Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice

Susan M Motch Perrine, Meng Wu, Nicholas B Stephens, Divya Kriti, Harm van Bakel, Ethylin Wang Jabs, Joan T Richtsmeier, Susan M Motch Perrine, Meng Wu, Nicholas B Stephens, Divya Kriti, Harm van Bakel, Ethylin Wang Jabs, Joan T Richtsmeier

Abstract

One diagnostic feature of craniosynostosis syndromes is mandibular dysgenesis. Using three mouse models of Apert, Crouzon and Pfeiffer craniosynostosis syndromes, we investigated how embryonic development of the mandible is affected by fibroblast growth factor receptor 2 (Fgfr2) mutations. Quantitative analysis of skeletal form at birth revealed differences in mandibular morphology between mice carrying Fgfr2 mutations and their littermates that do not carry the mutations. Murine embryos with the mutations associated with Apert syndrome in humans (Fgfr2+/S252W and Fgfr2+/P253R ) showed an increase in the size of the osteogenic anlagen and Meckel's cartilage (MC). Changes in the microarchitecture and mineralization of the developing mandible were visualized using histological staining. The mechanism for mandibular dysgenesis in the Apert Fgfr2+/S252W mouse resulting in the most severe phenotypic effects was further analyzed in detail and found to occur to a lesser degree in the other craniosynostosis mouse models. Laser capture microdissection and RNA-seq analysis revealed transcriptomic changes in mandibular bone at embryonic day 16.5 (E16.5), highlighting increased expression of genes related to osteoclast differentiation and dysregulated genes active in bone mineralization. Increased osteoclastic activity was corroborated by TRAP assay and in situ hybridization of Csf1r and Itgb3 Upregulated expression of Enpp1 and Ank was validated in the mandible of Fgfr2+/S252W embryos, and found to result in elevated inorganic pyrophosphate concentration. Increased proliferation of osteoblasts in the mandible and chondrocytes forming MC was identified in Fgfr2+/S252W embryos at E12.5. These findings provide evidence that FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone, contributing to mandibular dysmorphogenesis in craniosynostosis syndromes.This article has an associated First Person interview with the joint first authors of the paper.

Keywords: Apert syndrome; Cartilage; Crouzon syndrome; FGFR2; Osteoclast; Pfeiffer syndrome; Transcriptome.

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

© 2019. Published by The Company of Biologists Ltd.

