Using mind control to modify cue-reactivity in AUD: the impact of mindfulness-based relapse prevention on real-time fMRI neurofeedback to modify cue-reactivity in alcohol use disorder: a randomized controlled trial

Franziska Weiss, Acelya Aslan, Jingying Zhang, Martin Fungisai Gerchen, Falk Kiefer, Peter Kirsch, Franziska Weiss, Acelya Aslan, Jingying Zhang, Martin Fungisai Gerchen, Falk Kiefer, Peter Kirsch

Abstract

Background: Alcohol Use Disorder is a severe mental disorder affecting the individuals concerned, their family and friends and society as a whole. Despite its high prevalence, novel treatment options remain rather limited. Two innovative interventions used for treating severe disorders are the use of real-time functional magnetic resonance imaging neurofeedback that targets brain regions related to the disorder, and mindfulness-based treatments. In the context of the TRR SFB 265 C04 "Mindfulness-based relapse prevention as an addition to rtfMRI NFB intervention for patients with Alcohol Use Disorder (MiND)" study, both interventions will be combined to a state-of-the art intervention that will use mindfulness-based relapse prevention to improve the efficacy of a real-time neurofeedback intervention targeting the ventral striatum, which is a brain region centrally involved in cue-reactivity to alcohol-related stimuli.

Methods/design: After inclusion, N = 88 patients will be randomly assigned to one of four groups. Two of those groups will receive mindfulness-based relapse prevention. All groups will receive two fMRI sessions and three real-time neurofeedback sessions in a double-blind manner and will regulate either the ventral striatum or the auditory cortex as a control region. Two groups will additionally receive five sessions of mindfulness-based relapse prevention prior to the neurofeedback intervention. After the last fMRI session, the participants will be followed-up monthly for a period of 3 months for an assessment of the relapse rate and clinical effects of the intervention.

Discussion: The results of this study will give further insights into the efficacy of real-time functional magnetic resonance imaging neurofeedback interventions for the treatment of Alcohol Use Disorder. Additionally, the study will provide further insight on neurobiological changes in the brain caused by the neurofeedback intervention as well as by the mindfulness-based relapse prevention. The outcome might be useful to develop new treatment approaches targeting mechanisms of Alcohol Use Disorder with the goal to reduce relapse rates after discharge from the hospital.

Trial registration: This trial is pre-registered at clinicaltrials.gov (trial identifier: NCT04366505; WHO Universal Trial Number (UTN): U1111-1250-2964). Registered 30 March 2020, published 29 April 2020.

Keywords: Addiction; Alcohol dependence; Alcohol use disorder; Cue-reactivity; Mindfulness; Mindfulness-based relapse prevention; Mindfulness-based treatment; Ventral striatum; rtfMRI neurofeedback.

Conflict of interest statement

The authors declare that they do not have competing interests.

Figures

Fig. 1
Fig. 1
Flow chart. Flow diagram of the study procedure. N = 88 AUD participants will be enrolled in the study. They will randomly be assigned to one of four groups, which differ in terms of MBRP and NFB. All groups will be followed-up monthly for 3 months
Fig. 2
Fig. 2
rtfMRI Neurofeedback Setup. The scanner computer reconstructs the obtained images and sends them to a laptop with in-house MATLAB scripts for preprocessing and extraction of the neurofeedback signal. The feedback value calculated is then forwarded to a computer with Presentation software and displayed as a thermometer value. The rights to this figure are reserved by the authors
Fig. 3
Fig. 3
Experimental Design Neurofeedback. a) A fixation cross is presented to the participant in the scanner which is followed by an image of the preferred alcoholic beverage (beer or wine) alongside a thermometer to the left and right. The thermometer value displayed is updated every TR to represent the latest value. The rights to this figure are reserved by the authors
Fig. 4
Fig. 4
Experimental Design Transfer Run. During the transfer run no feedback is shown to the participant and the instruction is to apply the same strategies as in Fig. 3. The rights to this figure are reserved by the authors

