Stress-induced changes in modular organizations of human brain functional networks

Yuan Zhang, Zhongxiang Dai, Jianping Hu, Shaozheng Qin, Rongjun Yu, Yu Sun, Yuan Zhang, Zhongxiang Dai, Jianping Hu, Shaozheng Qin, Rongjun Yu, Yu Sun

Abstract

Humans inevitably go through various stressful events, which initiates a chain of neuroendocrine reactions that may affect brain functions and lead to psychopathological symptoms. Previous studies have shown stress-induced changes in activation of individual brain regions or pairwise inter-regional connectivity. However, it remains unclear how large-scale brain network is reconfigured in response to stress. Using a within-subjects design, we combined the Trier Social Stress Test and graph theoretical method to characterize stress-induced topological alterations of brain functional network. Modularity analysis revealed that the brain network can be divided into frontoparietal, default mode, occipital, subcortical, and central-opercular modules under control and stress conditions, corresponding to several well-known functional systems underpinning cognitive control, self-referential mental processing, visual, salience processing, sensory and motor functions. While the frontoparietal module functioned as a connector module under stress, its within-module connectivity was weakened. The default mode module lost its connector function and its within-module connectivity was enhanced under stress. Moreover, stress altered the capacity to control over information flow in a few regions important for salience processing and self-referential metal processing. Furthermore, there was a trend of negative correlation between modularity and stress response magnitude. These findings demonstrate that acute stress prompts large-scale brain-wide reconfiguration involving multiple functional modules.

Keywords: Functional connectivity; Graph theory; Modularity; Resting-state fMRI; Stress.

© 2020 The Authors.

Figures

Fig. 1
Fig. 1
Experimental procedure and manipulation check. (A) After acclimation period of 20 min following arrival, participants were required to go through the Trier Social Stress Test (TSST) which consists of preparation (5 min) and formal tasks (10 min). The formal tasks were performed either with (stress condition) or without (control condition) social evaluative processes. After the formal tasks, resting-state fMRI were collected. Saliva samples were collected at T1, T3, T4, T5, and T6. Affective ratings were collected at T1, T2, T3, T4, T5, and T6. (B) Cortisol and positive/negative emotional responses under control and stress condition. Compared with control condition, stress induced higher cortisol responses at T3, T4, T5, and T6, as well as lower positive and higher negative emotional responses at T2 and T3. *p < 0.05, **p < 0.01, ***p < 0.001.
Fig. 2
Fig. 2
Modular structure of condition-average brain functional network for both control and stress condition at sparsity level of 13%. Five connected modules were identified in both control (A) and stress (B) conditions, including the frontoparietal module (Module I), the default mode module (Module II), the occipital module (Module III), the subcortical module (Module IV), and the central-opercular module (Module V). Topological roles of brain regions (i.e., connector hub, connector non-hub, provincial hub, or provincial non-hub) in each module were presented for control (C) and stress (D) conditions. Shape stands for connector (square) or provincial (circle) nodes whereas size stands for hub (large) or non-hub (small) nodes.

