Impact of intravenous exenatide infusion for perioperative blood glucose control on myocardial ischemia-reperfusion injuries after coronary artery bypass graft surgery: sub study of the phase II/III ExSTRESS randomized trial

Guillaume Besch, Andrea Perrotti, Lucie Salomon du Mont, Marc Puyraveau, Xavier Ben-Said, Maude Baltres, Benoit Barrucand, Guillaume Flicoteaux, Lucie Vettoretti, Emmanuel Samain, Sidney Chocron, Sebastien Pili-Floury, Guillaume Besch, Andrea Perrotti, Lucie Salomon du Mont, Marc Puyraveau, Xavier Ben-Said, Maude Baltres, Benoit Barrucand, Guillaume Flicoteaux, Lucie Vettoretti, Emmanuel Samain, Sidney Chocron, Sebastien Pili-Floury

Abstract

Background: The aim of the study was to investigate whether intravenous (iv) infusion of exenatide, a synthetic GLP-1 receptor agonist, could provide a protective effect against myocardial ischemia-reperfusion injury after coronary artery bypass graft (CABG) surgery.

Methods: A sub study analysis of patients > 18 years admitted for elective CABG and included in the ExSTRESS trial was conducted. Patients were randomized to receive either iv exenatide (1-h bolus of 0.05 µg min-1 followed by a constant infusion of 0.025 µg min-1) (exenatide group) or iv insulin therapy (control group) for blood glucose control (target range 100-139 mg dl-1) during the first 48 h after surgical incision. All serum levels of troponin I measured during routine care in the Cardiac Surgery ICU were recorded. The primary outcome was the highest value of plasma concentration of troponin I measured between 12 and 24 h after ICU admission. The proportion of patients presenting an echocardiographic left ventricular ejection fraction (LVEF) > 50% at the follow-up consultation was compared between the two groups.

Results: Finally, 43 and 49 patients were analyzed in the control and exenatide groups, respectively {age: 69 [61-76] versus 71 [63-75] years; baseline LVEF < 50%: 6 (14%) versus 16 (32%) patients; on-pump surgery: 29 (67%) versus 33 (67%) patients}. The primary outcome did not significantly differ between the two groups (3.34 [1.06-6.19] µg l-1 versus 2.64 [1.29-3.85] µg l-1 in the control and exenatide groups, respectively; mean difference (MD) [95% confidence interval (95% CI)] 0.16 [- 0.25; 0.57], p = 0.54). The highest troponin value measured during the first 72 h in the ICU was 6.34 [1.36-10.90] versus 5.04 [2.39-7.18] µg l-1, in the control and exenatide groups respectively (MD [95% CI] 0.20 [- 0.22; 0.61], p = 0.39). At the follow-up consultation, 5 (12%) versus 8 (16%) patients presented a LVEF < 50% in the control and in the exenatide groups respectively (relative risk [95% CI] 0.68 [0.16; 2.59], p = 0.56).

Conclusions: Postoperative iv exenatide did not provide any additional cardioprotective effect compared to iv insulin in low-risk patients undergoing scheduled CABG surgery. Trial registration ClinicalTrials.gov Identifier NCT01969149, date of registration: January 7th, 2015; EudraCT No. 2009-009254-25 A, date of registration: January 6th, 2009.

Keywords: Cardioprotective effects; Coronary artery bypass; Exenatide; Glucagon-like peptide 1; Incretins; Myocardial reperfusion injury.

