Gastrointestinal Disturbances Associated with the Consumption of Sugar Alcohols with Special Consideration of Xylitol: Scientific Review and Instructions for Dentists and Other Health-Care Professionals

Kauko K Mäkinen, Kauko K Mäkinen

Abstract

Sugar alcohols (polyols) are used in food manufacturing and in medical tests and examinations. d-Glucitol (sorbitol) and d-mannitol were previously the most common alditols used for these purposes. After the 1960s, xylitol became a common ingredient in noncariogenic confectioneries, oral hygiene products, and diabetic food. Erythritol, a polyol of the tetritol type, can be regarded as the sweetener of the "next generation." The disaccharide polyols maltitol, lactitol, and isomalt have also been used in food manufacturing and in medical tests. Consumption of pentitol- and hexitol-type polyols and disaccharide polyols may cause gastrointestinal disturbances at least in unaccustomed subjects. The occurrence of disturbances depends on consumer properties and on the molecular size and configuration of the polyol molecule. Adaptation may take place as a result of enzyme induction in the intestinal flora. Some of the literature on xylitol has been difficult to access by health-care professionals and will be reviewed here. Research and clinical field experience have found no pathology in polyol-associated osmotic diarrhea-the intestinal mucosa having normal basic structure, except in extreme instances. Xylitol is better tolerated than hexitols or the disaccharide polyols. Erythritol, owing to its smaller molecular weight and configuration that differ from other alditols, normally avoids the gastrointestinal reactions encountered with other polyols. This review will also touch upon the FODMAPs diet concept.

Figures

Figure 1
Figure 1
Relationship between the metabolism of xylitol and glycolysis in humans. The scheme describes the metabolism of dietary xylitol in broad outline only. The body receives energy from glycolysis (the thick horizontal arrow). The first intermediate of glycolysis is glucose 6-phosphate which forms an important link between glycolysis and another metabolic pathway, called the pentose phosphate shunt, or pentose phosphate cycle (curved arrow). The thinner black arrow represents the glucuronate-xylulose cycle of Touster. The differences in the thickness of the arrows reflect the relative portion of these three pathways in the overall metabolism. Although the significance of the Touster cycle is minor from the energetic point of view, it is nevertheless absolutely necessary for body functions. Pyruvic acid which may be regarded as the end product of glycolysis can be further metabolized in two ways: reduction to lactic acid under conditions of limited oxygen supply, or becoming a part of coenzyme A when the oxygen supply is sufficient. The scheme shows how xylitol can contribute to the overall energy metabolism of the body. The original scheme of Bässler [67] was modified and completed by the present author.
Figure 2
Figure 2
Gradual lessening of osmotic diarrhea and flatulence in human subjects who consumed on the average 67 g of xylitol daily for two years. The results are here shown for the first 140-day period. The ordinate gives the number of subjects complaining even about slight diarrhea or increased defecation frequency on each test day. The initial peaks of consumption were found to result from the interest of the subjects to get acquainted with the new dietary regimen. Modified from [4].

References

    1. Mäkinen K. K. Sugar alcohol sweeteners as alternatives to sugar with special consideration of xylitol. Medical Principles and Practice. 2011;20(4):303–320. doi: 10.1159/000324534.
    1. Mäkinen K. K. Oral care gum products. In: Wilson M., editor. Food Constituents and Oral Health. Oxford, UK: Woodhead; 2009. pp. 435–454.
    1. Dubach U. C., Feiner E., Forgó I. Oral tolerance of Xylit in subjects with normal metabolism. Schweizerische medizinische Wochenschrift. 1969;99(6):190–194.
    1. Mäkinen K. K., Scheinin A. Turku sugar studies VI. The administration of the trial and the control of the dietary regimen. Acta Odontologica Scandinavica. 1975;33(supplement 70):105–127.
    1. Salminen S., Salminen E., Marks V. The effects of xylitol on the secretion of insulin and gastric inhibitory polypeptide in man and rats. Diabetologia. 1982;22(6):480–482. doi: 10.1007/BF00282594.
    1. Salminen S., Salminen E., Koivistoinen P., Bridges J., Marks V. Gut microflora interactions with xylitol in the mouse, rat and man. Food and Chemical Toxicology. 1985;23(11):985–990. doi: 10.1016/0278-6915(85)90248-0.
    1. Åkerblom H. K., Koivukangas T., Puukka R., Mononen M. The tolerance of increasing amounts of dietary xylitol in children. International Journal for Vitamin and Nutrition Research. 1982;22:53–66.
