence-based dietary interventions for multiple sclerosis? J. Acad. Nutr. Diet. 2013;113:1004. doi: 10.1016/j.jand.2013.05.010.
    1. Burgos R., Breton I., Cereda E., Desport J.C., Dziewas R., Genton L., Gomes F., Jesus P., Leischker A., Muscaritoli M., et al. ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 2018;37:354–396. doi: 10.1016/j.clnu.2017.09.003.
    1. Liu Y., Zhang D.T., Liu X.G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 2015;34:50–66. doi: 10.3109/08830185.2014.933957.
    1. Riccio P., Rossano R. Diet, Gut Microbiota, and Vitamins D + A in Multiple Sclerosis. Neurotherapeutics. 2018;15:75–91. doi: 10.1007/s13311-017-0581-4.
    1. Institute of Medicine . Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press (US); Washington, DC, USA: 1998.
    1. Ganguly P., Alam S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015;14:6. doi: 10.1186/1475-2891-14-6.
    1. Patel K.R., Sobczynska-Malefora A. The adverse effects of an excessive folic acid intake. Eur. J. Clin. Nutr. 2017;71:159–163. doi: 10.1038/ejcn.2016.194.
    1. Food and Drug Administration Food standards: Amendment of standards of identity for enriched grain products to require addition of folic acid. Fed. Regist. 1996;61:8781–8789.
    1. Shivappa N., Hebert J.R., Behrooz M., Rashidkhani B. Dietary inflammatory index and risk of multiple sclerosis in a case-control study from Iran. Neuroepidemiology. 2016;47:26–31. doi: 10.1159/000445874.
    1. Manousou S., Stal M., Larsson C., Mellberg C., Lindahl B., Eggertsen R., Hulthen L., Olsson T., Ryberg M., Sandberg S., et al. A Paleolithic-type diet results in iodine deficiency: A 2-year randomized trial in postmenopausal obese women. Eur. J. Clin. Nutr. 2018;72:124–129. doi: 10.1038/ejcn.2017.134.
    1. Esposito S., Bonavita S., Sparaco M., Gallo A., Tedeschi G. The role of diet in multiple sclerosis: A review. Nutr. Neurosci. 2018;21:377–390. doi: 10.1080/1028415X.2017.1303016.
    1. Britten P., Cleveland L.E., Koegel K.L., Kuczynski K.J., Nickols-Richardson S.M. Impact of typical rather than nutrient-dense food choices in the US Department of Agriculture Food Patterns. J. Acad. Nutr. Diet. 2012;112:1560–1569. doi: 10.1016/j.jand.2012.06.360.

Source: PubMed

3
Sottoscrivi