References

    1. American Psychiatric Association . Diagnostic and statistical manual of mental disorders. 5. Washington, DC: Author; 2013.
    1. Baer RA. Mindfulness training as a clinical intervention: A conceptual and empirical review. Clin Psychol Sci Prac. 2003;10:125–143.
    1. Bahorik AL, Satre DD, Kline-Simon AH, Weisner CM, Campbell CI. Alcohol, Cannabis, and opioid use disorders, and disease burden in an integrated health care system. J Addict Med. 2017;11(1):3–9. doi: 10.1097/ADM.0000000000000260.
    1. Bechara A, Damasio H. Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002;40(10):1675–1689. doi: 10.1016/s0028-3932(02)00015-5.
    1. Bodhi B. A comprehensive manual of Adhidhamma. Seattle: BPS Pariyatti; 2000.
    1. Boothby LA, Doering PL. Acamprosate for the treatment of alcohol dependence. Clin Ther. 2005;27(6):695–714. doi: 10.1016/j.clinthera.2005.06.015.
    1. Bowen S, Chawla N, Grow J, Marlatt M. Mindfulness-based relapse prevention for addictive disorders: a Clinician’s guide. 2. New York: Guildford Press; 2012.
    1. Bowen S, Witkiewitz K, Clifasefi SL, Grow J, Chawla N, Hsu SH, et al. Relative efficacy of mindfulness-based relapse prevention, standard relapse prevention, and treatment as usual for substance use disorders: a randomized clinical trial. JAMA Psychiatry. 2014;71(5):547–556. doi: 10.1001/jamapsychiatry.2013.4546.
    1. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafo MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–376. doi: 10.1038/nrn3475.
    1. Caria A, de Falco S. Anterior insular cortex regulation in autism spectrum disorders. Front Behav Neurosci. 2015;9:38. doi: 10.3389/fnbeh.2015.00038.
    1. Caria A, Veit R, Sitaram R, Lotze M, Weiskopf N, Grodd W, Birbaumer N. Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage. 2007;35(3):1238–1246. doi: 10.1016/j.neuroimage.2007.01.018.
    1. Cavicchioli M, Movalli M, Maffei C. The clinical efficacy of mindfulness-based treatments for alcohol and drugs use disorders: a meta-analytic review of randomized and nonrandomized controlled trials. Eur Addict Res. 2018;24(3):137–162. doi: 10.1159/000490762.
    1. Cordes JS, Mathiak KA, Dyck M, Alawi EM, Gaber TJ, Zepf FD, et al. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia. Front Behav Neurosci. 2015;9:169. doi: 10.3389/fnbeh.2015.00169.
    1. Cox WM, Subramanian L, Linden DE, Luhrs M, McNamara R, Playle R, et al. Neurofeedback training for alcohol dependence versus treatment as usual: study protocol for a randomized controlled trial. Trials. 2016;17(1):480. doi: 10.1186/s13063-016-1607-7.
    1. Davis DM, Hayes JA. What are the benefits of mindfulness? A practice review of psychotherapy-related research. Psychotherapy (Chic) 2011;48(2):198–208. doi: 10.1037/a0022062.
    1. deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, et al. Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A. 2005;102(51):18626–18631. doi: 10.1073/pnas.0505210102.
    1. Deutsche Forschungsgemeinschaft (DFG) Sicherung guter wissenschaftlicher Praxis, in Sicherung Guter Wissenschaftlicher Praxis: Empfehlungen der Kommission “Selbstkontrolle in der Wissenschaft”. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013.
    1. DiClemente CC, Carbonari JP, Montgomery RP, Hughes SO. The alcohol abstinence self-efficacy scale. J Stud Alcohol. 1994;55(2):141–148. doi: 10.15288/jsa.1994.55.141.
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. doi: 10.3758/bf03193146.
    1. Fede SJ, Dean SF, Manuweera T, Momenan R. A guide to literature informed decisions in the Design of Real Time fMRI Neurofeedback studies: a systematic review. Front Hum Neurosci. 2020;14:60. doi: 10.3389/fnhum.2020.00060.
