Interindividual Variability in Fat Mass Response to a 1-Year Randomized Controlled Trial With Different Exercise Intensities in Type 2 Diabetes: Implications on Glycemic Control and Vascular Function

João P Magalhães, Megan Hetherington-Rauth, Pedro B Júdice, Inês R Correia, Gil B Rosa, Duarte Henriques-Neto, Xavier Melo, Analiza M Silva, Luís B Sardinha, João P Magalhães, Megan Hetherington-Rauth, Pedro B Júdice, Inês R Correia, Gil B Rosa, Duarte Henriques-Neto, Xavier Melo, Analiza M Silva, Luís B Sardinha

Abstract

Purpose: Little is known about the interindividual variability in fat mass (FM) loss in response to high-intensity interval training (HIIT) and moderate continuous training (MCT) in individuals with type 2 diabetes mellitus (T2DM). Moreover, the impact on health-related outcomes in those who fail to reduce FM is still unclear. The aims of this investigation were (1) to assess if the individuals with T2DM who FM differed across MCT, HIIT, and control groups over a 1-year intervention and (2) to assess the changes on glycemic control and vascular function in the exercising patients who failed to lose FM. Methods: Adults with T2DM were randomized into a 1-year intervention involving a control group (n=22), MCT with resistance training (RT; n=21), and HIIT with RT (n=19). FM was assessed using dual-energy X-ray absorptiometry and a change in total body FM above the typical error was used to categorize FM responders. Glycemic control and vascular stiffness and structure were assessed. A chi-square test and generalized estimating equations were used to model the outcomes. Results: Both MCT (n=10) and HIIT (n=10) had a similar proportion of individuals who were categorized as high responders for FM, with the percent change in FM on average -5.0±9.6% for the MCT and -6.0±12.1% for the HIIT, which differed from the control group (0.2±7.6%) after a 1-year intervention (p<0.05). A time-by-group interaction for carotid artery intima-media thickness (cIMT) (p for interaction=0.042) and lower-limb pulse wave velocity (LL PWV; p for interaction=0.010) between those categorized as low FM responders and the control group. However, an interaction was observed between the high responders for FM loss and controls for both brachial and carotid hemodynamic indices, as well as in cIMT, carotid distensibility coefficient, carotid beta index, and LL PWV (p for interactions <0.05). No interactions were found for glycaemic indices (p for interaction >0.05). Conclusion: Our results suggest that the number of FM responders did not differ between the MCT or HIIT, compared to the control, following a 1-year exercise intervention in individuals with T2DM. However, low responders to FM may still derive reductions in arterial stiffness and structure. Clinical Trial Registration: Comparing Moderate and High-intensity Interval Training Protocols on Biomarkers in Type 2 Diabetes Patients (D2FIT study) - number: NCT03144505 (https://ichgcp.net/clinical-trials-registry/NCT03144505).

Keywords: Carotid artery intima-media thickness; arterial stiffness; exercise intervention; high-intensity interval training; moderate continuous training; peak wave velocity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Magalhães, Hetherington-Rauth, Júdice, Correia, Rosa, Henriques-Neto, Melo, Silva and Sardinha.

Figures

Figure 1
Figure 1
Individual response changes for total FM loss in the control (A), MCT (B), and HIIT group (C) according to 90% CI SWC cutoffs. Those on the left of the dashed black line are the participants who were considered high responders according to ΔFM loss>TE. TE, typical error.

