Testing the Mechanism of Action of Computerized Cognitive Training in Young Adults with Depression: Protocol for a Blinded, Randomized, Controlled Treatment Trial

Sara N Rushia, Sophie Schiff, Dakota A Egglefield, Jeffrey N Motter, Alice Grinberg, Daniel G Saldana, Al Amira Safa Shehab, Jin Fan, Joel R Sneed, Sara N Rushia, Sophie Schiff, Dakota A Egglefield, Jeffrey N Motter, Alice Grinberg, Daniel G Saldana, Al Amira Safa Shehab, Jin Fan, Joel R Sneed

Abstract

Background: Depression is associated with a broad range of cognitive deficits, including processing speed (PS) and executive functioning (EF). Cognitive symptoms commonly persist with the resolution of affective symptoms and increase risk of relapse and recurrence. The cognitive control network is comprised of brain areas implicated in EF and mood regulatory functions. Prior research has demonstrated the effectiveness of computerized cognitive training (CCT) focused on PS and EF in mitigating both cognitive and affective symptoms of depression.

Methods: Ninety participants aged 18-29 with a current diagnosis of major depressive disorder or persistent depressive disorder, or a Hamilton Depression Rating Scale score ≥12, will be randomized to either PS/EF CCT, verbal CCT, or waitlist control. Participants in the active groups will complete 15 min of training 5 days/week for 8 weeks. Clinical and neuropsychological assessments will be completed at baseline, week 4, week 8, and 3-month follow-up. Structural and functional magnetic resonance imaging (fMRI) will be completed at baseline and week 8. We will compare changes in mood, cognition, daily functioning, and fMRI data. We will explore cognitive control network functioning using resting-state and task-based fMRI.

Results: Recruitment began in October 2019; we expect to finish recruitment by April 2022 and subsequently begin data analysis.

Conclusions: This study is innovative in that it will include both active and waitlist control conditions and will explore changes in neural activation. Identifying the neural networks associated with improvements following CCT will allow for the development of more precise and effective interventions.

Trial registration: ClinicalTrials.gov NCT03869463; https://ichgcp.net/clinical-trials-registry/NCT03869463.

Keywords: clinical trials; computerized cognitive training; depression; magnetic resonance imaging.

Conflict of interest statement

CONFLICTS OF INTEREST SNR, SS, DAE, JNM, AG, DGS, AS, JF, and JRS have no conflicts of interest.

