The Food-Specific Serum IgG Reactivity in Major Depressive Disorder Patients, Irritable Bowel Syndrome Patients and Healthy Controls

Hanna Karakula-Juchnowicz, Mirosława Gałęcka, Joanna Rog, Anna Bartnicka, Zuzanna Łukaszewicz, Pawel Krukow, Justyna Morylowska-Topolska, Karolina Skonieczna-Zydecka, Tomasz Krajka, Kamil Jonak, Dariusz Juchnowicz, Hanna Karakula-Juchnowicz, Mirosława Gałęcka, Joanna Rog, Anna Bartnicka, Zuzanna Łukaszewicz, Pawel Krukow, Justyna Morylowska-Topolska, Karolina Skonieczna-Zydecka, Tomasz Krajka, Kamil Jonak, Dariusz Juchnowicz

Abstract

There is an increasing amount of evidence which links the pathogenesis of irritable bowel syndrome (IBS) with food IgG hyperreactivity. Some authors have suggested that food IgG hyperreactivity could be also involved in the pathophysiology of major depressive disorder (MDD). The aim of this study was to compare levels of serum IgG against 39 selected food antigens between three groups of participants: patients with MDD (MDD group), patients with IBS (IBS group) and healthy controls (HC group). The study included 65 participants (22 in the MDD group, 22 in the IBS group and 21 in the HC group). Serum IgG levels were examined using enzyme-linked immunosorbent assay (ELISA). Medical records, clinical data and laboratory results were collected for the analysis. IgG food hyperreactivity (interpreted as an average of levels of IgG antibodies above 7.5 µg/mL) was detected in 28 (43%) participants, including 14 (64%) from the MDD group, ten (46%) from the IBS group and four (19%) from the HC group. We found differences between extreme IgG levels in MDD versus HC groups and in IBS versus HC groups. Patients with MDD had significantly higher serum levels of total IgG antibodies and IgG against celery, garlic and gluten compared with healthy controls. The MDD group also had higher serum IgG levels against gluten compared with the IBS group. Our results suggest dissimilarity in immune responses against food proteins between the examined groups, with the highest immunoreactivity in the MDD group. Further studies are needed to repeat and confirm these results in bigger cohorts and also examine clinical utility of IgG-based elimination diet in patients with MDD and IBS.

Keywords: food allergy; food antigen; food hypersensitivity; gut-brain axis; immunoglobulin G antibody; intestinal permeability; irritable bowel syndrome; low-grade inflammation; major depressive disorder.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The gut-immune-inflammatory-brain model for Major Depressive Disorder associated with food IgG hyperreactivity. According to the hypothesis proposed in our previous work [19], we present a possible mechanism underlying the MDD development, suggesting that the interplay between genetic and environmental factors may lead to disruption of tight junctions, the loss of their integrity and both gut and BBB permeability. Undigested food compounds, which would normally break down in the gut, translocate into the blood circulation, and trough epitopes combine with food IgG antibodies to form immune complexes. This, in turn, provokes an abnormal response and triggers immune-inflammatory cascade. Uncontrolled release of the proinflammatory mediators may contribute to low-grade systemic inflammation and low-grade neuroinflammation, which, via pathological processes in CNS, i.e., changes in neurotransmitter metabolism, neurogenesis, glutamate excitotoxicity, may in consequence induce and then maintain and prolong depression. Abbreviations: GI tract, gastrointestinal tract; KYNA, kynurenic acid; NO, nitrogen oxide; IDO, indoleamine 2,3-dioxygenase; C1q, complement component 1q.
Figure 2
Figure 2
Specific traits of distribution of averaged results across all groups.

