Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion

Pablo Tapia, Dagoberto Soto, Alejandro Bruhn, Leyla Alegría, Nicolás Jarufe, Cecilia Luengo, Eduardo Kattan, Tomás Regueira, Arturo Meissner, Rodrigo Menchaca, María Ignacia Vives, Nicolas Echeverría, Gustavo Ospina-Tascón, Jan Bakker, Glenn Hernández, Pablo Tapia, Dagoberto Soto, Alejandro Bruhn, Leyla Alegría, Nicolás Jarufe, Cecilia Luengo, Eduardo Kattan, Tomás Regueira, Arturo Meissner, Rodrigo Menchaca, María Ignacia Vives, Nicolas Echeverría, Gustavo Ospina-Tascón, Jan Bakker, Glenn Hernández

Abstract

Introduction: Although the prognostic value of persistent hyperlactatemia in septic shock is unequivocal, its physiological determinants are controversial. Particularly, the role of impaired hepatic clearance has been underestimated and is only considered relevant in patients with liver ischemia or cirrhosis. Our objectives were to establish whether endotoxemia impairs whole body net lactate clearance, and to explore a potential role for total liver hypoperfusion during the early phase of septic shock.

Methods: After anesthesia, 12 sheep were subjected to hemodynamic/perfusion monitoring including hepatic and portal catheterization, and a hepatic ultrasound flow probe. After stabilization (point A), sheep were alternatively assigned to lipopolysaccharide (LPS) (5 mcg/kg bolus followed by 4 mcg/kg/h) or sham for a three-hour study period. After 60 minutes of shock, animals were fluid resuscitated to normalize mean arterial pressure. Repeated series of measurements were performed immediately after fluid resuscitation (point B), and one (point C) and two hours later (point D). Monitoring included systemic and regional hemodynamics, blood gases and lactate measurements, and ex-vivo hepatic mitochondrial respiration at point D. Parallel exogenous lactate and sorbitol clearances were performed at points B and D. Both groups included an intravenous bolus followed by serial blood sampling to draw a curve using the least squares method.

Results: Significant hyperlactatemia was already present in LPS as compared to sham animals at point B (4.7 (3.1 to 6.7) versus 1.8 (1.5 to 3.7) mmol/L), increasing to 10.2 (7.8 to 12.3) mmol/L at point D. A significant increase in portal and hepatic lactate levels in LPS animals was also observed. No within-group difference in hepatic DO2, VO2 or O2 extraction, total hepatic blood flow (point D: 915 (773 to 1,046) versus 655 (593 to 1,175) ml/min), mitochondrial respiration, liver enzymes or sorbitol clearance was found. However, there was a highly significant decrease in lactate clearance in LPS animals (point B: 46 (30 to 180) versus 1,212 (743 to 2,116) ml/min, P < 0.01; point D: 113 (65 to 322) versus 944 (363 to 1,235) ml/min, P < 0.01).

Conclusions: Endotoxemia induces an early and severe impairment in lactate clearance that is not related to total liver hypoperfusion.

Figures

Figure 1
Figure 1
General scheme of the protocol. Complete hemodynamic, respiratory, and systemic and regional perfusion assessment was performed at points A, B, C, and D, except for lactate and sorbitol clearances that were done only at points A, B, and D. hr, hour; LPS, lipopolysaccharide.
Figure 2
Figure 2
Evolution of total hepatic blood flow. (A), sorbitol (B) and lactate clearances (C) at different time points in sham versus LPS animals. As shown, no differences were detected in flow or sorbitol clearances, but there was a highly significant decrease in lactate clearance in LPS animals at points B and D. Bars represent median (interquartile range). *P <0.05, comparison made with Mann–Whitney U test. LPS, lipopolysaccharide.