    1. Storey D., Lee A., Bornet F., Brouns F. Gastrointestinal tolerance of erythritol and xylitol ingested in a liquid. European Journal of Clinical Nutrition. 2007;61(3):349–354. doi: 10.1038/sj.ejcn.1602532.
    1. Yao C. K., Tan H.-L., van Langenberg D. R., et al. Dietary sorbitol and mannitol: food content and distinct absorption patterns between healthy individuals and patients with irritable bowel syndrome. Journal of Human Nutrition and Dietetics. 2014;27(2):263–275. doi: 10.1111/jhn.12144.
    1. Beaugerie L., Flourié B., Marteau P., Pellier P., Franchisseur C., Rambaud J.-C. Digestion and absorption in the human intestine of three sugar alcohols. Gastroenterology. 1990;99(3):717–723. doi: 10.1016/0016-5085(90)90960-9.
    1. Nakamura S., Hongo R., Moji K., Oku T. Suppressive effect of partially hydrolyzed guar gum on transitory diarrhea induced by ingestion of maltitol and lactitol in healthy humans. European Journal of Clinical Nutrition. 2007;61(9):1086–1093. doi: 10.1038/sj.ejcn.1602623.
    1. Tuck C. J., Muir J. G., Barrett J. S., Gibson P. R. Fermentable oligosaccharides, disaccharides, monosaccharides and polyols: role in irritable bowel syndrome. Expert Review of Gastroenterology and Hepatology. 2014;8(7):819–834. doi: 10.1586/17474124.2014.917956.
    1. Nesterin M. F. Xylitol. Experimental and clinical investigations conducted in the USSR. Zeitschrift für Ernährungswissenschaft. 1980;19(2):88–94. doi: 10.1007/bf02021392.
    1. Xiao J., Metzler-Zebeli B. U., Zebeli Q. Gut function-enhancing properties and metabolic effects of dietary indigestible sugars in rodents and rabbits. Nutrients. 2015;7(10):8348–8365. doi: 10.3390/nu7105397.
    1. de Cock P. Erythritol. In: O'Donnell A., Kearsley W., editors. Sweeteners and Sugar Alternatives in Food Technology. Oxford, UK: Wiley-Blackwell; 2012. pp. 215–241.
    1. Biesiekierski J. R., Rosella O., Rose R., et al. Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. Journal of Human Nutrition and Dietetics. 2011;24(2):154–176. doi: 10.1111/j.1365-277X.2010.01139.x.
    1. Muir J. G., Rose R., Rosella O., et al. Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC) Journal of Agricultural and Food Chemistry. 2009;57(2):554–565. doi: 10.1021/jf802700e.
    1. Symons P., Jones M. P., Kellow J. E. Symptom provocation in irritable bowel syndrome effects of differing doses of fructose-sorbitol. Scandinavian Journal of Gastroenterology. 1992;27(11):940–944. doi: 10.3109/00365529209000167.
    1. Georgieff M., Moldawer L. L., Bistrian B. R., Blackburn G. L. Xylitol, an energy source for intravenous nutrition after trauma. Journal of Parenteral and Enteral Nutrition. 1985;9(2):199–209. doi: 10.1177/0148607185009002199.
    1. Scheinin A., Mäkinen K. K. Turku sugar studies. An overview. Acta Odontologica Scandinavica. 1975;33(supplement 70):345–348.
    1. Gibson P. R., Shepherd S. J. Evidence-based dietary management of functional gastrointestinal symptoms: the FODMAP approach. Journal of Gastroenterology and Hepatology. 2010;25(2):252–258. doi: 10.1111/j.1440-1746.2009.06149.x.
    1. Shepherd S. Low FODMAP Recipes. Melbourne, Australia: Penguin; 2013.
    1. Low FODMAP Diet Application, [Mobile app] Monash University, Android version,
    1. Magge S., Lembo A. Low-FODMAP diet for treatment of irritable bowel syndrome. Gastroenterology and Hepatology. 2012;8(11):739–745.
    1. Nanayakkara W. S., Skidmore P. M. L., O'Brien L., Wilkinson T. J., Gearry R. B. Efficacy of the low FODMAP diet for treating irritable bowel syndrome: the evidence to date. Clinical and Experimental Gastroenterology. 2016;9:131–142.
    1. Dahlqvist A., Telenius U. The utilization of a presumably low-cariogenic carbohydrate derivative. Acta Physiologica Scandinavica. 1965;63:156–163. doi: 10.1111/j.1748-1716.1965.tb04053.x.