References

    1. Hasin DS, Sarvet AL, Meyers JL, Saha TD, Ruan WJ, Stohi M, et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry. 2018;75:4:336–46.
    1. Breslau J, Lane M, Sampson N, Kessler RC. Mental disorders and subsequent educational attainment in a US national sample. J Psychiatr Res. 2008;42(9):708–16. doi: 10.1016/j.jpsychires.2008.01.016
    1. Lerner D, Henke RM. What does research tell us about depression, job performance, and work productivity? J Occup Environ Med. 2008;50(4):401–10. doi: 10.1097/JOM.0b013e31816bae50
    1. Tsuchiya M, Kawakami N, Ono Y, Nakane Y, Nakamura Y, Fukao A, et al. Impact of mental disorders on work performance in a community sample of workers in Japan: The world mental health Japan survey 2002–2005. Psychiatry Res. 2012;198(1):140–5. doi: 10.1016/j.psychres.2011.10.014
    1. Wahlbeck K, McDaid D. Actions to alleviate the mental health impact of the economic crisis. World Psychiatry. 2012;11(3):139–45.
    1. Bautovich A, Katz I, Smith M, Loo CK, Harvey SB. Depression and chronic kidney disease: A review for clinicians. Aust N Z J Psychiatry. 2014;48(6):530–41.
    1. Hayley AC, Williams LJ, Venugopal K, Kennedy GA, Berk M, Pasco JA. The relationships between insomnia, sleep apnoea and depression: Findings from the American national health and nutrition examination survey, 2005–2008. Aust N Z J Psychiatry. 2015;49(2):156–70. doi: 10.1177/0004867414546700
    1. Poongothai S, Anjana RM, Radha S, Sundari BB, Shanthi Rani CS, Mohan V. Epidemiology of depression and its relationship to diabetes in India. J Assoc Physicians India. 2017;65(8):60–6.
    1. Bruffaerts R, Kessler RC, Demyttenaere K, Bonnewyn A, Nock MK. Examination of the population attributable risk of different risk factor domains for suicidal thoughts and behaviors. J Affect Disord. 2015;187:66–72. doi: 10.1016/j.jad.2015.07.042
    1. Sneed JR, Johnson JG, Cohen P, Gilligan C, Chen H, Crawford TN, et al. Gender differences in the age-changing relationship between instrumentality and family contact in emerging adulthood. Dev Psychol. 2006;42(5):787–97. doi: 10.1037/0012-1649.42.5.787
    1. Arnett JJ, Zukauskiene R, Sugimura K. The new life stage of emerging adulthood at ages 18–29 years: implications for mental health. Lancet Psychiat. 2014;l(7):569–76. doi: 10.1016/S2215-0366(14)00080-7
    1. Hirschfeld RMA, Montgomery SA, Aguglia E, Amore M, Delgado PL, Gastpar M, et al. Partial response and nonresponse to antidepressant therapy: Current approaches and treatment options. J Clin Psychiatry. 2002;63(9):826–37.
    1. Hybels CF, Blazer DG, Pieper CF. Toward a threshold for subthreshold depression: An analysis of correlates of depression by severity of symptoms using data from an elderly community sample. Gerontologist. 2001;41(3):357–65.
    1. Rodriguez MR, Nuevo R, Chatterji S, Ayuso-Mateos JL. Definitions and factors associated with subthreshold depressive conditions: A systematic review. BMC Psychiatry. 2012;12:181. doi: 10.1186/1471-244X-12-181
    1. Carrellas NW, Biederman J, Uchida M. How prevalent and morbid are subthreshold manifestations of major depression in adolescents? A literature review. J Affect Disord. 2017;210:166–73. doi: 10.1016/j.jad.2016.12.037
    1. Cuijpers P, Vogelzangs N, Twisk J, Kleiboer A, Li J, Penninx BW. Differential mortality rates in major and subthreshold depression: Meta-analysis of studies that measured both. Br J Psychiatry. 2013;202(01):22–7. doi: 10.1192/bjp.bp.112.112169
    1. Ho CS, Jin A, Nyunt MSZ, Feng L, Ng TP. Mortality rates in major and subthreshold depression: 10-year follow-up of a Singaporean population cohort of older adults. Postgrad Med. 2016;128(7):642–47. doi: 10.1080/00325481.2016.1221319