Figures

Fig. 1.
Fig. 1.
Morphological differences in newborn (P0) mice carrying mutations associated with three FGFR2-related craniosynostosis syndromes and their unaffected littermates. (A-F) Results of PCA of mandibles based on unique linear distances among 3D landmarks (A-C) and EDMA of landmark coordinates (D-F). Scatter plots of individual scores on first and second PC axes (PC1 and PC2) of linear distance-based PCAs of the hemimandibles of mutant and unaffected littermates of Fgfr2+/S252W and Fgfr2+/P253R Apert syndrome mouse models (A,B, respectively) and Fgfr2cC342Y/+ Crouzon/Pfeiffer syndrome mouse model (C). Results of EDMA of each craniosynostosis mouse model and unaffected littermates showing linear distances within each model that are significantly different by at least 5% between mutant and unaffected littermates (D-F). Blue lines are significantly larger in mutant mice relative to unaffected littermates; fuchsia lines are significantly smaller in mutant mice. Thin lines indicate linear distances that are increased/decreased by 5-10% in mice carrying one of the Fgfr2 mutations whereas thick lines indicate linear distances that differ by >10% between mutant and unaffected mice. The buccal aspects of the left hemimandibles of the models were used for illustration. Hemimandibles were segmented into an anterior portion (anterior body, blue) and posterior portion (ramus, red) to indicate functional areas. Scale bars: 1 mm.
Fig. 2.
Fig. 2.
Histological analysis of mandible of Fgfr2+/S252W embryos at E16.5. (A) Schematic embryonic mouse head at E16.5 modified from the e-Mouse Atlas Project (http://www.emouseatlas.org/emap/eHistology). The red line indicates the location of sections used for B-O. (B) Cryosections of Fgfr2+/+ and Fgfr2+/S252W embryos were stained with the ALP assay (red) and Alcian Blue. MB, mandibular bone; MC, Meckel's cartilage; T, tongue. (C) The ALP-positive regions (red) were selected to quantify the areas and numbers of nuclei stained with Hoechst 33258 (blue). (D-I) The areas (D,G), cell numbers (E,H) and cell density (F,I) in the ALP-positive regions for Fgfr2+/+ (n=6) and Fgfr2+/S252W (n=6) embryos and MC of Fgfr2+/+ (n=6) and Fgfr2+/S252W (n=6) embryos. (J,M) Alizarin Red S staining (J) and von Kossa staining (M) showing ossification in the mandible of Fgfr2+/+ and Fgfr2+/S252W embryos. The areas and the percentages of the stained area in osteogenic tissue were measured for Alizarin Red S (K,L) and von Kossa (N,O) staining. Data are mean±s.e.m. *P<0.05, two-tailed Welch's t-test. Scale bars: 100 µm.
Fig. 3.
Fig. 3.
Laser capture microdissection and RNA-seq analysis of mandibular bone of Fgfr2+/S252W embryos at E16.5. (A) A representative mandibular region in cryosection was dissected by laser and collected for RNA-seq (left, before LCM; right, after LCM). (B) Hierarchical clustering of 122 genes significantly differentially expressed in the mandibular bone between Fgfr2+/S252W and Fgfr2+/+ littermate embryos. Three biological replicates were used for each genotype. (C) Volcano plot shows P-values and fold changes of DEGs in the mandibular bone between Fgfr2+/S252W and Fgfr2+/+ littermate embryos. Some of the most significantly differentially expressed genes [−log10(P-value)>4.5] implicated in mandibular dysmorphology are shown in blue. Scale bars: 400 µm.
Fig. 4.
Fig. 4.
Increased osteoclastogenesis in the mandibular bone of Fgfr2+/S252W embryos at E16.5. (A-H) The differential expression of Csf1r and Itgb3 in the mandible of Fgfr2+/+ (A,B,E,F) and Fgfr2+/S252W (C,D,G,H) embryos were validated by in situ hybridization (ISH). B,D,F and H show higher magnification of the boxed areas in A,C,E and G, respectively. (I-J) TRAP assay stained osteoclasts (purple) in the mandible of Fgfr2+/+ (I) and Fgfr2+/S252W (J) embryos. (K-L) Quantitative measurements of the density (K) and percentage (L) of osteoclasts in the bone area of Fgfr2+/+ (n=3) and Fgfr2+/S252W (n=3) embryos. Data are mean±s.e.m. *P<0.05, two-tailed Welch's t-test. Scale bars: 100 µm.
Fig. 5.
Fig. 5.
Increased expression of Enpp1 and Ank and elevated PPi concentration in the mandible of Fgfr2+/S252W embryos at E16.5. (A-H) RNA expression of Enpp1 and Ank in the mandible of Fgfr2+/+ littermate (A,B,E,F) and Fgfr2+/S252W embryos (C,D,G,H) was validated using ISH. B,D,F and H show higher magnification of the boxed areas in A,C,E and G, respectively. The weight of the mandible (I) and PPi concentration in the mandible (J) were measured for Fgfr2+/+ littermates (n=7) and Fgfr2+/S252W (n=11) embryos at E16.5. Data are mean±s.e.m. *P<0.05, two-tailed Welch's t-test. Scale bars: 100 µm.
Fig. 6.
Fig. 6.
Increased cell proliferation of osteoblasts and chondrocytes in the mandible of Fgfr2+/S252W embryos. (A) The osteoblasts in the mandibular bone at E16.5 were visualized using IHC for RUNX2. Boxed areas are shown at higher magnification on the right, respectively. (B) Double staining with EdU assay (green) and IHC for RUNX2 (red) at E12.5. (C) The percentage of proliferating osteoblasts (EdU-positive) in the total osteoblasts (RUNX2-positive) is shown for Fgfr2+/+ (n=4) and Fgfr2+/S252W (n=4) embryos. (D) EdU assay (green) with IHC for SOX9 (red) in MC at E12.5. (E) The percentage of proliferating cells (EdU-positive) in MC (SOX9-positive) is shown for Fgfr2+/+ (n=4) and Fgfr2+/S252W (n=4) embryos. Data are mean±s.e.m. *P<0.05, two-tailed Welch's t-test. Scale bars: 100 µm.
Fig. 7.
Fig. 7.
Proposed model of mandibular dysmorphogenesis in prenatal development of Fgfr2+/S252W mice. In the mandible of Fgfr2+/+ mice, FGFR2 signaling is activated by specific FGF binding, forming a complex of FGFs, heparan sulfate and FGFRs. The linker region between the immunoglobulin-like domains II and III regulates the ligand binding specificity and affinity. Dimerization and transphosphorylation by kinases in the intracellular domain of FGFR2 cause activation of downstream signaling cascades. These activated signaling pathways can regulate gene expression, controlling osteogenesis, osteoclastogenesis and chondrogenesis. Transcriptional level: The FGFR2 S252W mutation alters ligand specificity and affinity, resulting in abnormal FGFR2 signaling, which dysregulates the transcriptome in different cell types. Tissue level: Osteoblast proliferation is activated, enlarging the osteogenic tissue. Increased PPi inhibits mineralization, and bone resorption is promoted through osteoclastic activity, causing a change in the microarchitecture. Meckel’s cartilage is affected by increased proliferation of chondrocytes, resulting in an increase in size. Morphological level: Abnormal osteogenic activities contribute to changes in mandibular shape.

