Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation

Grazia F Spitoni, Rocco L Cimmino, Chiara Bozzacchi, Luigi Pizzamiglio, Francesco Di Russo, Grazia F Spitoni, Rocco L Cimmino, Chiara Bozzacchi, Luigi Pizzamiglio, Francesco Di Russo

Abstract

Transcranial direct-current stimulation (tDCS) is a form of neurostimulation in which a constant, low current is delivered directly to the brain area of interest by small electrodes. The overall aim of this study was to examine and monitor the modulation of brain activity by electroencephalogram (EEG) in the frequency domain during tDCS in the resting state. To this end, we considered the modulation of spontaneous EEG to be a marker of the perturbation that was induced through the direct current (1.5 mA for 15 min). In all conditions (anodal, cathodal, and sham), an active electrode was placed over the right posterior parietal cortex, and a reference electrode was placed on the ipsilateral deltoid muscle. The EEG was recorded using a 64-channel system. The effect of tDCS was limited to the alpha rhythm, and the anodal stimulation significantly affected the alpha rhythm, whereas the cathodal stimulation did not elicit any modifications. Further, we observed modulation of alpha activity in areas that were stimulated directly through tDCS and in anterior noncontiguous areas. Finally, the anodal effect peaked 7.5 min after stimulation and decreased gradually over time. Our study demonstrates that in the resting brain, monocephalic anodal tDCS over posterior parietal areas alters ongoing brain activity, specifically in the alpha band rhythm. Our data can be used to fine-tune tDCS protocols in neurorehabilitation settings.

Keywords: alpha rhythm; monocephalic montage; noninvasive electric stimulation; parietal cortex; tDCS-EEG.

Figures

Figure 1
Figure 1
Topography of the effect of tDCS for open and closed eyes and anodal and cathodal stimulation. The maps were obtained by subtracting the sham condition from posttest1.
Figure 2
Figure 2
Group grand-averaged EEG spectra of anodal and cathodal stimulation with the eyes open (left panel) and closed (right panel). The black line represents activity before tDCS (pretest), and the red line is activity after tDCS (posttest).
Figure 3
Figure 3
Effect of anodal tDCS on the alpha amplitude recorded from the frontal, parietal, and occipital electrodes.
Figure 4
Figure 4
Topographical maps (top flat view) of the alpha rhythm at 10.5 Hz in 4 conditions—pretest, sham, posttest1, and posttest2—with the eyes were open (upper panel) and closed (lower panel).
Figure 5
Figure 5
Time course of alpha activity during pretest and after the end of anodal tDCS in 8 epochs of 2 min each.