    1. Goodall J, Fisher C, Hetrick S, Phillips L, Parrish E, Allott K. Neurocognitive functioning in depressed young people: A systematic review and meta-analysis. Neuropsychol Rev. 2018;28(2):216–31.
    1. Lee RSC, Hermens DF, Porter MA, Redoblado-Hodge MA. A meta-analysis of cognitive deficits in first-episode major depressive disorder. J Affect Disord. 2012;140(2):113–24. doi: 10.1016/j.jad.2011.10.023
    1. Herrera-Guzman I, Gudayol-Ferre E, Herrera-Abarca JE, Herrera-Guzman D, Montelongo-Pedraza P, Blazquez FP, et al. Major depressive disorder in recovery and neuropsychological functioning: Effects of selective serotonin reuptake inhibitor and dual inhibitor depression treatments on residual cognitive deficits in patients with major depressive disorder in recovery. J Affect Disord. 2010;123(1):341–50. doi: 10.1016/j.jad.2009.10.009
    1. Fossati P, Ergis AM, Allilaire JF. Executive functioning in unipolar depression: A review. L’Encephale. 2002;28(2):97–107.
    1. Bortolato B, Miskowiak KW, Kohler CA, Maes M, Fernandes BS, Berk M, et al. Cognitive remission: A novel objective for the treatment of major depression? BMC Med. 2016;14(1):9. doi: 10.1186/s12916-016-0560-3
    1. Majer M, Ising M, Kunzel H, Binder EB, Holsboer F, Modell S, et al. Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychol Med Camb. 2004;34(8):1453–63.
    1. Woo YS, Rosenblat JD, Kakar R, Bahk W-M, McIntyre RS. Cognitive deficits as a mediator of poor occupational function in remitted major depressive disorder patients. Clin Psychopharmacol Neurosci. 2016;14(1):1–16. doi: 10.9758/cpn.2016.14.1.1
    1. Dunkin JJ, Leuchter AF, Cook IA, Kasl-Godley JE, Abrams M, Rosenberg-Thompson S. Executive dysfunction predicts nonresponse to fluoxetine in major depression. J Affect Disord. 2000;60(1):13–23. doi: 10.1016/S0165-0327(99)00157-3
    1. Johnco C, Wuthrich VM, Rapee RM. The impact of late-life anxiety and depression on cognitive flexibility and cognitive restructuring skill acquisition. Depress Anxiety. 2015;32(10):754–62. doi: 10.1002/da.22375
    1. Ahern E, Semkovska M. Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology. 2017;31(1):52–72. doi: 10.1037/neu0000319
    1. Kertzman S, Reznik I, Hornik-Lurie T, Weizman A, Kotler M, Amital D. Stroop performance in major depression: Selective attention impairment or psychomotor slowness? J Affect Disord. 2010;122(1):167–73. doi: 10.1016/j.jad.2009.08.009
    1. Gu C, He H, Duan H, Su Z, Chen H, Gan J. Predictors of neurocognitive impairment at 2years after a first-episode major depressive disorder. Compr Psychiatry. 2016;68:24–33. doi: 10.1016/j.comppsych.2016.03.009
    1. Bredemeier K, Warren SL, Berenbaum H, Miller GA, Heller W. Executive function deficits associated with current and past major depressive symptoms. J Affect Disord. 2016;204:226–33. doi: 10.1016/j.jad.2016.03.070
    1. Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychol Bub. 2013;139(1):81–132. doi: 10.1037/a0028727
    1. Baune BT, Fuhr M, Air T, Hering C. Neuropsychological functioning in adolescents and young adults with major depressive disorder - A review. Psychiatry Res. 2014;218(3):261–71. doi: 10.1016/j.psychres.2014.04.052
    1. Biringer E, Lundervold A, Stordal K, Mykletun A, Egeland J, Bottlender R, et al. Executive function improvement upon remission of recurrent unipolar depression. Eur Arch Psychiatry Clin Neurosci. 2005;255(6):373–80. doi: 10.1007/s00406-005-0577-7