References

    1. Albert K., Pruessner J., Newhouse P. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle. Psychoneuroendocrinology. 2015;59:14–24.
    1. Anderson J.S., Druzgal T.J., Lopez-Larson M., Jeong E.K., Desai K., Yurgelun-Todd D. Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum. Brain Mapp. 2011;32:919–934.
    1. Andrews-Hanna J.R., Reidler J.S., Sepulcre J., Poulin R., Buckner R.L. Functional-anatomic fractionation of the brain's default network. Neuron. 2010;65:550–562.
    1. Arnsten A.F.T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 2009;10:410–422.
    1. Bertolero M.A., Yeo B.T.T., D'Esposito M. The modular and integrative functional architecture of the human brain. Proc. Natl. Acad. Sci. 2015 201510619.
    1. Bluhm R.L., Williamson P.C., Osuch E.A., Frewen P.A., Stevens T.K., Boksman K., Neufeld R.W.J., Théberge J., Lanius R.A. vol. 34. 2009. pp. 187–194. (Alterations in Default Network Connectivity in Posttraumatic Stress Disorder Related to Early-Life Trauma).
    1. Boehringer A., Tost H., Haddad L., Lederbogen F., Wüst S., Schwarz E., Meyer-Lindenberg A. Neural correlates of the cortisol awakening response in humans. Neuropsychopharmacology. 2015;40:2278–2285.
    1. Buckner R.L., Andrews-Hanna J.R., Schacter D.L. The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008;1124:1–38.
    1. Bullmore E.T., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186–198.
    1. Campbell J., Ehlert U. Acute psychosocial stress: does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology. 2012;37:1111–1134.
    1. Chang C., Glover G.H. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage. 2009;47:1448–1459.
    1. Chen T., Cai W., Ryali S., Supekar K., Menon V. Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol. 2016;14:1–21.
    1. Clauset A., Newman M.E.J., Moore C. Finding community structure in very large networks. Phys. Rev. E. 2004;70 066111.
    1. Cole M.W., Reynolds J.R., Power J.D., Repovs G., Anticevic A., Braver T.S. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 2013;16:1348–1355.
    1. Dedovic K., Duchesne A., Andrews J., Engert V., Pruessner J.C. The brain and the stress axis: the neural correlates of cortisol regulation in response to stress. Neuroimage. 2009;47:864–871.
    1. Demirtaş M., Tornador C., Falcón C., López-Solà M., Hernández-Ribas R., Pujol J., Menchón J.M., Ritter P., Cardoner N., Soriano-Mas C. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. Hum. Brain Mapp. 2016;37:2918–2930.
    1. Dixon M.L., Thiruchselvam R., Todd R., Christoff K. Emotion and the prefrontal cortex: an integrative review. Psychol. Bull. 2017:1–68.
    1. Dosenbach N.U.F., Fair D.A., Miezin F.M., Cohen A.L., Wenger K.K., Dosenbach R.A.T., Fox M.D., Snyder A.Z., Vincent J.L., Raichle M.E. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. 2007;104:11073–11078.
    1. Fechir M., Gamer M., Blasius I., Bauermann T., Breimhorst M., Schlindwein P., Schlereth T., Birklein F. Functional imaging of sympathetic activation during mental stress. Neuroimage. 2010;50:847–854.
    1. Fox M.D., Zhang D., Snyder A.Z., Raichle M.E. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 2009;101:3270–3283.
    1. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005;26:15–29.
    1. Fransson P., Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage. 2008;42:1178–1184.
    1. Freeman L.C. A set of measures of centrality based on betweenness. Sociometry. 1977;40:35.
    1. Friston K.J., Williams S., Howard R., Frackowiak R.S.J., Turner R. Movement-Related effects in fMRI time-series. Magn. Reson. Med. 1996;35:346–355.
    1. Gianaros P.J., Sheu L.K., Matthews K.A., Jennings J.R., Manuck S.B., Hariri A.R. Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala. J. Neurosci. 2008;28:990–999.
    1. Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 2003;100:253–258.
    1. Guimerà R., Amaral L.A.N. Cartography of complex networks: modules and universal roles. J. Stat. Mech. 2005 2005, nihpa35573.
    1. He Y., Evans A. Graph theoretical modeling of brain connectivity. Curr. Opin. Neurol. 2010;23:341–350.
    1. He Y., Wang J., Wang L., Chen Z.J., Yan C., Yang H., Tang H., Zhu C., Gong Q., Zang Y. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PloS One. 2009;4:23–25.