References

    1. Klein D.N., Hajcak G. Heterogeneity of Depression: Clinical Considerations and Psychophysiological Measures. Psychol. Inq. 2015;26:247–252. doi: 10.1080/1047840X.2015.1032873.
    1. World Health Organization Depression. [(accessed on 5 December 2017)]; Available online:
    1. Uher R. Gene-environment interactions in common mental disorders: An update and strategy for a genome-wide search. Soc. Psychiatry Psychiatr. Epidemiol. 2014;49:3–14. doi: 10.1007/s00127-013-0801-0.
    1. Dunn E.C., Brown R.C., Dai Y., Rosand J., Nugent N.R., Amstadter A.B., Smoller J.W. Genetic determinants of depression: Recent findings and future directions. Harv. Rev. Psychiatry. 2015;23:1. doi: 10.1097/HRP.0000000000000054.
    1. Smith R.S. The macrophage theory of depression. Med. Hypotheses. 1991;35:298–306. doi: 10.1016/0306-9877(91)90272-Z.
    1. Dantzer R. Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Springer; Berlin, Germany: 2016. Role of the Kynurenine metabolism pathway in inflammation-induced depression: Preclinical approaches; pp. 117–138.
    1. Dahl J., Ormstad H., Aass H., Sandvik L., Malt U., Andreassen O. Recovery from major depressive disorder episode after non-pharmacological treatment is associated with normalized cytokine levels. Acta Psychiatr. Scand. 2016;134:40–47. doi: 10.1111/acps.12576.
    1. Lopresti A.L., Maker G.L., Hood S.D., Drummond P.D. A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2014;48:102–111. doi: 10.1016/j.pnpbp.2013.09.017.
    1. Young J.J., Bruno D., Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J. Affect. Disord. 2014;169:15–20. doi: 10.1016/j.jad.2014.07.032.
    1. Köhler O., Benros M.E., Nordentoft M., Farkouh M.E., Iyengar R.L., Mors O., Krogh J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry. 2014;71:1381–1391. doi: 10.1001/jamapsychiatry.2014.1611.
    1. Ruiz-Núñez B., Pruimboom L., Dijck-Brouwer D.J., Muskiet F.A. Lifestyle and nutritional imbalances associated with Western diseases: Causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J. Nutr. Biochem. 2013;24:1183–1201. doi: 10.1016/j.jnutbio.2013.02.009.
    1. Maes M., Kubera M., Leunis J.-C. The gut-brain barrier in major depression: Intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol. Lett. 2008;29:117–124. doi: 10.1016/S1734-1140(10)71152-X.
    1. Thevaranjan N., Puchta A., Schulz C., Naidoo A., Szamosi J., Verschoor C.P., Loukov D., Schenck L.P., Jury J., Foley K.P. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host Microbe. 2017;21:455–466.e454. doi: 10.1016/j.chom.2017.03.002.
    1. Fasano A. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 2011;91:151–175. doi: 10.1152/physrev.00003.2008.
    1. Lin R., Zhou L., Zhang J., Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int. J. Clin. Exp. Pathol. 2015;8:5153.
    1. Clairembault T., Leclair-Visonneau L., Coron E., Bourreille A., Le Dily S., Vavasseur F., Heymann M.-F., Neunlist M., Derkinderen P. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol. Commun. 2015;3:12. doi: 10.1186/s40478-015-0196-0.
    1. Szachta P., Bartnicka A., Galecka M., Skonieczna-Zydecka K. Microbiota disorders and food hypersensitivity in autism spectrum disorders; what do we know? J. Exp. Integr. Med. 2015;5:117–120. doi: 10.5455/jeim.160615.rw.013.
    1. Esnafoglu E., Cırrık S., Ayyıldız S.N., Erdil A., Ertürk E.Y., Daglı A., Noyan T. Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. J. Pediatr. 2017;188:240–244. doi: 10.1016/j.jpeds.2017.04.004.