    1. Schmid M, Hammar A. A follow-up study of first episode major depressive disorder. Impairment in inhibition and semantic fluency—Potential predictors for relapse? Front Psychol. 2013;4:633. doi: 10.3389/fpsyg.2013.00633
    1. Kail R, Salthouse TA. Processing speed as a mental capacity. Acta Psychol. 1994;86(2):199–225. doi: 10.1016/0001-6918(94)90003-5
    1. Harvey PD, McGurk SR, Mahncke H, Wykes T. Controversies in computerized cognitive training. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(11):907–15. doi: 10.1016/j.bpsc.2018.06.008
    1. Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J, Koepke KM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296(23):2805–14. doi: 10.1001/jama.296.23.2805
    1. Mahncke HW, Connor BB, Appelman J, Ahsanuddin ON, Hardy JL, Wood RA, et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proc Natl Acad Sci USA. 2006;103(33):12523–28. doi: 10.1073/pnas.0605194103
    1. Rapport MD, Orban SA, Kofler MJ, Friedman LM. Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic, and behavioral outcomes. Clin Psychol Rev. 2013;33(8):1237–52. doi: 10.1016/j.cpr.2013.08.005
    1. van der Donk M, Hiemstra-Beernink A-C, Tjeenk-Kalff A, van der Leij A, Lindauer R. Cognitive training for children with ADHD: A randomized controlled trial of cogmed working memory training and ‘paying attention in class’. Front Psychol. 2015;6:1081. doi: 10.3389/fpsyg.2015.01081
    1. Stern A, Malik E, Poliak Y, Bonne O, Maeir A. The efficacy of computerized cognitive training in adults with ADHD: A randomized controlled trial. J Atten Disord. 2016;20(12):991–1003. doi: 10.1177/1087054714529815
    1. Fisher M, Holland C, Merzenich MM, Vinogradov S. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. Am J Psychiatry. 2009;166(7):805–11. doi: 10.1176/appi.ajp.2009.08050757
    1. Preiss M, Shatil E, Cermakova R, Cimermannova D, Flesher I. Personalized cognitive training in unipolar and bipolar disorder: A study of cognitive functioning. Front Hum Neurosci. 2013;7:108. doi: 10.3389/fnhum.2013.00108
    1. Salazar AM, Warden DL, Schwab K, Spector J, Braverman S, Walter J, et al. Cognitive rehabilitation for traumatic brain injury: A randomized trial. JAMA. 2000;283(23):3075–81. doi: 10.1001/jama.283.23.3075
    1. Han K, Martinez D, Chapman SB, Krawczyk DC. Neural correlates of reduced depressive symptoms following cognitive training for chronic traumatic brain injury. Hum Brain Mapp. 2018. doi: 10.1002/hbm.24052
    1. Li H, Li J, Li N, Li B, Wang P, Zhou T. Cognitive intervention for persons with mild cognitive impairment: A meta-analysis. Ageing Res Rev. 2011;10(2):285–96. doi: 10.1016/j.arr.2010.11.003
    1. Sitzer DI, Twamley EW, Jeste DV. Cognitive training in Alzheimer’s disease: A meta-analysis of the literature. Acta Psychiatr Scand. 114(2):75–90. doi: 10.1111/j.l600-0447.2006.00789.x
    1. Motter JN, Pimontel MA, Rindskopf D, Devanand DP, Doraiswamy PM, Sneed JR. Computerized cognitive training and functional recovery in major depressive disorder: A meta-analysis. J Affect Disord. 2016;189:184–91. doi: 10.1016/j.jad.2015.09.022
    1. Wolinsky FD, Mahncke HW, Weg MWV, Ellis CG, Solé-Violán J, López-Rodríguez M, et al. The ACTIVE cognitive training interventions and the onset of and recovery from suspected clinical depression. J Gerontol B Psychol Sci Soc Sci. 2009;64B(5):577–85. doi: 10.1093/geronb/gbp061
    1. Wolinsky FD, Unverzagt FW, Smith DM, Jones R, Wright E, Tennstedt SL. The effects of the ACTIVE cognitive training trial on clinically relevant declines in health-related quality of life. J Gerontol B Psychol Sci Soc Sci. 2006;61(5):S281–7.