References

    1. Aldridge K., Hill C. A., Austin J. R., Percival C., Martinez-Abadias N., Neuberger T., Wang Y., Jabs E. W. and Richtsmeier J. T. (2010). Brain phenotypes in two FGFR2 mouse models for Apert syndrome. Dev. Dyn. 239, 987-997. 10.1002/dvdy.22218
    1. Allen M. R. and Burr D. B. (2015). Bone modeling and remodeling. In Basic and Applied Bone Biology (ed. Burr D. B. and Allen M. R.), pp. 75-92. Elsevier Science.
    1. Amano O., Doi T., Yamada T., Sasaki A., Sakiyama K., Kanegae H. and Kindaichi K. (2010). Meckel's cartilage: discovery, embryology and evolution. J. Oral Biosci. 52, 125-135. 10.2330/joralbiosci.52.125
    1. Andersen J., Burns H. D., Enriquez-Harris P., Wilkie A. O. M. and Heath J. K. (1998). Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum. Mol. Genet. 7, 1475-1483. 10.1093/hmg/7.9.1475
    1. Atchley W. R. and Hall B. K. (1991). A model for development and evolution of complex morphological structures. Biol. Rev. Camb. Philos. Soc. 66, 101-157. 10.1111/j.1469-185X.1991.tb01138.x
    1. Azoury S. C., Reddy S., Shukla V. and Deng C.-X. (2017). Fibroblast growth factor receptor 2 (FGFR2) mutation related syndromic craniosynostosis. Int. J. Biol. Sci. 13, 1479-1488. 10.7150/ijbs.22373
    1. Brewer J. R., Mazot P. and Soriano P. (2016). Genetic insights into the mechanisms of Fgf signaling. Genes Dev. 30, 751-771. 10.1101/gad.277137.115
    1. Chehrehasa F., Meedeniya A. C. B., Dwyer P., Abrahamsen G. and Mackay-Sim A. (2009). EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J. Neurosci. Methods 177, 122-130. 10.1016/j.jneumeth.2008.10.006
    1. Chen I.-P., Wang L., Jiang X., Aguila H. L. and Reichenberger E. J. (2011). A Phe377del mutation in ANK leads to impaired osteoblastogenesis and osteoclastogenesis in a mouse model for craniometaphyseal dysplasia (CMD). Hum. Mol. Genet. 20, 948-961. 10.1093/hmg/ddq541
    1. Cohen M. M. and MacLean R. E. (2000). Craniosynostosis: Diagnosis, Evaluation, and Management. Oxford University Press.
    1. Cole T. M., III (2002). WinEDMA: Softw. euclidean distance matrix Anal. Version 1.0.1 beta. Kansas City Univ., Missouri: Kansas City Sch. Med.
    1. Costaras-Volarich M. and Pruzansky S. (1984). Is the mandible intrinsically different in Apert and Crouzon syndromes? Am. J. Orthod. 85, 475-487. 10.1016/0002-9416(84)90087-3
    1. Couly G., Grapin-Botton A., Coltey P. and Le Douarin N. M. (1996). The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural fold. Development 122, 3393-1407.
    1. Cunningham M. L., Seto M. L., Ratisoontorn C., Heike C. L. and Hing A. V. (2007). Syndromic craniosynostosis: from history to hydrogen bonds. Orthod. Craniofacial Res. 10, 67-81. 10.1111/j.1601-6343.2007.00389.x
    1. Dai X.-M., Ryan G. R., Hapel A. J., Dominguez M. G., Russell R. G., Kapp S., Sylvestre V. and Stanley E. R. (2002). Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111-120. 10.1182/blood.V99.1.111
    1. Darroch J. N. and Mosimann J. E. (1985). Canonical and principal components of shape. Biometrika 72, 241-252. 10.1093/biomet/72.2.241
    1. Depew M. J., Lufkin T. and Rubenstein J. L. R. (2002). Specification of jaw subdivisions by Dlx genes. Science 298, 381-385. 10.1126/science.1075703
    1. Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M. and Gingeras T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. 10.1093/bioinformatics/bts635