References

    1. Antal A., Paulus W. (2008). Transcranial direct current stimulation and visual perception. Perception 37, 367–374 10.1068/p5872
    1. Antal A., Terney D., Kühnl S., Paulus W. (2010). Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J. Pain Symptom Manage. 39, 890–903 10.1016/j.jpainsymman.2009.09.023
    1. Ardolino G., Bossi B., Barbier S., Priori A. (2005). Non-synaptic mechanisms underlie the aftereffects of cathodal transcutaneous direct current stimulation of the human brain. J. Physiol. 568, 653–663 10.1113/jphysiol.2005.088310
    1. Babiloni C., Ferri R., Binetti G., Cassarino A., Dal Forno G., Ercolani M., et al. (2006). Fronto-parietal coupling of brain rhythms in mild cognitive impairment: a multicentric EEG study. Brain Res. Bull. 15, 63–73 10.1016/j.brainresbull.2005.10.013
    1. Boggio P. S., Rocha R. R., da Silva M. T., Fregni F. (2008). Differential modulatory effects of transcranial direct current stimulation on a facial expression go-no-go task in males and females. Neurosci. Lett. 447, 101–105 10.1016/j.neulet.2008.10.009
    1. Bolognini N., Olgiati E., Rossetti A., Maravita A. (2010). Enhancing crossmodal audiovisual processing by brain polarization of the parietal cortex. Eur. J. Neurosci. 31, 800–806
    1. Braitenberg V., Schulz A. (1991). Anatomy of the Cortex. Berlin, Springer.
    1. Brignani D., Manganotti P., Rossini P. M., Miniussi C. (2008). Modulation of cortical oscillatory activity during transcranial magnetic stimulation. Hum. Brain Mapp. 29, 603–612 10.1002/hbm.20423
    1. Brunoni A. R., Nitsche M. A., Bolognini N. (2012). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 5, 175–195 10.1016/j.brs.2011.03.002
    1. Calvo-Merino B., Haggard P. (2004). Transcranial magnetic stimulation. Applications in cognitive neuroscience. Rev. Neurol. 38, 374–380
    1. Cogiamanian F., Marceglia S., Ardolino G., Barbieri S., Priori A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur. J. Neurosci. 26, 242–249 10.1111/j.1460-9568.2007.05633.x
    1. Da Silva A. F., Volz M. S., Bikson M., Fregni F. (2011). Electrode positioning and montage in transcranial direct current stimulation. J. Vis. Exp. 51:2744 10.3791/2744
    1. Di Russo F., Spinelli D. (2002). Effects of sustained, voluntary attention on amplitude and latency of steady-state visual evoked potential: a costs and benefits analysis. Clin. Neurophysiol. 113, 771–777 10.1016/S1388-2457(02)00262-6
    1. Dockery C. A., Hueckel-Weng R., Birbaumer N., Plewnia C. (2009). Enhancement of planning ability by transcranial direct current stimulation. J. Neurosci. 29, 7271–7277 10.1523/JNEUROSCI.0065-09.2009
    1. Fertonani A., Rosini S., Cotelli M., Rossini P. M., Miniussi C. (2010). Naming facilitation induced by transcranial direct current stimulation. Behav. Brain Res. 208, 311–318 10.1016/j.bbr.2009.10.030
    1. Fiori V., Coccia M., Marinelli C. V., Vecchi V., Bonifazi S., Ceravolo M. G., et al. (2011). Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J. Cogn. Neurosci. 23, 2309–2323 10.1162/jocn.2010.21579
    1. Floel A., Rosser N., Michka O., Knecht S., Breitenstein C. (2008). Noninvasive brain stimulation improves language learning. J. Cogn. Neurosci. 20, 1415–1422 10.1162/jocn.2008.20098
    1. Fuggetta G., Fiaschi A., Manganotti P. (2005). Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. Neuroimage 27, 896–908 10.1016/j.neuroimage.2005.05.013
    1. Fuggetta G., Pavone E. F., Fiaschi A., Manganotti P. (2008). Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Hum. Brain Mapp. 29, 1–13 10.1002/hbm.20371
    1. Fuggetta G., Pavone E. F., Walsh V., Kiss M., Eimer M. (2006). Cortico-cortical interactions in spatial attention: a combined ERP/TMS study. J. Neurophysiol. 95, 3277–3280 10.1152/jn.01273.2005
    1. Gandiga P. C., Hummel F. C., Cohen L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845–850 10.1016/j.clinph.2005.12.003
    1. Gratton G., Coles M. G., Donchin E. (1983). A new method for off-line removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol. 55, 468–484 10.1016/0013-4694(83)90135-9
    1. Hecht D., Walsh V., Lavidor M. (2010). Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task. J. Neurosci. 30, 4241–4245 10.1523/JNEUROSCI.2924-09.2010
    1. Hesse M. D., Sparing R., Fink G. R. (2011). Ameliorating spatial neglect with non-invasive brain stimulation: from pathophysiological concepts to novel treatment strategies. Neuropsychol. Rehabil. 21, 676–702 10.1080/09602011.2011.573931
    1. Hummel F., Cohen L. G. (2005). Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil. Neural Repair 19, 14–19 10.1177/1545968304272698
    1. Jacobson L., Koslowsky M., Lavidor M. (2012). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp. Brain Res. 216, 1–10 10.1007/s00221-011-2891-9
    1. Keeser D., Padberg F., Reisinger E., Pogarell O., Kirsch V., Palm U., et al. (2011). Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neuroimage 55, 644–657 10.1016/j.neuroimage.2010.12.004
    1. Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29, 169–195 10.1016/S0165-0173(98)00056-3
    1. Klimesch W., Sauseng P., Hanslmayr S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88 10.1016/j.brainresrev.2006.06.003