    1. Charney E. B., Bodurtha J. N. Intractable diarrhea associated with the use of sorbitol. The Journal of Pediatrics. 1981;98(1):157–161. doi: 10.1016/S0022-3476(81)80563-X.
    1. Ravry M. J. R. Dietetic food diarrhea. Journal of the American Medical Association. 1980;244(3):p. 270. doi: 10.1001/jama.244.3.270.
    1. McClain C. J., Kromhout J. P., Zieve L., Duane W. C. Effect of sorbitol on psychomotor function. Its use in alcoholic cirrhosis. Archives of Internal Medicine. 1981;141(7):901–903. doi: 10.1001/archinte.141.7.901.
    1. Mehnert H., Stuhlfauth K., Mehnert B., Lausch R., Seitz W. Vergleichende untersuchungen zur resorption von glucose, fructose und sorbit beim menschen. Klinische Wochenschrift. 1959;37(21):1138–1142. doi: 10.1007/bf01484578.
    1. Gryboski J. D. Diarrhea from dietetic candies. The New England Journal of Medicine. 1966;275(13):p. 718.
    1. Goldberg L. D., Ditchek N. T. Chewing gum diarrhea. The American Journal of Digestive Diseases. 1978;23(6):p. 568. doi: 10.1007/bf01072704.
    1. Hill R. E., Kamath K. R. Pink’ diarrhoea from a sorbitol-containing vitamin C supplement. Medical Journal of Australia. 1982;1(9):387–389.
    1. Taylor S. L., Byron B. Probable case of sorbitol-induced diarrhea. Journal of Food Protection. 1984;47, article 249
    1. Payne A. N., Chassard C., Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obesity Reviews. 2012;13(9):799–809. doi: 10.1111/j.1467-789x.2012.01009.x.
    1. Mansueto P., Seidita A., D'Alcamo A., Carroccio A. Role of FODMAPs in patients with irritable bowel syndrome. Nutrition in Clinical Practice. 2015;30(5):665–682. doi: 10.1177/0884533615569886.
    1. Ellis F. W., Krantz J. C. Sugar alcohols. XXII. Metabolism and toxicity studies with mannitol and sorbitol in man and animals. Journal of Biological Chemistry. 1941;141:147–154.
    1. Shepherd S. J., Lomer M. C. E., Gibson P. R. Short-chain carbohydrates and functional gastrointestinal disorders. The American Journal of Gastroenterology. 2013;108(5):707–717. doi: 10.1038/ajg.2013.96.
    1. Respondek F., Hilpipre C., Chauveau P., et al. Digestive tolerance and postprandial glycaemic and insulinaemic responses after consumption of dairy desserts containing maltitol and fructo- oligosaccharides in adults. European Journal of Clinical Nutrition. 2014;68(5):575–580. doi: 10.1038/ejcn.2014.30.
    1. Goebel-Stengel M., Mönnikes H. Malabsorption of fermentable oligo-, di-, or monosaccharides and polyols (FODMAP) as a common cause of unclear abdominal discomfort. Deutsche Medizinische Wochenschrift. 2014;139(24):1310–1314. doi: 10.1055/s-0034-1370108. (Ger).
    1. El-Salhy M. Recent developments in the pathophysiology of irritable bowel syndrome. World Journal of Gastroenterology. 2015;21(25):7621–7636. doi: 10.3748/wjg.v21.i25.7621.
    1. Beaven J., Bjørneklett A., Jenssen E., Blomhoff J. P., Skrede S. Pulmonary hydrogen and methane and plasma ammonia after the administration of lactulose or sorbitol. Scandinavian Journal of Gastroenterology. 1983;18(3):343–347. doi: 10.3109/00365528309181604.
    1. Beaugerie L., Flourié B., Pernet P., Achour L., Franchisseur C., Rambaud J. C. Glucose does not facilitate the absorption of sorbitol perfused in situ in the human small intestine. Journal of Nutrition. 1997;127(2):341–344.
    1. Zunft H.-J., Schulze J., Gärtner H., Grütte F.-K. Digestion of maltitol in man, rat, and rabbit. Annals of Nutrition and Metabolism. 1983;27(6):470–476. doi: 10.1159/000176721.
    1. Storey D. M., Koutsou G. A., Lee A., et al. Tolerance and breath hydrogen excretion following ingestion of maltitol incorporated at two levels into milk chocolate consumed by healthy young adults with and without fasting. Journal of Nutrition. 1998;128(3):587–592.