    1. Du X., Weng T., Sun Q., Su N., Chen Z., Qi H., Jin M., Yin L., He Q. and Chen L. (2010). Dynamic morphological changes in the skulls of mice mimicking human Apert syndrome resulting from gain-of-function mutation of FGFR2 (P253R). J. Anat. 217, 97-105. 10.1111/j.1469-7580.2010.01248.x
    1. Duplan M. B., Komla-Ebri D., Heuzé Y., Estibals V., Gaudas E., Kaci N., Benoist-Lasselin C., Zerah M., Kramer I., Kneissel M. et al. (2016). Meckel's and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible. Hum. Mol. Genet. 25, 2997-3010.
    1. Enlow D. H. (2000). Normal craniofacial growth. In Craniosynostosis: Diagnosis, Evaluation, and Management, 2nd edn. (ed. Cohen M. M. J. and MacLean R. E.), pp. 35-50. New York: Oxford University Press.
    1. Eswarakumar V. P., Horowitz M. C., Locklin R., Morriss-Kay G. M. and Lonai P. (2004). A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc. Natl. Acad. Sci. USA 101, 12555-12560. 10.1073/pnas.0405031101
    1. Falsetti A. B., Jungers W. L. and Colle T. M. III (1993). Morphometrics of the callitrichid forelimb: a case study in size and shape. Int. J. Primatol. 14, 551-572. 10.1007/BF02215447
    1. Flaherty K., Singh N. and Richtsmeier J. T. (2016). Understanding craniosynostosis as a growth disorder. Wiley Interdiscip. Rev. Dev. Biol. 5, 429-459. 10.1002/wdev.227
    1. Frisdal A. and Trainor P. A. (2014). Development and evolution of the pharyngeal apparatus. Wiley Interdiscip. Rev. Dev. Biol. 3, 403-418. 10.1002/wdev.147
    1. Funato N., Kokubo H., Nakamura M., Yanagisawa H. and Saga Y. (2016). Specification of jaw identity by the Hand2 transcription factor. Sci. Rep. 6, 28405 10.1038/srep28405
    1. Gee A. H., Treece G. M., Tonkin C. J., Black D. M. and Poole K. E. S. (2015). Association between femur size and a focal defect of the superior femoral neck. Bone 81, 60-66. 10.1016/j.bone.2015.06.024
    1. Heuzé Y., Holmes G., Peter I., Richtsmeier J. T. and Jabs E. W. (2014). Closing the gap: genetic and genomic continuum from syndromic to nonsyndromic craniosynostoses. Curr. Genet. Med. Rep. 2, 135-145. 10.1007/s40142-014-0042-x
    1. Ho A. M., Johnson M. D. and Kingsley D. M. (2000). Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289, 265-271.10.1126/science.289.5477.265
    1. Holmes G., Rothschild G., Roy U. B., Deng C.-X., Mansukhani A. and Basilico C. (2009). Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology. Dev. Biol. 328, 273-284. 10.1016/j.ydbio.2009.01.026
    1. Holmes G., O'Rourke C., Perrine S. M. M., Lu N., van Bakel H., Richtsmeier J. T. and Jabs E. W. (2018). Midface and upper airway dysgenesis in FGFR2-craniosynostosis involves multiple tissue-specific and cell cycle effects. Development 145, dev.166488 10.1242/dev.166488
    1. Huang W., Yang S., Shao J. and Li Y. P. (2007). Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front. Biosci. 12, 3068-3092. 10.2741/2296
    1. Ibrahimi O. A., Eliseenkova A. V., Plotnikov A. N., Yu K., Ornitz D. M. and Mohammadi M. (2001). Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc. Natl. Acad. Sci. USA 98, 7182-7187. 10.1073/pnas.121183798
    1. Khominsky A., Yong R., Ranjitkar S., Townsend G. and Anderson P. J. (2018). Extensive phenotyping of the orofacial and dental complex in Crouzon syndrome. Arch. Oral Biol. 86, 123-130. 10.1016/j.archoralbio.2017.10.022
    1. Law C. W., Chen Y., Shi W. and Smyth G. K. (2014). voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 10.1186/gb-2014-15-2-r29
    1. Lele S. and Richtsmeier J. T. (1995). Euclidean distance matrix analysis: confidence intervals for form and growth differences. Am. J. Phys. Anthropol. 98, 73-86. 10.1002/ajpa.1330980107