    1. Fernie G, Cole JC, Goudie AJ, Field M. Risk-taking but not response inhibition or delay discounting predict alcohol consumption in social drinkers. Drug Alcohol Depend. 2010;112(1–2):54–61. doi: 10.1016/j.drugalcdep.2010.05.011.
    1. Frye, D., Zelazo, P. D., & Palfai, T. (1995). Theory of mind and rule-based reasoning. Cogn Dev, 10(4), 483–527. doi:.
    1. Gan G, Guevara A, Marxen M, Neumann M, Junger E, Kobiella A, et al. Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex. Biol Psychiatry. 2014;76(9):698–707. doi: 10.1016/j.biopsych.2013.12.017.
    1. Garland EL, Howard MO. Mindfulness-based treatment of addiction: current state of the field and envisioning the next wave of research. Addict Sci Clin Pract. 2018;13(1):14. doi: 10.1186/s13722-018-0115-3.
    1. Gerchen MF, Kirsch M, Bahs N, Halli P, Gerhardt S, Schafer A, et al. The SyBil-AA real-time fMRI neurofeedback study: protocol of a single-blind randomized controlled trial in alcohol use disorder. BMC Psychiatry. 2018;18(1):12. doi: 10.1186/s12888-018-1604-3.
    1. Goldstein RZ, Leskovjan AC, Hoff AL, Hitzemann R, Bashan F, Khalsa SS, et al. Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia. 2004;42(11):1447–1458. doi: 10.1016/j.neuropsychologia.2004.04.002.
    1. Grant BF, Goldstein RB, Saha TD, Chou SP, Jung J, Zhang H, et al. Epidemiology of DSM-5 alcohol use disorder: results from the National Epidemiologic Survey on alcohol and related conditions III. JAMA Psychiatry. 2015;72(8):757–766. doi: 10.1001/jamapsychiatry.2015.0584.
    1. Hartwell KJ, Hanlon CA, Li X, Borckardt JJ, Canterberry M, Prisciandaro JJ, et al. Individualized real-time fMRI neurofeedback to attenuate craving in nicotine-dependent smokers. J Psychiatry Neurosci. 2016;41(1):48–55. doi: 10.1503/jpn.140200.
    1. Heinz A, Kiefer F, Smolka MN, Endrass T, Beste C, Beck A, et al. Addiction research consortium: losing and regaining control over drug intake (ReCoDe)-from trajectories to mechanisms and interventions. Addict Biol. 2020;25(2):e12866. doi: 10.1111/adb.12866.
    1. Hunt WA, Barnett LW, Branch LG. Relapse rates in addiction programs. J Clin Psychol. 1971;27(4):455–456. doi: 10.1002/1097-4679(197110)27:4<455::aid-jclp2270270412>;2-r.
    1. Kaag AM, Wiers RW, de Vries TJ, Pattij T, Goudriaan AE. Striatal alcohol cue-reactivity is stronger in male than female problem drinkers. Eur J Neurosci. 2019;50(3):2264–2273. doi: 10.1111/ejn.13991.
    1. Kabat-Zinn J. Wherever you go there you are: Mindfulness meditation in everyday life. New York: Hyperion; 1994.
    1. Kabat-Zinn J. Mindfulness-based interventions in context: Past, present, and future. Clin Psychol Sci Prac. 2003;10:144–156.
    1. Kadosh KC, Staunton G. A systematic review of the psychological factors that influence neurofeedback learning outcomes. Neuroimage. 2019;185:545–555. doi: 10.1016/j.neuroimage.2018.10.021.
    1. Karch S, Keeser D, Hummer S, Paolini M, Kirsch V, Karali T, et al. Modulation of craving related brain responses using real-time fMRI in patients with alcohol use disorder. PLoS One. 2015;10(7):e0133034. doi: 10.1371/journal.pone.0133034.
    1. Kendler KS, Ohlsson H, Karriker-Jaffe KJ, Sundquist J, Sundquist K. Social and economic consequences of alcohol use disorder: a longitudinal cohort and co-relative analysis. Psychol Med. 2017;47(5):925–935. doi: 10.1017/S0033291716003032.
    1. Kiefer F, Kirsch M, Bach P, Hoffmann S, Reinhard I, Jorde A, et al. Effects of D-cycloserine on extinction of mesolimbic cue reactivity in alcoholism: a randomized placebo-controlled trial. Psychopharmacology. 2015;232(13):2353–2362. doi: 10.1007/s00213-015-3882-5.
    1. Kim DY, Yoo SS, Tegethoff M, Meinlschmidt G, Lee JH. The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings. J Cogn Neurosci. 2015;27(8):1552–1572. doi: 10.1162/jocn_a_00802.