    1. Kuo M. F., Nitsche M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clin. EEG Neurosci. 43, 192–199 10.1177/1550059412444975
    1. Lang N., Siebner H. R., Ernst D., Nitsche M. A., Paulus W., Lemon R. N. (2004). Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol. Psychiatry 56, 634–639 10.1016/j.biopsych.2004.07.017
    1. Laufs H., Krakow K., Sterzer P., Eger E., Beyerle A., Salek-Haddadi A., et al. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. U.S.A. 16, 11053–11058 10.1073/pnas.1831638100
    1. Mantini D., Perrucci M. G., Del Gratta C., Romani G. L., Corbetta M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. U.S.A. 7, 13170–13175 10.1073/pnas.0700668104
    1. Markman A. B., Dietrich E. (2000). Extending the classical view of representation. Trends Cogn. Sci. 4, 470–475 10.1016/S1364-6613(00)01559-X
    1. Matsumoto J., Fujiwara T., Takahashi O., Liu M., Kimura A., Ushiba J. (2010). Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. J. Neuroeng. Rehabil. 7:27 10.1186/1743-0003-7-27
    1. Miranda P. C., Lomarev M., Hallett M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629 10.1016/j.clinph.2006.04.009
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223 10.1016/j.brs.2008.06.004
    1. Nitsche M. A., Liebetanz D., Antal A., Lang N., Tergau F., Paulus W. (2011). Modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 56, 255–276 10.1016/S1567-424X(09)70230-2
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Seeber A., Frommann K., Klein C. C., Rochford C., Nitsche M. S., et al. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 2, 291–303 10.1113/jphysiol.2005.092429
    1. Nunez P., Silberstein R. (2000). On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense. Brain Topogr. 13, 79–96 10.1023/A:1026683200895
    1. Okamoto M., Dan H., Sakamoto K. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21, 99–111 10.1016/j.neuroimage.2003.08.026
    1. Paulus W. (2004). Outlasting excitability shifts induced by direct current stimulation of the human brain. Suppl. Clin. Neurophysiol. 57, 708–714 10.1016/S1567-424X(09)70411-8
    1. Paulus W. (2011). Transcranial static magnetic field stimulation in man: making things as simple as possible. J. Physiol. 15, 5917–5918 10.1113/jphysiol.2011.221655
    1. Paus T., Sipila P. K., Strafella A. P. (2001). Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J. Neurophysiol. 86, 1983–1990
    1. Pfurtscheller G. (2001). Functional brain imaging based on ERD/ERS. Vision Res. 41, 1257–1260 10.1016/S0042-6989(00)00235-2
    1. Polania R., Nitsche M. A., Paulus W. (2011). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 32, 1236–1249 10.1002/hbm.21104
    1. Priori A., Mameli F., Cogiamanian F., Marceglia S., Tiriticco M., Mrakic-Sposta S., et al. (2008). Lie-specific involvement of dorsolateral prefrontal cortex in deception. Cereb. Cortex 18, 451–455 10.1093/cercor/bhm088
    1. Rosanova M., Casali A., Bellina V., Resta F., Mariotti M., Massimini M. (2009). Natural frequencies of human corticothalamic circuits. J. Neurosci. 29, 7679–7685 10.1523/JNEUROSCI.0445-09.2009
    1. Rosenkranz K., Nitsche M. A., Tergau F., Paulus W. (2000). Diminution of training induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci. Lett. 296, 61–63 10.1016/S0304-3940(00)01621-9
    1. Sadaghiani S., Scheeringa R., Lehongre K., Morillon B., Giraud A. L., D'Esposito M., et al. (2012). α-band phase synchrony is related to activity in the fronto-parietal adaptive control network. J. Neurosci. 10, 14305–14310 10.1523/JNEUROSCI.1358-12.2012
    1. Salmaso D., Longoni A. M. (1985). Problems in the assessment of hand preference. Cortex 21, 533–549
    1. Sauseng P., Klimesch W., Doppelmayr M., Pecherstorfer T., Freunberger R., Hanslmayr S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum. Brain Mapp. 26, 148–155 10.1002/hbm.20150
    1. Schack B., Weiss S. (2005). Quantification of phase synchronization phenomena and their importance for verbal memory processes. Biol. Cybern. 92, 275–287 10.1007/s00422-005-0555-1
    1. Silvanto J., Muggleton N., Walsh V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454 10.1016/j.tics.2008.09.004
    1. Spitoni G. F., Pireddu G., Cimmino R. L., Galati G., Priori A., Lavidor M., et al. (2013). Right but not left angular gyrus modulates the metric component of the mental body representation: a tDCS study. Exp. Brain Res. 228, 63–72 10.1007/s00221-013-3538-9
    1. Vallar G., Bolognini N. (2011). Behavioural facilitation following brain stimulation: implications for neurorehabilitation. Neuropsychol. Rehabil. 21, 618–649 10.1080/09602011.2011.574050
    1. Veniero D., Brignani D., Thut G., Miniussi C. (2011). Alpha-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study. Psychophysiology 48, 1381–1389 10.1111/j.1469-8986.2011.01218.x
    1. Wagner T., Fregni F., Fecteau S., Grodzinsky A., Zahn M., Pascual-Leone A. (2007). Transcranial direct current stimulation: a computer-based human model study. Neuroimage 15, 1113–1124 10.1016/j.neuroimage.2007.01.027
    1. Zaehle T., Sandmann P., Thorne J. D., Jancke L., Herrmann C. S. (2011). Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance. Combined behavioural and electrophysiological evidence. BMC Neurosci. 12:2 10.1186/1471-2202-12-2

Source: PubMed

3
Sottoscrivi