    1. Wolinsky FD, Vander Weg MW, Martin R, Unverzagt FW, Willis SL, Marsiske M, et al. Does cognitive training improve internal locus of control among older adults? J Gerontol B Psychol Sci Soc Sci. 2010;65(5):591–8. doi: 10.1093/geronb/gbp117
    1. Brehmer Y, Westerberg H, Bäckman L. Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Front Hum Neurosci. 2012;6:63. doi: 10.3389/fnhum.2012.00063
    1. Burke LA, Baldwin TT. Workforce training transfer: A study of the effect of relapse prevention training and transfer climate. Hum Resour Manage. 38(3):227–41.
    1. Dahlin E, Nyberg L, Bäckman L, Neely AS. Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychol Aging. 2008;23(4):720–30. doi: 10.1037/a0014296
    1. Heinzel S, Schulte S, Onken J, Duong Q-L, Riemer TG, Heinz A, et al. Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2014;21(2):146–73. doi: 10.1080/13825585.2013.790338
    1. Schmiedek F, Lövdén M, Lindenberger U. Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Front Aging Neurosci. 2010;2:27. doi: 10.3389/fnagi.2010.00027
    1. Wass SV, Scerif G, Johnson MH. Training attentional control and working memory—Is younger, better? Dev Rev. 2012;32(4):360–87. doi: 10.1016/j.dr.2012.07.001
    1. Douglas KM, Porter RJ. Longitudinal assessment of neuropsychological function in major depression. Aust N Z J Psychiatry. 2009;43(12):1105–17. doi: 10.3109/00048670903279887
    1. Motter JN, Devanand DP, Doraiswamy PM, Sneed JR. Computerized cognitive training for major depressive disorder: What’s next? Front Psychiatry. 2015;6:137. doi: 10.3389/fpsyt.2015.00137
    1. Motter JN, Grinberg A, Lieberman DH, Iqnaibi WB, Sneed JR. Computerized cogntive training in young adults with depression: Effects on mood, cognition, and everyday functioning. J Affect Disord. 2019;245:28–37.
    1. Fan J An information theory account of cognitive control. Front Hum Neurosci. 2014;8:680.
    1. Koziol LF. Cognitive control, reward, and the basal ganglia In: Koziol LF, editor. The Myth of Executive Functioning: Missing Elements in Conceptualization, Evaluation, and Assessment. Cham (Switzerland): Springer; 2014. p. 61–4.
    1. Rossi AF, Pessoa L, Desimone R, Ungerleider LG. The prefrontal cortex and the executive control of attention. Exp Brain Res. 2009;192(3):489.
    1. Corbetta M Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proc Natl Acad Sci U S A. 1998;95(3):831–8.
    1. Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104(26):11073–8.
    1. Wu T, Wang X, Wu Q, Spagna A, Yang J, Yuan C, et al. Anterior insular cortex is a bottleneck of cognitive control. NeuroImage. 2019;(195):490–504.
    1. Langenecker SA, Kennedy SE, Guidotti LM, Briceno EM, Own LS, Hooven T, et al. Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biol Psychiatry. 2007;62(11):1272–80. doi: 10.1016/j.biopsych.2007.02.019
    1. Fales CL, Barch DM, Rundle MM, Mintun MA, Mathews J, Snyder AZ, et al. Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression. J Affect Disord. 2009;112(1):206–11. doi: 10.1016/j.jad.2008.04.027
    1. Wu T, Dufford AJ, Egan LJ, Mackie M-A, Chen C, Yuan C, et al. Hick-Hyman law is mediated by the cognitive control network in the brain. Cereb Cortex. 2018;28(7):2267–82.
    1. Davey CG, Yucel M, Allen NB, Harrison BJ. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder. Front Psychiatry. 2012;3:14. doi: 10.3389/fpsyt.2012.00014
    1. Vasic N, Walter H, Sambataro F, Wolf RC. Aberrant functional connectivity of dorsolateral prefrontal and cingulate networks in patients with major depression during working memory processing. Psychol Med. 2009;39(6):977–87. doi: 10.1017/S0033291708004443