References

    1. Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18:503. doi: 10.1186/s13054-014-0503-3.
    1. Hernandez G, Bruhn A, Castro R, Regueira T. The holistic view on perfusion monitoring in septic shock. Curr Opin Crit Care. 2012;18:280–6. doi: 10.1097/MCC.0b013e3283532c08.
    1. Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006;12:315–21. doi: 10.1097/01.ccx.0000235208.77450.15.
    1. Mizock BA. The hepatosplanchnic area and hyperlactatemia: a tale of two lactates. Crit Care Med. 2001;29:447–9. doi: 10.1097/00003246-200102000-00047.
    1. Jeppesen JB, Mortensen C, Bendtsen F, Moller S. Lactate metabolism in chronic liver disease. Scand J Clin Lab Invest. 2013;73:293–9. doi: 10.3109/00365513.2013.773591.
    1. Douzinas EE, Tsidemiadou PD, Pitaridis MT, Andrianakis I, Bobota-Chloraki A, Katsouyanni K, et al. The regional production of cytokines and lactate in sepsis-related multiple organ failure. Am J Respir Crit Care Med. 1997;155:53–9. doi: 10.1164/ajrccm.155.1.9001289.
    1. De Backer D, Creteur J, Silva E, Vincent JL. The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit Care Med. 2001;29:256–61. doi: 10.1097/00003246-200102000-00005.
    1. Barthelmes D, Jakob SM, Laitinen S, Rahikainen S, Ahonen H, Takala J. Effect of site of lactate infusion on regional lactate exchange in pigs. Br J Anaesth. 2010;105:627–34. doi: 10.1093/bja/aeq214.
    1. Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157:1021–6. doi: 10.1164/ajrccm.157.4.9705037.
    1. Hernandez G, Regueira T, Bruhn A, Castro R, Rovegno M, Fuentealba A, et al. Relationship of systemic, hepatosplanchnic, and microcirculatory perfusion parameters with 6-hour lactate clearance in hyperdynamic septic shock patients: an acute, clinical-physiological, pilot study. Ann Intensive Care. 2012;2:44. doi: 10.1186/2110-5820-2-44.
    1. Bellomo R, Kellum JA, Pinsky MR. Transvisceral lactate fluxes during early endotoxemia. Chest. 1996;110:198–204. doi: 10.1378/chest.110.1.198.
    1. Pastor CM, Billiar TR, Losser MR, Payen DM. Liver injury during sepsis. J Crit Care. 1995;10:183–97. doi: 10.1016/0883-9441(95)90010-1.
    1. Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, et al. Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med. 2005;33:2235–40. doi: 10.1097/01.CCM.0000181525.99295.8F.
    1. Michaeli B, Martinez A, Revelly JP, Cayeux MC, Chioléro RL, Tappy L, et al. Effects of endotoxin on lactate metabolism in humans. Crit Care. 2012;16:R139. doi: 10.1186/cc11444.
    1. Severin PN, Uhing MR, Beno DW, Kimura RE. Endotoxin-induced hyperlactatemia results from decreased lactate clearance in hemodynamically stable rats. Crit Care Med. 2002;30:2509–14. doi: 10.1097/00003246-200211000-00017.
    1. Santak B, Radermacher P, Adler J, Iber T, Rieger KM, Wachter U, et al. Effect of increased cardiac output on liver blood flow, oxygen exchange and metabolic rate during long-term endotoxin-induced shock in pigs. Br J Pharmacol. 1998;124:1689–97. doi: 10.1038/sj.bjp.0701998.
    1. Samsel RW, Cherqui D, Pietrabissa A, Sanders WM, Roncella M, Emond JC, et al. Hepatic oxygen and lactate extraction during stagnant hypoxia. J Appl Physiol. 1991;70:186–93.
    1. Naylor JM, Kronfeld DS, Freeman DE, Richardson D. Hepatic and extrahepatic lactate metabolism in sheep: effects of lactate loading and pH. Am J Physiol. 1984;247:E747–55.
    1. Chrusch C, Bautista E, Jacobs HK, Light RB, Bose D, Duke K, et al. Blood pH level modulates organ metabolism of lactate in septic shock in dogs. J Crit Care. 2002;17:188–202. doi: 10.1053/jcrc.2002.35816.