Figures

Fig. 1
Fig. 1
Flow-chart of the study according to the CONSORT statement
Fig. 2
Fig. 2
Troponin values in the cardiac surgery intensive care unit. Troponin0–12, troponin12–24, troponin24–48, and troponin48–72 are the highest troponin values measured respectively within 0–12 h, 12–24 h, 24–48 h, and 48–72 h after admission to the cardiac surgery intensive care unit. ap-value for repeated measures ANOVA. bNumber of troponin measurements for each timepoints in the control and in the exenatide groups
Fig. 3
Fig. 3
Brain natriuretic peptide (BNP) values (a) and proportion of patients with BNP ≥ 200 pg/ml (b) in the cardiac surgery intensive care unit. BNP0–12, BNP12–24 and BNP24–48 are the highest BNP values measured within respectively 0–12 h, 12–24 h and 24–48 h after admission to the Cardiac Surgery Intensive Care Unit. ap-value for repeated measures ANOVA. bNumber of BNP measurements for each timepoints in the control and in the exenatide groups

References

    1. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–1135. doi: 10.1056/NEJMra071667.
    1. Sivaraman V, Yellon DM. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther. 2014;19(1):83–96. doi: 10.1177/1074248413499973.
    1. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–2350. doi: 10.1161/CIRCULATIONAHA.107.739938.
    1. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54(1):146–151. doi: 10.2337/diabetes.54.1.146.
    1. Bose AK, Mocanu MM, Carr RD, Yellon DM. Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model. Cardiovasc Drugs Ther. 2005;19(1):9–11. doi: 10.1007/s10557-005-6892-4.
    1. Bose AK, Mocanu MM, Carr RD, Yellon DM. Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway. Cardiovasc Drugs Ther. 2007;21(4):253–256. doi: 10.1007/s10557-007-6030-6.
    1. Kavianipour M, Ehlers MR, Malmberg K, Ronquist G, Ryden L, Wikstrom G, et al. Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides. 2003;24(4):569–578. doi: 10.1016/S0196-9781(03)00108-6.
    1. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110(8):955–961. doi: 10.1161/01.CIR.0000139339.85840.DD.
    1. Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006;317(3):1106–1113. doi: 10.1124/jpet.106.100982.
    1. Robinson E, Tate M, Lockhart S, McPeake C, O’Neill KM, Edgar KS, et al. Metabolically-inactive glucagon-like peptide-1(9–36)amide confers selective protective actions against post-myocardial infarction remodelling. Cardiovasc Diabetol. 2016;15:65. doi: 10.1186/s12933-016-0386-5.
    1. Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ, Jr, Maher TD, et al. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007;100(5):824–829. doi: 10.1016/j.amjcard.2007.05.022.
    1. Mussig K, Oncu A, Lindauer P, Heininger A, Aebert H, Unertl K, et al. Effects of intravenous glucagon-like peptide-1 on glucose control and hemodynamics after coronary artery bypass surgery in patients with type 2 diabetes. Am J Cardiol. 2008;102(5):646–647. doi: 10.1016/j.amjcard.2008.06.029.
    1. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109(8):962–965. doi: 10.1161/01.CIR.0000120505.91348.58.
    1. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12(9):694–699. doi: 10.1016/j.cardfail.2006.08.211.
    1. Lonborg J, Kelbaek H, Vejlstrup N, Botker HE, Kim WY, Holmvang L, et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv. 2012;5(2):288–295. doi: 10.1161/CIRCINTERVENTIONS.112.968388.
    1. Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–1499. doi: 10.1093/eurheartj/ehr309.
    1. Woo JS, Kim W, Ha SJ, Kim JB, Kim SJ, Kim WS, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol. 2013;33(9):2252–2260. doi: 10.1161/ATVBAHA.113.301586.