    1. Hermans E.J., van Marle H.J.F., Ossewaarde L., Henckens M.J.A.G., Qin S., van Kesteren M.T.R., Schoots V.C., Cousijn H., Rijpkema M., Oostenveld R. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science. 2011;334:1151–1153. (80)
    1. Hermans E.J., Henckens M.J.A.G., Joels M., Fernandez G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci. 2014;37:304–314.
    1. van den Heuvel M.P., Sporns O. Network hubs in the human brain. Trends Cognit. Sci. 2013;17:683–696.
    1. Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–841.
    1. Kaiser R.H., Whitfield-Gabrieli S., Dillon D.G., Goer F., Beltzer M., Minkel J., Smoski M., Dichter G., Pizzagalli D.A. Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacology. 2016;41:1822–1830.
    1. Khalili-Mahani N., Dedovic K., Engert V., Pruessner M., Pruessner J.C. Hippocampal activation during a cognitive task is associated with subsequent neuroendocrine and cognitive responses to psychological stress. Hippocampus. 2009;20:323–334.
    1. Kirschbaum C., Pirke K.-M., Hellhammer D.H. The “Trier social stress test” - a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology. 1993;28:76–81.
    1. Koric L., Volle E., Seassau M., Bernard F.A., Mancini J., Dubois B., Pelissolo A., Levy R. How cognitive performance-induced stress can influence right VLPFC activation: an fMRI study in healthy subjects and in patients with social phobia. Hum. Brain Mapp. 2012;33:1973–1986.
    1. Kosslyn S.M., Ganis G., Thompson W.L. Neural foundations of imagery. Nat. Rev. Neurosci. 2001;2:635–642.
    1. Lord C., Steiner M., Soares C.N., Carew C.L., Hall G.B. Stress response in postpartum women with and without obsessive-compulsive symptoms: an fMRI study. J. Psychiatry Neurosci. 2012;37:78–86.
    1. van Marle H.J.F., Hermans E.J., Qin S., Fernández G. From specificity to sensitivity: how acute stress affects amygdala processing of biologically salient stimuli. Biol. Psychiatr. 2009;66:649–655.
    1. van Marle H.J.F., Hermans E.J., Qin S., Fernández G. Enhanced resting-state connectivity of amygdala in the immediate aftermath of acute psychological stress. Neuroimage. 2010;53:348–354.
    1. Maron-Katz A., Vaisvaser S., Lin T., Hendler T., Shamir R. A large-scale perspective on stress-induced alterations in resting-state networks. Sci. Rep. 2016;6:1–11.
    1. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cognit. Sci. 2011;15:483–506.
    1. Menon V., Uddin L.Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 2010;214:655–667.
    1. Meunier D., Achard S., Morcom A., Bullmore E. Age-related changes in modular organization of human brain functional networks. Neuroimage. 2009;44:715–723.
    1. Newman M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E. 2004;69 066133.
    1. Newman M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 2006;103:8577–8582.
    1. Newman M.E.J., Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E. 2004;69 026113.
    1. van Oort J., Tendolkar I., Hermans E.J., Mulders P.C., Beckmann C.F., Schene A.H., Fernández G., van Eijndhoven P.F. How the brain connects in response to acute stress: a review at the human brain systems level. Neurosci. Biobehav. Rev. 2017;83:281–297.
    1. de Pasquale F., Della Penna S., Snyder A.Z., Marzetti L., Pizzella V., Romani G.L., Corbetta M. A cortical core for dynamic integration of functional networks in the resting human brain. Neuron. 2012;74:753–764.
    1. Power J.D., Cohen A.L., Nelson S.M., Wig G.S., Barnes K.A., Church J.A., Vogel A.C., Laumann T.O., Miezin F.M., Schlaggar B.L. Functional network organization of the human brain. Neuron. 2011;72:665–678.
    1. Power J.D., Mitra A., Laumann T.O., Snyder A.Z., Schlaggar B.L., Petersen S.E. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014;84:320–341.
    1. Pruessner J.C., Dedovic K., Khalili-Mahani N., Engert V., Pruessner M., Buss C., Renwick R., Dagher A., Meaney M.J., Lupien S. Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies. Biol. Psychiatr. 2008;63:234–240.
    1. Qin S., Hermans E.J., van Marle H.J.F., Luo J., Fernández G. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiatr. 2009;66:25–32.
    1. Quaedflieg C.W.E.M., van de Ven V., Meyer T., Siep N., Merckelbach H., Smeets T. Temporal dynamics of stress-induced alternations of intrinsic amygdala connectivity and neuroendocrine levels. PloS One. 2015;10