    1. Hwang JW, Egorova N, Yang XQ, Zhang WY, Chen J, Yang XY, et al. Subthreshold depression is associated with impaired resting-state functional connectivity of the cognitive control network. Transl Psychiatry. 2015;5(11):e683. doi: 10.1038/tp.2015.174
    1. Breukelaar IA, Antees C, Grieve SM, Foster SL, Gomes L, Williams LM, et al. Cognitive control network anatomy correlates with neurocognitive behavior: A longitudinal study. Hum Brain Mapp. 38(2):631–43. doi: 10.1002/hbm.23401
    1. Zhang K, Zhu Y, Zhu Y, et al. Molecular, functional, and structural imaging of major depressive disorder. Neurosci Bull. 2016;32(3):273–85. doi: 10.1007/s12264-016-0030-0
    1. Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ. The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry. 2002;59(7):597–604. doi: 10.1001/archpsyc.59.7.597
    1. Hulvershorn LA, Cullen K, Anand A. Toward dysfunctional connectivity: A review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging Behav. 2011;5(4):307–28. doi: 10.1007/s11682-011-9134-3
    1. Zhu X, Wang X, Xiao J, Liao L, Zhong M, Wang W, et al. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol Psychiatry. 2012;71(7):611–7. doi: 10.1016/j.biopsych.2011.10.035
    1. Li C-T, Lin C-P, Chou K-H, Chen I-Y, Hsieh J-C, Wu C-L, et al. Structural and cognitive deficits in remitting and non-remitting recurrent depression: A voxel-based morphometric study. NeuroImage. 2010;50(1):347–56. doi: 10.1016/j.neuroimage.2009.11.021
    1. Boot WR, Simons DJ, Stothart C, Stutts C. The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspect Psychol Sci. 2013;8(4):445–54. doi: 10.1177/1745691613491271
    1. Simons DJ, Boot WR, Charness N, Gathercole SE, Chabris CF, Hambrick DZ, et al. Do “brain-training” programs work? Psychol Sci Public Interest. 2016;17(3):103–86. doi: 10.1177/1529100616661983
    1. Smith A Record shares of Americans now own smartphones, have home broadband. Pew Res Cent. January 2017. Available from: . Accessed 2018 Jun 12.
    1. Zimmerman M, Martinez JH, Young D, Chelminski I, Dalrymple K. Severity classification on the Hamilton depression rating scale. J Affect Disord. 2013;150(2):384–8. doi: 10.1016/j.jad.2013.04.028
    1. Holländare F, Andersson G, Engström I. A comparison of psychometric properties between internet and paper versions of two depression instruments (BDI-II and MADRS-S) administered to clinic patients. J Med Internet Res. 2010;12(5). doi: 10.2196/jmir.1392
    1. Calkins AW, McMorran KE, Siegle GJ, Otto MW. The effects of computerized cognitive control training on community adults with depressed mood. Behav Cogn Psychother. 2015;43(5):578–89. doi: 10.1017/S1352465814000046
    1. Bowie CR, Gupta M, Holshausen K, Jokic R, Best M, Milev R. Cognitive remediation for treatment-resistant depression: Effects on cognition and functioning and the role of online homework. J Nerv Ment Dis. 2013;201(8):680–5. doi: 10.1097/NMD.0b013e31829c5030
    1. Button KS, Kounali D, Thomas L, Wiles NJ, Peters TJ, Welton NJ, et al. Minimal clinically important difference on the Beck Depression Inventory-II according to the patient’s perspective. Psychol Med. 2015;45(15):3269–79. doi: 10.1017/S0033291715001270
    1. Suicide Prevention Resource Center (SPRC). Suicide assessment five-step evaluation and triage SAFE-T pocket card. Suicide Prevention Resource Center website; Avalable from: . Accessed 2020 Mar 14.
    1. Posner K, Brown GK, Stanley B, Brent DA, Yershova KV, Oquendo MA, et al. The Columbia-Suicide Severity Rating Scale: Initial validity and internal consistency findings from three multisite studies with adolescents and adults. AJP. 2011;168(12):1266–77. doi: 10.1176/appi.ajp.20n.10111704