    1. Lonborg J, Vejlstrup N, Kelbaek H, Nepper-Christensen L, Jorgensen E, Helqvist S, et al. Impact of acute hyperglycemia on myocardial infarct size, area at risk, and salvage in patients with STEMI and the association with exenatide treatment: results from a randomized study. Diabetes. 2014;63(7):2474–2485. doi: 10.2337/db13-1849.
    1. Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53(6):501–510. doi: 10.1016/j.jacc.2008.10.033.
    1. Besch G, Perrotti A, Mauny F, Puyraveau M, Baltres M, Flicoteaux G, et al. Clinical effectiveness of intravenous exenatide infusion in perioperative glycemic control after coronary artery bypass graft surgery: a phase II/III randomized trial. Anesthesiology. 2017;127:775–787. doi: 10.1097/ALN.0000000000001838.
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–470. doi: 10.7326/0003-4819-130-6-199903160-00002.
    1. Studer C, Sankou W, Penfornis A, Pili-Floury S, Puyraveau M, Cordier A, et al. Efficacy and safety of an insulin infusion protocol during and after cardiac surgery. Diabetes Metab. 2010;36(1):71–78. doi: 10.1016/j.diabet.2009.05.008.
    1. Perrotti A, Luporsi P, Durst C, Vernerey D, Chocron S. Early detection of asymptomatic bypass graft abnormalities using a cardiac troponin I ratio following coronary artery bypass surgery. J Card Surg. 2015;30(4):319–323. doi: 10.1111/jocs.12517.
    1. Perneger TV, Leplege A, Etter JF. Cross-cultural adaptation of a psychometric instrument: two methods compared. J Clin Epidemiol. 1999;52(11):1037–1046. doi: 10.1016/S0895-4356(99)00088-8.
    1. Domanski MJ, Farkouh ME. Prognostic significance of post-CABG enzyme elevations. Anesth Analg. 2017;125(4):1102–1103. doi: 10.1213/ANE.0000000000002424.
    1. Domanski MJ, Mahaffey K, Hasselblad V, Brener SJ, Smith PK, Hillis G, et al. Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery. JAMA. 2011;305(6):585–591. doi: 10.1001/jama.2011.99.
    1. Muehlschlegel JD, Perry TE, Liu KY, Nascimben L, Fox AA, Collard CD, et al. Troponin is superior to electrocardiogram and creatinine kinase MB for predicting clinically significant myocardial injury after coronary artery bypass grafting. Eur Heart J. 2009;30(13):1574–1583. doi: 10.1093/eurheartj/ehp134.
    1. Fleming TR. One-sample multiple testing procedure for phase II clinical trials. Biometrics. 1982;38(1):143–151. doi: 10.2307/2530297.
    1. Giblett JP, Axell RG, White PA, Clarke SJ, McCormick L, Read PA, et al. Glucagon-like peptide-1 derived cardioprotection does not utilize a KATP-channel dependent pathway: mechanistic insights from human supply and demand ischemia studies. Cardiovasc Diabetol. 2016;15:99. doi: 10.1186/s12933-016-0416-3.
    1. Ha SJ, Kim W, Woo JS, Kim JB, Kim SJ, Kim WS, et al. Preventive effects of exenatide on endothelial dysfunction induced by ischemia-reperfusion injury via KATP channels. Arterioscler Thromb Vasc Biol. 2012;32(2):474–480. doi: 10.1161/ATVBAHA.110.222653.
    1. Wiberg S, Hassager C, Schmidt H, Thomsen JH, Frydland M, Lindholm MG, et al. Neuroprotective effects of the glucagon-like peptide-1 analog exenatide after out-of-hospital cardiac arrest: a randomized controlled trial. Circulation. 2016;134(25):2115–2124. doi: 10.1161/CIRCULATIONAHA.116.024088.
    1. Abuannadi M, Kosiborod M, Riggs L, House JA, Hamburg MS, Kennedy KF, et al. Management of hyperglycemia with the administration of intravenous exenatide to patients in the cardiac intensive care unit. Endocr Pract. 2013;19(1):81–90. doi: 10.4158/EP12196.OR.
    1. Bernink FJ, Timmers L, Diamant M, Scholte M, Beek AM, Kamp O, et al. Effect of additional treatment with EXenatide in patients with an Acute Myocardial Infarction: the EXAMI study. Int J Cardiol. 2013;167(1):289–290. doi: 10.1016/j.ijcard.2012.09.204.