    1. Lele S. and Richtsmeier J. T. (2001). An Invariant Approach to Statistical Analysis of Shapes. Chapman & Hall/CRC.
    1. Lemire R. J. (2000). Embryology of the skull. In Craniosynostosis: Diagnosis, Evaluation, and Management (ed. Cohen M. M. and MacLean R. E.), pp. 24-32. New York: Oxford University Press.
    1. Leung V. Y. L., Gao B., Leung K. K. H., Melhado I. G., Wynn S. L., Au T. Y. K., Dung N. W. F., Lau J. Y. B., Mak A. C. Y., Chan D. et al. (2011). SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet. 7, e1002356 10.1371/journal.pgen.1002356
    1. Liao Y., Smyth G. K. and Shi W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930. 10.1093/bioinformatics/btt656
    1. Mackenzie N. C. W., Zhu D., Milne E. M., van ‘t Hof R., Martin A., Quarles D. L., Millán J. L., Farquharson C. and MacRae V. E. (2012). Altered bone development and an increase in FGF-23 expression in Enpp1−/− mice. PLoS ONE 7, e32177 10.1371/journal.pone.0032177
    1. Mangasarian K., Li Y., Mansukhani A. and Basilico C. (1997). Mutation associated with Crouzon syndrome causes ligand-independent dimerization and activation of FGF receptor-2. J. Cell. Physiol. 172, 117-125. 10.1002/(SICI)1097-4652(199707)172:1<117::AID-JCP13>;2-9
    1. Martínez-Abadías N., Motch S. M., Pankratz T. L., Wang Y., Aldridge K., Jabs E. W. and Richtsmeier J. T. (2013). Tissue-specific responses to aberrant FGF signaling in complex head phenotypes. Dev. Dyn. 242, 80-94. 10.1002/dvdy.23903
    1. McBratney-Owen B., Iseki S., Bamforth S. D., Olsen B. R. and Morriss-Kay G. M. (2008). Development and tissue origins of the mammalian cranial base. Dev. Biol. 322, 121-132. 10.1016/j.ydbio.2008.07.016
    1. McHugh K. P., Hodivala-Dilke K., Zheng M.-H., Namba N., Lam J., Novack D., Feng X., Ross F. P., Hynes R. O. and Teitelbaum S. L. (2000). Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105, 433-440. 10.1172/JCI8905
    1. Motch Perrine S. M., Cole T. M., Martínez-Abadías N., Aldridge K., Jabs E. W. and Richtsmeier J. T. (2014). Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice. BMC Dev. Biol. 14, 8 10.1186/1471-213X-14-8
    1. Motch Perrine S. M., Stecko T., Neuberger T., Jabs E. W., Ryan T. M. and Richtsmeier J. T. (2017). Integration of brain and skull in prenatal mouse models of Apert and Crouzon syndromes. Front. Hum. Neurosci. 11, 369 10.3389/fnhum.2017.00369
    1. Murali S. K., Andrukhova O., Clinkenbeard E. L., White K. E. and Erben R. G. (2016). Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp Mice. PLoS Biol. 14, e1002427 10.1371/journal.pbio.1002427
    1. Nam H. K., Liu J., Li Y., Kragor A. and Hatch N. E. (2011). Ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) protein regulates osteoblast differentiation. J. Biol. Chem. 286, 39059-39071. 10.1074/jbc.M111.221689
    1. Noden D. M. (1983). The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144-165. 10.1016/0012-1606(83)90318-4
    1. Nürnberg P., Thiele H., Chandler D., Höhne W., Cunningham M. L., Ritter H., Leschik G., Uhlmann K., Mischung C., Harrop K. et al. (2001). Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat. Genet. 28, 37-41. 10.1038/ng0501-37
    1. Ornitz D. M. and Itoh N. (2015). The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215-266. 10.1002/wdev.176
    1. Ornitz D. M. and Marie P. J. (2015). Fibroblast growth factor signaling in skeletal development and disease. 29, 1463-1486. 10.1101/gad.266551.115