    1. Rutherford BR, Roose SP, Sneed J. Mind over medicine: The influence of expectations on antidepressant response. J Am Psychoanal Assoc. 2009;57(2):456–60. doi: 10.1177/00030651090570020909
    1. Rutherford BR, Sneed JR, Roose SP. Does study design influence outcome? Psychother Psychosom. 2009;78(3):172–81. doi: 10.1159/000209348
    1. Schafer J, Olsen M. Multiple imputation for multivariate missing-data problems: A data analyst’s perspective. Multivar Behav Res. 1998;33(4):545–71. doi: 10.1207/s15327906mbr3304_5
    1. Schafer JL, Graham JW. Missing data: Our view of the state of the art. Psychol Methods. 2002;7(2):147–77. doi: 10.1037/1082-989X.7.2.147
    1. Singer JD. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. J Educ Behav Stat. 1998;23(4):323–55. doi: 10.3102/10769986023004323
    1. Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. New York (NY, US): Oxford University Press; 2003.
    1. Hox JJ. Multilevel Analysis: Techniques and Applications. Mahwah (NJ, US): Lawrence Erlbaum Associates; 2002.
    1. Cohen J, Cohen P, West SG, Aiken LS. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed Mahwah (NJ, US): Lawrence Erlbaum Associates; 2003.
    1. Fleiss JL. Design and Analysis of Clinical Experiments. New York (NY, US): John Wiley & Sons, Inc.;1999.
    1. Champely S, Ekstrom C, Dalgaard P. Pwr: Basic functions for power analysis. CRAN-R Project website; Available from: . Accessed 2020 Mar 14.
    1. Donohue MC. Longpower: Sample size calculations for longitudinal data. Available from: . Accessed 2020 Mar 14.
    1. Lu K, Luo X, Chen P-Y. Sample size estimation for repeated measures analysis in randomized clinical trials with missing data. Int J Biostat. 2008;4(1):9. doi: 10.2202/1557-4679.1098
    1. R Core Team. R: A language and environment for statistical computing. Available from: . Accessed 2020 Mar 14.
    1. Cooper AA, Conklin LR. Dropout from individual psychotherapy for major depression: A meta-analysis of randomized clinical trials. Clin Psychol Rev. 2015;40:57–65. doi: 10.1016/j.cpr.2015.05.001
    1. Schulz KP, Clerkin SM, Halperin JM, Newcorn JH, Tang CY, Fan J. Dissociable neural effects of stimulus valence and preceding context during the inhibition of responses to emotional faces. Hum Brain Mapp. 2009;30(9):2821–33. doi: 10.1002/hbm.20706
    1. Elgamel S, McKinnon MC, Ramakrishnan K, Joffe RT, MacQueen G. Successful computer-assisted cognitive remediation therapy in patients with unipolar depression: A proof of principle study. Psychol Med Camb. 2007;37(9):1229–38. 10.1017/S0033291707001110
    1. Alvarez LM, Cortes Sotres JF, Leon SO, Estrella J, Sanchez Sosa JJ. Computer program in the treatment for major depression and cognitive impairment in university students. Comput Hum Behav. 2008;24(3):816–26. doi: 10.1016/j.chb.2007.02.013
    1. Lohman MC, Rebok GW, Spira AP, Parisi JM, Gross AL, Kueider AM. Depressive symptoms and memory performance among older adults: Results from the ACTIVE memory training Intervention. J Aging Health. 2013;25(8_suppl):209S–29. doi: 10.1177/0898264312460573
    1. Segrave RA, Arnold S, Hoy K, Fitzgerald PB. Concurrent cognitive control training augments the antidepressant efficacy of tDCS: A pilot study. Brain Stimulat. 2014;7(2):325–31. doi: 10.1016/j.brs.2013.12.008
    1. Owens M, Koster EHW, Derakshan N. Improving attention control in dysphoria through cognitive training: Transfer effects on working memory capacity and filtering efficiency. Psychophysiology. 2013;50(3):297–307. doi: 10.1111/psyp.12010

Source: PubMed

3
Sottoscrivi