    1. Nakadate Y, Sato H, Oguchi T, Sato T, Kawakami A, Ishiyama T, et al. Glycemia and the cardioprotective effects of insulin pre-conditioning in the isolated rat heart. Cardiovasc Diabetol. 2017;16(1):43. doi: 10.1186/s12933-017-0527-5.
    1. Baines CP, Wang L, Cohen MV, Downey JM. Myocardial protection by insulin is dependent on phospatidylinositol 3-kinase but not protein kinase C or KATP channels in the isolated rabbit heart. Basic Res Cardiol. 1999;94(3):188–198. doi: 10.1007/s003950050142.
    1. Jonassen AK, Brar BK, Mjos OD, Sack MN, Latchman DS, Yellon DM. Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti-apoptotic mechanism. J Mol Cell Cardiol. 2000;32(5):757–764. doi: 10.1006/jmcc.2000.1118.
    1. Carvalho G, Pelletier P, Albacker T, Lachapelle K, Joanisse DR, Hatzakorzian R, et al. Cardioprotective effects of glucose and insulin administration while maintaining normoglycemia (GIN therapy) in patients undergoing coronary artery bypass grafting. J Clin Endocrinol Metab. 2011;96(5):1469–1477. doi: 10.1210/jc.2010-1934.
    1. Lebherz C, Kahles F, Piotrowski K, Vogeser M, Foldenauer AC, Nassau K, et al. Interleukin-6 predicts inflammation-induced increase of Glucagon-like peptide-1 in humans in response to cardiac surgery with association to parameters of glucose metabolism. Cardiovasc Diabetol. 2016;15:21. doi: 10.1186/s12933-016-0330-8.
    1. Alburquerque-Bejar JJ, Barba I, Inserte J, Miro-Casas E, Ruiz-Meana M, Poncelas M, et al. Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc Res. 2015;107(2):246–254. doi: 10.1093/cvr/cvv171.
    1. Lemoine S, Tritapepe L, Hanouz JL, Puddu PE. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion: anaesthetic post-conditioning potentially translatable to humans? Br J Anaesth. 2016;116(4):456–475. doi: 10.1093/bja/aev451.
    1. Mather KJ, Considine RV, Hamilton L, Patel NA, Mathias C, Territo W, et al. Combination GLP-1 and insulin treatment fails to alter myocardial fuel selection versus insulin alone in type 2 diabetes. J Clin Endocrinol Metab. 2018;103:3456–3465. doi: 10.1210/jc.2018-00712.
    1. Gejl M, Sondergaard HM, Stecher C, Bibby BM, Moller N, Botker HE, et al. Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(7):E1165–E1169. doi: 10.1210/jc.2011-3456.
    1. Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol. 2017;16(1):155. doi: 10.1186/s12933-017-0638-z.
    1. Chen WR, Chen YD, Tian F, Yang N, Cheng LQ, Hu SY, et al. Effects of liraglutide on reperfusion injury in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging. 2016;9(12):e005146. doi: 10.1161/CIRCIMAGING.116.005146.
    1. Paelestik KB, Jespersen NR, Jensen RV, Johnsen J, Botker HE, Kristiansen SB. Effects of hypoglycemia on myocardial susceptibility to ischemia-reperfusion injury and preconditioning in hearts from rats with and without type 2 diabetes. Cardiovasc Diabetol. 2017;16(1):148. doi: 10.1186/s12933-017-0628-1.
    1. Huang M, Wei R, Wang Y, Su T, Li Q, Yang X, et al. Protective effect of glucagon-like peptide-1 agents on reperfusion injury for acute myocardial infarction: a meta-analysis of randomized controlled trials. Ann Med. 2017;49(7):552–561. doi: 10.1080/07853890.2017.1306653.
    1. Lips M, Mraz M, Klouckova J, Kopecky P, Dobias M, Krizova J, et al. Effect of continuous exenatide infusion on cardiac function and peri-operative glucose control in patients undergoing cardiac surgery: asingle-blind, randomized controlled trial. Diabetes Obes Metab. 2017;19(12):1818–1822. doi: 10.1111/dom.13029.
    1. Nikolaidis LA, Elahi D, Shen YT, Shannon RP. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005;289(6):H2401–H2408. doi: 10.1152/ajpheart.00347.2005.

Source: PubMed

3
Sottoscrivi