    1. Sestoft L, Marshall MO. Regulation of lactate uptake and lactate production in liver from 48-h-starved rats: effects of pH, flow and glucose concentration. Clin Sci (Lond) 1988;74:403–6.
    1. Goldstein PJ, Simmons DH, Tashkin DP. Effect of acid–base alterations on hepatic lactate utilization. J Physiol. 1972;223:261–78. doi: 10.1113/jphysiol.1972.sp009846.
    1. Eldridge FL, T’So L, Chang H. Relationship between turnover rate and blood concentration of lactate in normal dogs. J Appl Physiol. 1974;37:316–20.
    1. Dubin A, Edul VS, Pozo MO, Murias G, Canullán CM, Martins EF, et al. Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med. 2008;36:535–42. doi: 10.1097/01.CCM.0000300083.74726.43.
    1. Gommers D. Noninvasive functional liver blood flow measurement: comparison between bolus dose and steady-state clearance of sorbitol in a small-rodent model. Am J Physiol Gastrointest Liver Physiol. 2010;298:G177–81. doi: 10.1152/ajpgi.90688.2008.
    1. Regueira T, Bänziger B, Djafarzadeh S, Brandt S, Gorrasi J, Takala J, et al. Norepinephrine to increase blood pressure in endotoxaemic pigs is associated with improved hepatic mitochondrial respiration. Crit Care. 2008;12:R88. doi: 10.1186/cc6956.
    1. Iles RA, Baron PG, Cohen RD. The effect of reduction of perfusion rate on lactate and oxygen uptake, glucose output and energy supply in the isolated perfused liver of starved rats. Biochem J. 1979;184:635–42.
    1. Tashkin DP, Goldstein PJ, Simmons DH. Hepatic lactate uptake during decreased liver perfusion and hyposemia. Am J Physiol. 1972;223:968–74.
    1. Pscheidl EM, Wan JM, Blackburn GL, Bistrian BR, Istfan NW. Influence of omega-3 fatty acids on splanchnic blood flow and lactate metabolism in an endotoxemic rat model. Metabolism. 1992;41:698–705. doi: 10.1016/0026-0495(92)90307-V.
    1. Creteur J, De Backer D, Sun Q, Vincent JL. The hepatosplanchnic contribution to hyperlactatemia in endotoxic shock: effects of tissue ischemia. Shock. 2004;21:438–43. doi: 10.1097/00024382-200405000-00007.
    1. Hill M, McCallum R. Altered transcriptional regulation of phosphoenolpyruvate carboxykinase in rats following endotoxin treatment. J Clin Invest. 1991;88:811–6. doi: 10.1172/JCI115381.
    1. Vary TC, Siegel JH, Tall BD, Morris JG. Metabolic effects of partial reversal of pyruvate dehydrogenase activity by dichloroacetate in sepsis. Circ Shock. 1988;24:3–18.
    1. La Mura V, Pasarín M, Rodriguez-Vilarrupla A, García-Pagán JC, Bosch J, Abraldes JG. Liver sinusoidal endothelial dysfunction after LPS administration: a role for inducible-nitric oxide synthase. J Hepatol. 2014;61:1321–7. doi: 10.1016/j.jhep.2014.07.014.
    1. Morel J, Li JY, Eyenga P, Meiller A, Gustin MP, Bricca G, et al. Early adverse changes in liver microvascular circulation during experimental septic shock are not linked to an absolute nitric oxide deficit. Microvasc Res. 2013;90:187–91. doi: 10.1016/j.mvr.2013.07.005.
    1. Ring A, Stremmel W. The hepatic microvascular responses to sepsis. Semin Thromb Hemost. 2000;26:589–94. doi: 10.1055/s-2000-13215.
    1. Spapen H. Liver perfusion in sepsis, septic shock, and multiorgan failure. Anat Rec (Hoboken) 2008;291:714–20. doi: 10.1002/ar.20646.
    1. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–33. doi: 10.1016/j.chom.2012.06.011.
    1. Hernandez G, Luengo C, Bruhn A, Kattan E, Friedman G, Ospina-Tascon GA, et al. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care. 2014;4:30. doi: 10.1186/s13613-014-0030-z.

Source: PubMed

3
Sottoscrivi