    1. Ruskoné-Fourmestraux A., Attar A., Chassard D., Coffin B., Bornet F., Bouhnik Y. A digestive tolerance study of maltitol after occasional and regular consumption in healthy humans. European Journal of Clinical Nutrition. 2003;57(1):26–30. doi: 10.1038/sj.ejcn.1601516.
    1. Tsukamura M., Goto H., Arisawa T., et al. Dietary maltitol decreases the incidence of 1,2-dimethylhydrazine- induced cecum and proximal colon tumors in rats. Journal of Nutrition. 1998;128(3):536–540.
    1. Mineo H., Hara H., Kikuchi H., Sakurai H., Tomita F. Various indigestible saccharides enhance net calcium transport from the epithelium of the small and large intestine of rats in vitro . Journal of Nutrition. 2001;131(12):3243–3246.
    1. Goda T., Kishi K., Ezawa I., Takase S. The maltitol-induced increase in intestinal calcium transport increases the calcium content and breaking force of femoral bone in weanling rats. Journal of Nutrition. 1998;128(11):2028–2031.
    1. Svanberg M., Knuuttila M. Dietary xylitol retards bone resorption in rats. Mineral and Electrolyte Metabolism. 1994;20(3):153–157.
    1. Dehghan M. H. G., Gupta V. R. M., Asif S. M., Darwis Y., Rizwan M., Mundada V. P. Assessment of isomalt for colon-specific delivery and its comparison with lactulose. AAPS PharmSciTech. 2013;14(1):53–59. doi: 10.1208/s12249-012-9886-0.
    1. Lee A., Zumbe A., Storey D. Breath hydrogen after ingestion of the bulk sweeteners sorbitol, isomalt and sucrose in chocolate. British Journal of Nutrition. 1994;71(5):731–737. doi: 10.1079/BJN19940180.
    1. Finney M., Smullen J., Foster H. A., Brokx S., Storey D. M. Effects of low doses of lactitol on faecal microflora, pH, short chain fatty acids and gastrointestinal symptomology. European Journal of Nutrition. 2007;46(6):307–314. doi: 10.1007/s00394-007-0666-7.
    1. Natah S. S., Hussien K. R., Tuominen J. A., Koivisto V. A. Metabolic response to lactitol and xylitol in healthy men. American Journal of Clinical Nutrition. 1997;65(4):947–950.
    1. Cristofaro E., Mottu F., Wuhrmann J. J. Involvement of the raffinose family of oligosaccharides in flatulence. In: Sipple H. L., McNutt K. W., editors. Sugars in Nutrition. New York, NY, USA: Academic Press; 1974. pp. 313–336.
    1. Hata Y., Yamamoto M., Nakajima K. Effects of soybean oligosaccharides on human digestive organs—estimation of fifty percent effective dose and maximum non-effective dose based on diarrhea. Journal of Clinical Biochemistry and Nutrition. 1991;10(2):135–144. doi: 10.3164/jcbn.10.135.
    1. Askevold F. Investigations on the influence of diet on the quantity and composition of intestinal gas in humans. Scandinavian Journal of Clinical and Laboratory Investigation. 1956;8(2):87–94. doi: 10.3109/00365515609049252.
    1. Fleming S. E. A study of relationships between flatus potential and carbohydrate distribution in legume seeds. Journal of Food Science. 1981;46(3):794–798. doi: 10.1111/j.1365-2621.1981.tb15350.x.
    1. Saunders D. R., Wiggins H. S. Conservation of mannitol, lactulose, and raffinose by the human colon. The American Journal of Physiology. 1981;241(5):G397–G402.
    1. Galiullin A. N. Evaluation of the caries-preventive action of xylitol. Kazan Medical Journal. 1981;67:16–18. (Rus).
    1. Asano T., Levitt M. D., Goetz F. C. Xylitol absorption in healthy men. Diabetes. 1973;22(4):279–281. doi: 10.2337/diab.22.4.279.
    1. Burns J. J., Kanfer J. Formation of l-xylulose from l-gulonolactone in rat kidney. Journal of the American Chemical Society. 1957;79(13):3604–3605. doi: 10.1021/ja01570a083.
    1. Touster O. Metabolism and physiological effects of the polyols (alditols) In: Jeanes and A., Hodge J., editors. Physiological Effects of Food Carbohydrates. Washington, DC, USA: American Chemical Society; 1975. pp. 123–124.