References

    1. Alvarez C., Ramirez-Campillo R., Ramirez-Velez R., Izquierdo M. (2017). Prevalence of non-responders for glucose control markers after 10 weeks of high-intensity interval training in adult women with higher and lower insulin resistance. Front. Physiol. 8:479. doi: 10.3389/fphys.2017.00479, PMID:
    1. American Diabetes, A (2020). 1. Improving care and promoting health in populations: standards of medical care in diabetes-2020. Diabetes Care 43, S7–S13. doi: 10.2337/dc20-S001, PMID:
    1. Appel L. J., Moore T. J., Obarzanek E., Vollmer W. M., Svetkey L. P., Sacks F. M., et al. . (1997). A clinical trial of the effects of dietary patterns on blood pressure. DASH collaborative research group. N. Engl. J. Med. 336, 1117–1124. doi: 10.1056/NEJM199704173361601, PMID:
    1. Bonafiglia J. T., Nelms M. W., Preobrazenski N., Leblanc C., Robins L., Lu S., et al. . (2018). Moving beyond threshold-based dichotomous classification to improve the accuracy in classifying non-responders. Physiol. Rep. 6:e13928. doi: 10.14814/phy2.13928, PMID:
    1. Boule N. G., Haddad E., Kenny G. P., Wells G. A., Sigal R. J. (2001). Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286, 1218–1227. doi: 10.1001/jama.286.10.1218, PMID:
    1. Brennan A. M., Day A. G., Cowan T. E., Clarke G. J., Lamarche B., Ross R. (2019). Individual response to standardized exercise: Total and abdominal adipose tissue. Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000001930, PMID: [Epub ahead of print].
    1. Brennan A. M., Day A. G., Cowan T. E., Clarke G. J., Lamarche B., Ross R. (2020a). Individual response to standardized exercise: Total and abdominal adipose tissue. Med. Sci. Sports Exerc. 52, 490–497. doi: 10.1249/MSS.0000000000001930, PMID:
    1. Brennan A. M., Standley R. A., Yi F., Carnero E. A., Sparks L. M., Goodpaster B. H. (2020b). Individual response variation in the effects of weight loss and exercise on insulin sensitivity and cardiometabolic risk in older adults. Front. Endocrinol. 11:632. doi: 10.3389/fendo.2020.00632
    1. Cardoso C. R., Salles G. F. (2016). Aortic stiffness as a surrogate endpoint to micro- and macrovascular complications in patients with type 2 diabetes. Int. J. Mol. Sci. 17:2044. doi: 10.3390/ijms17122044, PMID:
    1. Chrzanowski-Smith O. J., Piatrikova E., Betts J. A., Williams S., Gonzalez J. T. (2020). Variability in exercise physiology: can capturing intra-individual variation help better understand true inter-individual responses? Eur. J. Sport Sci. 20, 452–460. doi: 10.1080/17461391.2019.1655100, PMID:
    1. De Nardi A. T., Tolves T., Lenzi T. L., Signori L. U., Silva A. (2018). High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res. Clin. Pract. 137, 149–159. doi: 10.1016/j.diabres.2017.12.017, PMID:
    1. Demarco V. G., Aroor A. R., Sowers J. R. (2014). The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol. 10, 364–376. doi: 10.1038/nrendo.2014.44, PMID:
    1. Dube J. J., Amati F., Toledo F. G., Stefanovic-Racic M., Rossi A., Coen P., et al. . (2011). Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54, 1147–1156. doi: 10.1007/s00125-011-2065-0, PMID:
    1. Fogari R., Zoppi A., Corradi L., Preti P., Mugellini A., Lazzari P., et al. . (2010). Effect of body weight loss and normalization on blood pressure in overweight non-obese patients with stage 1 hypertension. Hypertens. Res. 33, 236–242. doi: 10.1038/hr.2009.220, PMID:
    1. Gaesser G. A., Angadi S. S., Sawyer B. J. (2011). Exercise and diet, independent of weight loss, improve cardiometabolic risk profile in overweight and obese individuals. Phys. Sportsmed. 39, 87–97. doi: 10.3810/psm.2011.05.1898
    1. Goedecke J. H., Micklesfield L. K. (2014). The effect of exercise on obesity, body fat distribution and risk for type 2 diabetes. Med. Sport Sci. 60, 82–93. doi: 10.1159/000357338
    1. Green D. J., Hopman M. T., Padilla J., Laughlin M. H., Thijssen D. H. (2017). Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol. Rev. 97, 495–528. doi: 10.1152/physrev.00014.2016, PMID:
    1. Hawkins M., Gabriel K. P., Cooper J., Storti K. L., Sutton-Tyrrell K., Kriska A. (2014). The impact of change in physical activity on change in arterial stiffness in overweight or obese sedentary young adults. Vasc. Med. 19, 257–263. doi: 10.1177/1358863X14536630, PMID:
    1. Hetherington-Rauth M., Magalhaes J. P., Judice P. B., Melo X., Sardinha L. B. (2020a). Vascular improvements in individuals with type 2 diabetes following a 1 year randomised controlled exercise intervention, irrespective of changes in cardiorespiratory fitness. Diabetologia 63, 722–732. doi: 10.1007/s00125-020-05089-5, PMID:
    1. Hetherington-Rauth M., Magalhães J. P., Júdice P. B., Melo X., Sardinha L. B. (2020b). Vascular improvements in individuals with type 2 diabetes following a 1 year randomised controlled exercise intervention, irrespective of changes in cardiorespiratory fitness. Diabetologia 63, 722–732. doi: 10.1007/s00125-020-05089-5
    1. Hoeks A. P., Willekes C., Boutouyrie P., Brands P. J., Willigers J. M., Reneman R. S. (1997). Automated detection of local artery wall thickness based on M-line signal processing. Ultrasound Med. Biol. 23, 1017–1023. doi: 10.1016/S0301-5629(97)00119-1, PMID:
    1. Hopkins W. G. (2000). Measures of reliability in sports medicine and science. Sports Med. 30, 1–15. doi: 10.2165/00007256-200030010-00001, PMID:
    1. Hubert H. B., Feinleib M., Mcnamara P. M., Castelli W. P. (1983). Obesity as an independent risk factor for cardiovascular-disease - a 26-year follow-up of participants in the Framingham Heart-Study. Circulation 67, 968–977. doi: 10.1161/01.CIR.67.5.968, PMID:
    1. Jensen M. D., Ryan D. H., Apovian C. M., Ard J. D., Comuzzie A. G., Donato K. A., et al. . (2014). 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 129, S102–S138. doi: 10.1161/, PMID:
    1. Kurukulasuriya L. R., Stas S., Lastra G., Manrique C., Sowers J. R. (2011). Hypertension in obesity. Med. Clin. North Am. 95, 903–917. doi: 10.1016/j.mcna.2011.06.004, PMID:
    1. Lean M. E., Leslie W. S., Barnes A. C., Brosnahan N., Thom G., Mccombie L., et al. . (2018). Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551. doi: 10.1016/S0140-6736(17)33102-1, PMID:
    1. Liu J. X., Zhu L., Li P. J., Li N., Xu Y. B. (2019). Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging Clin. Exp. Res. 31, 575–593. doi: 10.1007/s40520-018-1012-z, PMID:
    1. Lohman T. G., Roche A. F., Martorell R. (1988). Anthropometric Standardization Reference Manual. Champaign. IL: Human Kinetics Publishers.
    1. Macdonald T. L., Pattamaprapanont P., Pathak P., Fernandez N., Freitas E. C., Hafida S., et al. . (2020). Hyperglycaemia is associated with impaired muscle signalling and aerobic adaptation to exercise. Nat. Metab. 2, 902–917. doi: 10.1038/s42255-020-0240-7, PMID:
    1. Magalhaes J. P., Judice P. B., Ribeiro R., Andrade R., Raposo J., Dores H., et al. . (2019a). Effectiveness of high-intensity interval training combined with resistance training versus continuous moderate-intensity training combined with resistance training in patients with type 2 diabetes: A one-year randomized controlled trial. Diabetes Obes. Metab. 21, 550–559. doi: 10.1111/dom.13551
    1. Magalhaes J. P., Melo X., Correia I. R., Ribeiro R. T., Raposo J., Dores H., et al. . (2019b). Effects of combined training with different intensities on vascular health in patients with type 2 diabetes: a 1-year randomized controlled trial. Cardiovasc. Diabetol. 18:34. doi: 10.1186/s12933-019-0840-2
    1. Nesti L., Pugliese N. R., Sciuto P., Natali A. (2020). Type 2 diabetes and reduced exercise tolerance: a review of the literature through an integrated physiology approach. Cardiovasc. Diabetol. 19:134. doi: 10.1186/s12933-020-01109-1, PMID:
    1. Padilla J., Leary E., Limberg J. K. (2021). Identifying responders versus non-responders: incorporation of controls is required for sound statistical inference. Exp. Physiol. 106, 375–376. doi: 10.1113/EP089142, PMID:
    1. Ross R., Chaput J.-P., Giangregorio L. M., Janssen I., Saunders T. J., Kho M. E., et al. . (2020). Canadian 24-hour movement guidelines for adults aged 18–64 years and adults aged 65 years or older: an integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 45, S57–S102. doi: 10.1139/apnm-2020-0467, PMID:
    1. Ross R., Goodpaster B. H., Koch L. G., Sarzynski M. A., Kohrt W. M., Johannsen N. M., et al. . (2019). Precision exercise medicine: understanding exercise response variability. Br. J. Sports Med. 53, 1141–1153. doi: 10.1136/bjsports-2018-100328, PMID:
    1. Santos D. A., Gobbo L. A., Matias C. N., Petroski E. L., Goncalves E. M., Cyrino E. S. (2013). Body composition in taller individuals using DXA: a validation study for athletic and non-athletic populations. J. Sports Sci. 31, 405–413. doi: 10.1080/02640414.2012.734918, PMID:
    1. Solomon T. P. J. (2018). Sources of inter-individual variability in the therapeutic response of blood glucose control to exercise in type 2 diabetes: going beyond exercise dose. Front. Physiol. 9:896. doi: 10.3389/fphys.2018.00896, PMID:
    1. Stephens N. A., Sparks L. M. (2015). Resistance to the beneficial effects of exercise in type 2 diabetes: are some individuals programmed to fail? J. Clin. Endocrinol. Metab. 100, 43–52. doi: 10.1210/jc.2014-2545, PMID:
    1. Tanaka H., Dinenno F. A., Monahan K. D., Clevenger C. M., Desouza C. A., Seals D. R. (2000). Aging, habitual exercise, and dynamic arterial compliance. Circulation 102, 1270–1275. doi: 10.1161/01.CIR.102.11.1270, PMID:
    1. Troiano R. P., Berrigan D., Dodd K. W., Masse L. C., Tilert T., Mcdowell M. (2008). Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 40, 181–188. doi: 10.1249/mss.0b013e31815a51b3, PMID:
    1. U.S. Department of Health and Human Services (2008). 2008 Physical Acivity Guidelines for Americans. Washington, DC: U.S. Department of Health and Human Services.
    1. Walsh J. J., Bonafiglia J. T., Goldfield G. S., Sigal R. J., Kenny G. P., Doucette S., et al. . (2020). Interindividual variability and individual responses to exercise training in adolescents with obesity. Appl. Physiol. Nutr. Metab. 45, 45–54. doi: 10.1139/apnm-2019-0088, PMID:

Source: PubMed

3
Sottoscrivi