    1. Parada C. and Chai Y. (2015). Mandible and tongue development. Craniofacial Dev. 115, 31-58. 10.1016/bs.ctdb.2015.07.023
    1. Percival C. J., Huang Y., Jabs E. W., Li R. and Richtsmeier J. T. (2014). Embryonic craniofacial bone volume and bone mineral density in Fgfr2+/P253R and nonmutant mice. Dev. Dyn. 243, 541-551. 10.1002/dvdy.24095
    1. Reichenberger E., Tiziani V., Watanabe S., Park L., Ueki Y., Santanna C., Baur S. T., Shiang R., Grange D. K., Beighton P. et al. (2001). Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am. J. Hum. Genet. 68, 1321-1326. 10.1086/320612
    1. Rice D. P. C., Rice R. and Thesleff I. (2003). Fgfr mRNA isoforms in craniofacial bone development. Bone 33, 14-27. 10.1016/S8756-3282(03)00163-7
    1. Richtsmeier J. T. and Lele S. (1993). A coordinate-free approach to the analysis of growth patterns: models and theoretical considerations. Biol. Rev. Camb. Philos. Soc. 68, 381-411. 10.1111/j.1469-185X.1993.tb00737.x
    1. Robinson M. D. and Oshlack A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 10.1186/gb-2010-11-3-r25
    1. Stephens N. B., Kivell T. L., Pahr D. H., Hublin J.-J. and Skinner M. M. (2018). Trabecular bone patterning across the human hand. J. Hum. Evol. 123, 1-23. 10.1016/j.jhevol.2018.05.004
    1. Terkeltaub R. A. (2001). Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol. Cell Physiol. 281, C1-C11. 10.1152/ajpcell.2001.281.1.C1
    1. Treece G. M., Gee A. H., Mayhew P. M. and Poole K. E. S. (2010). High resolution cortical bone thickness measurement from clinical CT data. Med. Image Anal. 14, 276-290. 10.1016/j.media.2010.01.003
    1. Treece G. M., Poole K. E. S. and Gee A. H. (2012). Imaging the femoral cortex: thickness, density and mass from clinical CT. Med. Image Anal. 16, 952-965. 10.1016/j.media.2012.02.008
    1. Wang Y., Xiao R., Yang F., Karim B. O., Iacovelli A. J., Cai J., Lerner C. P., Richtsmeier J. T., Leszl J. M., Hill C. A. et al. (2005). Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse. Development 132, 3537-3548. 10.1242/dev.01914
    1. Wang Y., Sun M., Uhlhorn V. L., Zhou X., Peter I., Martinez-Abadias N., Hill C. A., Percival C. J., Richtsmeier J. T., Huso D. L. et al. (2010). Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2+P253R mice. BMC Dev. Biol. 10, 22 10.1186/1471-213X-10-22
    1. Wink J. D., Bastidas N. and Bartlett S. P. (2013). Analysis of the long-term growth of the mandible in Apert syndrome. J. Craniofac. Surg. 24, 1408-1410. 10.1097/SCS.0b013e31828dcf09
    1. Xu Q. and Wilkinson D. G. (1999). In situ hybridization of mRNA with hapten labelled probes. In In Situ Hybridization: a Practical Approach (ed. Wilkinson D. G.), pp. 87-106. Oxford: Oxford University Press.
    1. Yang F., Wang Y., Zhang Z., Hsu B., Jabs E. W. and Elisseeff J. H. (2008). The study of abnormal bone development in the Apert syndrome Fgfr2+/S252W mouse using a 3D hydrogel culture model. Bone 43, 55-63. 10.1016/j.bone.2008.02.008
    1. Yu K., Herr A. B., Waksman G. and Ornitz D. M. (2000). Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc. Natl. Acad. Sci. USA 97, 14536-14541. 10.1073/pnas.97.26.14536
    1. Zhou X., Pu D., Liu R., Li X., Wen X., Zhang L., Chen L., Deng M. and Liu L. (2013). The Fgfr2S252W/+ mutation in mice retards mandible formation and reduces bone mass as in human Apert syndrome. Am. J. Med. Genet. Part A 161, 983-992. 10.1002/ajmg.a.35824

Source: PubMed

3
Sottoscrivi