    1. Touster O., Shaw D. R. D. Biochemistry of the acyclic polyols. Physiological Reviews. 1962;42:181–225.
    1. McCormick D. B., Touster O. The conversion in vivo of xylitol to glycogen via the pentose phosphate pathway. The Journal of Biological Chemistry. 1957;229(1):451–461.
    1. Ylikahri R. Metabolic and nutritional effects of xylitol. Advances in Food Research. 1979;15:159–180.
    1. Bässler K. H. Biochemistry of xylitol. In: Counsell J. N., editor. Xylitol. Essex, UK: Applied Science; 1978. pp. 35–41.
    1. Förster H. Tolerance in the human, adults and children. In: Counsell J. N., editor. Xylitol. Barking, UK: Applied Science Publishers; 1978. pp. 43–66.
    1. Brin M., Miller O. N. The safety of oral xylitol. In: Sipple H. L., McNutt K. W., editors. Sugars in Nutrition. New York, NY, USA: Academic Press; 1974. pp. 591–612.
    1. Wang Y.-M., Culbert S. J., Fritsche H. A., Jr., Carr D. B. Oral xylitol in humans. Federations Proceedings. 1981;40:878–885.
    1. Mäkinen K. K., Ylikahri R., Mäkinen L., Söderling E., Hämäläinen M. Turku sugar studies XXIII. Comparison of metabolic tolerance in human volunteers to high oral doses of xylitol and sucrose after long-term regular consumption of xylitol. International Journal of Vitamin and Nutrition Research. Supplement. 1982;22:29–51.
    1. Mäkinen K. K. Effect of long-term, peroral administration of sugar alcohols on man. Swedish Dental Journal. 1984;8(3):113–124.
    1. Förster H., Quadbeck R., Gottstein U. Metabolic tolerance to high doses of oral xylitol in human volunteers not previously adapted to xylitol. International Journal for Vitamin and Nutrition Research. 1982;22:67–88.
    1. Mäkinen K. K., Virtanen K. K. Effect of 4.5-year use of xylitol and sorbitol on plaque. Journal of Dental Research. 1978;57(3):441–446. doi: 10.1177/00220345780570030401.
    1. Shafer R. B., Levine A. S., Marlette J. M., Morley J. E. Effects of xylitol on gastric emptying and food intake. The American Journal of Clinical Nutrition. 1987;45(4):744–747.
    1. Bánóczy J., Scheinin A., Pados R., Ember G., Kertész P., Pienihäkkinen K. Collaborative WHO xylitol Field studies in Hungary II. General background and control of the dietary regimen. Acta Odontologica Scandinavica. 1985;43(6):349–357. doi: 10.3109/00016358509046518.
    1. Culbert S. J., Wang Y.-M., Fritsche H. A., Carr D., Jr., Lantin E., Eys J. V. Oral xylitol in American adults. Nutrition Research. 1986;6(8):913–922. doi: 10.1016/S0271-5317(86)80066-5.
    1. Lam M., Riedy C. A., Coldwell S. E., Milgrom P., Craig R. Children's acceptance of xylitol-based foods. Community Dentistry and Oral Epidemiology. 2000;28(2):97–101. doi: 10.1034/j.1600-0528.2000.028002097.x.
    1. Castillo J. L., Milgrom P., Coldwell S. E., Castillo R., Lazo R. Children's acceptance of milk with xylitol or sorbitol for dental caries prevention. BMC Oral Health. 2005;5, article 6 doi: 10.1186/1472-6831-5-6.
    1. Mäkinen K. K., Isotupa K. P., Mäkinen P.-L., et al. Six-month polyol chewing-gum programme in kindergarten-age children: a feasibility study focusing on mutans streptococci and dental plaque. International Dental Journal. 2005;55(2):81–88. doi: 10.1111/j.1875-595x.2005.tb00038.x.
    1. Vernacchio L., Vezina R. M., Mitchell A. A. Tolerability of oral xylitol solution in young children: implications for otitis media prophylaxis. International Journal of Pediatric Otorhinolaryngology. 2007;71(1):89–94. doi: 10.1016/j.ijporl.2006.09.008.
    1. Oku T., Nakamura S. Threshold for transitory diarrhea induced by ingestion of xylitol and lactitol in young male and female adults. Journal of Nutritional Science and Vitaminology. 2007;53(1):13–20. doi: 10.3177/jnsv.53.13.