    1. Kirsch M, Gruber I, Ruf M, Kiefer F, Kirsch P. Real-time functional magnetic resonance imaging neurofeedback can reduce striatal cue-reactivity to alcohol stimuli. Addict Biol. 2016;21(4):982–992. doi: 10.1111/adb.12278.
    1. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, Ochsner KN. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci U S A. 2010;107(33):14811–14816. doi: 10.1073/pnas.1007779107.
    1. Kwako LE, Bickel WK, Goldman D. Addiction biomarkers: dimensional approaches to understanding addiction. Trends Mol Med. 2018;24(2):121–128. doi: 10.1016/j.molmed.2017.12.007.
    1. Li CS, Luo X, Yan P, Bergquist K, Sinha R. Altered impulse control in alcohol dependence: neural measures of stop signal performance. Alcohol Clin Exp Res. 2009;33(4):740–750. doi: 10.1111/j.1530-0277.2008.00891.x.
    1. Naqvi NH, Morgenstern J. Cognitive neuroscience approaches to understanding behavior change in alcohol use disorder treatments. Alcohol Res. 2015;37(1):29–38.
    1. Paret C, Kluetsch R, Zaehringer J, Ruf M, Demirakca T, Bohus M, et al. Alterations of amygdala-prefrontal connectivity with real-time fMRI neurofeedback in BPD patients. Soc Cogn Affect Neurosci. 2016;11(6):952–960. doi: 10.1093/scan/nsw016.
    1. Rance M, Walsh C, Sukhodolsky DG, Pittman B, Qiu M, Kichuk SA, et al. Time course of clinical change following neurofeedback. Neuroimage. 2018;181:807–813. doi: 10.1016/j.neuroimage.2018.05.001.
    1. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18(1):121–133. doi: 10.1111/j.1369-1600.2012.00464.x.
    1. Schacht JP, Anton RF, Randall PK, Li X, Henderson S, Myrick H. Stability of fMRI striatal response to alcohol cues: a hierarchical linear modeling approach. Neuroimage. 2011;56(1):61–68. doi: 10.1016/j.neuroimage.2011.02.004.
    1. Shield KD, Rylett M, Rehm J. Public health successes and missed opportunities. Trends in alcohol consumption and attributable mortality in the WHO European Region, 1990-2014. Copenhagen: World Health Organization. Regional Office for Europe; 2016.
    1. Stoeckel LE, Garrison KA, Ghosh S, Wighton P, Hanlon CA, Gilman JM, et al. Optimizing real time fMRI neurofeedback for therapeutic discovery and development. Neuroimage Clin. 2014;5:245–255. doi: 10.1016/j.nicl.2014.07.002.
    1. Tang YY, Tang R, Posner MI. Brief meditation training induces smoking reduction. Proc Natl Acad Sci U S A. 2013;110(34):13971–13975. doi: 10.1073/pnas.1311887110.
    1. Vollstadt-Klein S, Wichert S, Rabinstein J, Buhler M, Klein O, Ende G, et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction. 2010;105(10):1741–1749. doi: 10.1111/j.1360-0443.2010.03022.x.
    1. Weiss F, Zamoscik V, Schmidt SNL, Halli P, Kirsch P, Gerchen MF. Just a very expensive breathing training? Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback. Neuroimage. 2020;210:116580. doi: 10.1016/j.neuroimage.2020.116580.
    1. Wiers CE, Gladwin TE, Ludwig VU, Gropper S, Stuke H, Gawron CK, et al. Comparing three cognitive biases for alcohol cues in alcohol dependence. Alcohol Alcohol. 2017;52(2):242–248. doi: 10.1093/alcalc/agw063.
    1. World Health Organization. Global Status Report on Alcohol and Health 2018. Geneva: WHO; 2018.
    1. Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, et al. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. Neuroimage. 2013;83:991–1001. doi: 10.1016/j.neuroimage.2013.07.055.
    1. Young KD, Zotev V, Phillips R, Misaki M, Yuan H, Drevets WC, Bodurka J. Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PLoS One. 2014;9(2):e88785. doi: 10.1371/journal.pone.0088785.
    1. Zgierska A, Rabago D, Chawla N, Kushner K, Koehler R, Marlatt A. Mindfulness meditation for substance use disorders: a systematic review. Subst Abus. 2009;30(4):266–294. doi: 10.1080/08897070903250019.

Source: PubMed

3
Sottoscrivi