    1. Radicchi F., Castellano C., Cecconi F., Loreto V., Parisi D. 2003. Defining and Identifying Communities in Networks.
    1. Raichle M.E. The brain's default mode network. Annu. Rev. Neurosci. 2015;38:433–447.
    1. Roozendaal B., McEwen B.S., Chattarji S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 2009;10:423–433.
    1. Rubinov M., Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–1069.
    1. Rubinov M., Sporns O. Weight-conserving characterization of complex functional brain networks. Neuroimage. 2011;56:2068–2079.
    1. Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007;27:2349–2356.
    1. Seo D., Jia Z., Lacadie C.M., Tsou K.A., Bergquist K., Sinha R. Sex differences in neural responses to stress and alcohol context cues. Hum. Brain Mapp. 2011;32:1998–2013.
    1. Shin D.-J., Jung W.H., He Y., Wang J., Shim G., Byun M.S., Jang J.H., Kim S.N., Lee T.Y., Park H.Y. The effects of pharmacological treatment on functional brain connectome in obsessive-compulsive disorder. Biol. Psychiatr. 2014;75:606–614.
    1. Sinha R., Lacadie C., Skudlarski P., Wexler B.E. Neural circuits underlying emotional distress in humans. Ann. N. Y. Acad. Sci. 2004;1032:254–257.
    1. Smith S.M., Miller K.L., Salimi-Khorshidi G., Webster M., Beckmann C.F., Nichols T.E., Ramsey J.D., Woolrich M.W. Network modelling methods for FMRI. Neuroimage. 2011;54:875–891.
    1. Soares J.M., Sampaio A., Ferreira L.M., Santos N.C., Marques P., Marques F., Palha J.A., Cerqueira J.J., Sousa N. Stress impact on resting state brain networks. PloS One. 2013;8
    1. Song X.W., Dong Z.Y., Long X.Y., Li S.F., Zuo X.N., Zhu C.Z., He Y., Yan C.G., Zang Y.F. REST: a Toolkit for resting-state functional magnetic resonance imaging data processing. PloS One. 2011;6
    1. Sporns O. The human connectome: a complex network. Ann. N. Y. Acad. Sci. 2011;1224:109–125.
    1. Taghia J., Ryali S., Chen T., Supekar K., Cai W., Menon V. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI. Neuroimage. 2017;155:271–290.
    1. Taghia J., Cai W., Ryali S., Kochalka J., Nicholas J., Chen T., Menon V. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition. Nat. Commun. 2018;9
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. 2002. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain.
    1. Vaisvaser S., Lin T., Admon R., Podlipsky I., Greenman Y., Stern N., Fruchter E., Wald I., Pine D.S., Tarrasch R. Neural traces of stress: cortisol related sustained enhancement of amygdala-hippocampal functional connectivity. Front. Hum. Neurosci. 2013;7:1–11.
    1. Vaisvaser S., Modai S., Farberov L., Lin T., Sharon H., Gilam A., Volk N., Admon R., Edry L., Fruchter E. Neuro-epigenetic indications of acute stress response in humans: the case of MicroRNA-29c. PloS One. 2016;11
    1. Veer I.M., Oei N.Y.L., Spinhoven P., van Buchem M.A., Elzinga B.M., Rombouts S.A.R.B. Beyond acute social stress: increased functional connectivity between amygdala and cortical midline structures. Neuroimage. 2011;57:1534–1541.
    1. Wise T., Marwood L., Perkins A.M., Herane-Vives A., Joules R., Lythgoe D.J., Luh W.-M., Williams S.C.R., Young A.H., Cleare A.J. Instability of default mode network connectivity in major depression: a two-sample confirmation study. Transl. Psychiatry. 2017;7:e1105.
    1. Wu K., Taki Y., Sato K., Kinomura S., Goto R., Okada K., Kawashima R., He Y., Evans A.C., Fukuda H. Age-related changes in topological organization of structural brain networks in healthy individuals. Hum. Brain Mapp. 2012;33:552–568.
    1. Yan C.G., Zang Y.F. DPARSF: a MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 2010;4:13.
    1. Yan C.G., Cheung B., Kelly C., Colcombe S., Craddock R.C., Di Martino A., Li Q., Zuo X.N., Castellanos F.X., Milham M.P. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage. 2013;76:183–201.
    1. Yan C.G., Craddock R.C., Zuo X.N., Zang Y.F., Milham M.P. Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage. 2013;80:246–262.
    1. Yeo B.T.T., Krienen F.M., Sepulcre J., Sabuncu M.R., Lashkari D., Hollinshead M., Roffman J.L., Smoller J.W., Zollei L., Polimeni J.R. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011;106:1125–1165.

Source: PubMed

3
Sottoscrivi