    1. Seki M., Karakama F., Kawato T., Tanaka H., Saeki Y., Yamashita Y. Effect of xylitol gum on the level of oral mutans streptococci of preschoolers: block-randomised trial. International Dental Journal. 2011;61(5):274–280. doi: 10.1111/j.1875-595x.2011.00073.x.
    1. US Department of Health and Human Services. Health Aspects of Sugar Alcohols and Lactose (Report Prepared for Center for Food Safety and Applied Nutrition, Food and Drug Administration, Contract No. FDA 223-83-2020) Bethesda, Md, USA: Life Sciences Research Office, Federation of American Societies for Experimental Biology; 1986.
    1. US Department of Health and Human Services. Food Labeling: Health Claims; Sugar Alcohols and Dental Caries. Food and Drug Administration, Federal Register 1996, August 23, vol. 61, no. 165, Rules and Regulations, pp. 43433–43447, Bethesda, Md, USA, 1996.
    1. Bär A. Sugar alcohols in the diabetic diet. In: Kretchmer N., Hollenbeck C. B., editors. Sugars and Sweeteners. Boca Raton, Fla, USA: CRC Press; 1991. pp. 131–150.
    1. Mäkinen K. K. Authorized EU health claims for xylitol and sugar-free chewing gum (SGFCG) In: Sadler M. J., editor. Foods, Nutrients and Food Ingredients with Authorised EU Health Claims. Vol. 1. Cambridge, UK: Woodhead Publishing; 2014. pp. 46–72.
    1. Flood M. T., Auerbach M. H., Craig S. A. S. A review of the clinical toleration studies of polydextrose in food. Food and Chemical Toxicology. 2004;42(9):1531–1542. doi: 10.1016/j.fct.2004.04.015.
    1. de Cock P., Bechert C.-L. Erythritol: functionality in noncaloric functional beverages. Pure and Applied Chemistry. 2002;74(7):1281–1289.
    1. den Hartog G. J. M., Boots A. W., Adam-Perrot A., et al. Erythritol is a sweet antioxidant. Nutrition. 2010;26(4):449–458. doi: 10.1016/j.nut.2009.05.004.
    1. Bornet F. R. J., Blayo A., Dauchy F., Slama G. Gastrointestinal response and plasma and urine determinations in human subjects given erythritol. Regulatory Toxicology and Pharmacology. 1996;24(2, part 2):S296–S302. doi: 10.1006/rtph.1996.0111.
    1. Tetzloff W., Dauchy F., Medimagh S., Carr D., Bär A. Tolerance to subchronic, high-dose ingestion of erythritol in human volunteers. Regulatory Toxicology and Pharmacology. 1996;24(2):S286–S295. doi: 10.1006/rtph.1996.0110.
    1. Jacqz-Aigrain E., Kassai B., Cornu C., et al. Gastrointestinal tolerance of erythritol-containing beverage in young children: a double-blind, randomised controlled trial. European Journal of Clinical Nutrition. 2015;69(6):746–751. doi: 10.1038/ejcn.2015.4.
    1. Arrigoni E., Brouns F., Amadò R. Human gut microbiota does not ferment erythritol. British Journal of Nutrition. 2005;94(5):643–646. doi: 10.1079/BJN20051546.
    1. Kim Y., Park S. C., Wolf B. W., Hertzler S. R. Combination of erythritol and fructose increases gastrointestinal symptoms in healthy adults. Nutrition Research. 2011;31(11):836–841. doi: 10.1016/j.nutres.2011.09.025.
    1. Putkonen L., Yao C. K., Gibson P. R. Fructose malabsorption syndrome. Current Opinion in Clinical Nutrition and Metabolic Care. 2013;16(4):473–477. doi: 10.1097/MCO.0b013e328361c556.
    1. Honkala S., Runnel R., Saag M., et al. Effect of erythritol and xylitol on dental caries prevention in children. Caries Research. 2014;48(5):482–490. doi: 10.1159/000358399.
    1. de Cock P., Mäkinen K., Honkala E., Saag M., Kennepohl E., Eapen A. Erythritol is more effective than xylitol and sorbitol in managing oral health endpoints. International Journal of Dentistry. 2016;2016:15. doi: 10.1155/2016/9868421.9868421
    1. Takeda T., Takeda S., Kakigi A., Nishioka R., Nishimura M. Decompression effects of erythritol on endolymphatic hydrops. Auris, Nasus, Larynx. 2009;36:146–151.

Source: PubMed

3
Sottoscrivi