    1. Karakuła-Juchnowicz H., Szachta P., Opolska A., Morylowska-Topolska J., Gałęcka M., Juchnowicz D., Krukow P., Lasik Z. The role of IgG hypersensitivity in the pathogenesis and therapy of depressive disorders. Nutr. Neurosci. 2017;20:110–118. doi: 10.1179/1476830514Y.0000000158.
    1. Lovell R.M., Ford A.C. Global prevalence of and risk factors for irritable bowel syndrome: A meta-analysis. Clin. Gastroenterol. Hepatol. 2012;10:712–721.e714. doi: 10.1016/j.cgh.2012.02.029.
    1. Sinagra E., Pompei G., Tomasello G., Cappello F., Morreale G.C., Amvrosiadis G., Rossi F., Monte A.I.L., Rizzo A.G., Raimondo D. Inflammation in irritable bowel syndrome: Myth or new treatment target? World J. Gastroenterol. 2016;22:2242. doi: 10.3748/wjg.v22.i7.2242.
    1. Spiller R.C. Infection, immune function, and functional gut disorders. Clin. Gastroenterol. Hepatol. 2004;2:445–455. doi: 10.1016/S1542-3565(04)00159-4.
    1. Li F.X., Patten S.B., Hilsden R.J., Sutherland L.R. Irritable bowel syndrome and health-related quality of life: A population-based study in Calgary, Alberta. Can. J. Gastroenterol. Hepatol. 2003;17:259–263. doi: 10.1155/2003/706891.
    1. Longstreth G.F., Thompson W.G., Chey W.D., Houghton L.A., Mearin F., Spiller R.C. Functional bowel disorders. Gastroenterology. 2006;130:1480–1491. doi: 10.1053/j.gastro.2005.11.061.
    1. Jeffery I.B., O’toole P.W., Öhman L., Claesson M.J., Deane J., Quigley E.M., Simrén M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61:997–1006. doi: 10.1136/gutjnl-2011-301501.
    1. Foxx-Orenstein A.E. New and emerging therapies for the treatment of irritable bowel syndrome: An update for gastroenterologists. Ther. Adv. Gastroenterol. 2016;9:354–375. doi: 10.1177/1756283X16633050.
    1. Atkinson W., Sheldon T., Shaath N., Whorwell P. Food elimination based on IgG antibodies in irritable bowel syndrome: A randomised controlled trial. Gut. 2004;53:1459–1464. doi: 10.1136/gut.2003.037697.
    1. Shih D.Q., Kwan L.Y. All roads lead to Rome: Update on Rome III criteria and new treatment options. Gastroenterol. Rep. 2007;1:56.
    1. Marsh A., Eslick E.M., Eslick G.D. Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur. J. Nutr. 2016;55:897–906. doi: 10.1007/s00394-015-0922-1.
    1. McKenzie Y., Bowyer R., Leach H., Gulia P., Horobin J., O’sullivan N., Pettitt C., Reeves L., Seamark L., Williams M. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update) J. Hum. Nutr. Diet. 2016;29:549–575. doi: 10.1111/jhn.12385.
    1. Barmeyer C., Schumann M., Meyer T., Zielinski C., Zuberbier T., Siegmund B., Schulzke J.-D., Daum S., Ullrich R. Long-term response to gluten-free diet as evidence for non-celiac wheat sensitivity in one third of patients with diarrhea-dominant and mixed-type irritable bowel syndrome. Int. J. Colorectal Dis. 2017;32:29–39. doi: 10.1007/s00384-016-2663-x.
    1. Catassi C., Alaedini A., Bojarski C., Bonaz B., Bouma G., Carroccio A., Castillejo G., De Magistris L., Dieterich W., Di Liberto D. The Overlapping Area of Non-Celiac Gluten Sensitivity (NCGS) and Wheat-Sensitive Irritable Bowel Syndrome (IBS): An Update. Nutrients. 2017;9:1268. doi: 10.3390/nu9111268.
    1. Böhmer C.J., Tuynman H.A. The effect of a lactose-restricted diet in patients with a positive lactose tolerance test, earlier diagnosed as irritable bowel syndrome: A 5-year follow-up study. Eur. J. Gastroenterol. Hepatol. 2001;13:941–944. doi: 10.1097/00042737-200108000-00011.
    1. Defrees D.N., Bailey J. Irritable Bowel Syndrome: Epidemiology, Pathophysiology, Diagnosis, and Treatment. Prim. Care Clin. Off. Pract. 2017;44:655–671. doi: 10.1016/j.pop.2017.07.009.
    1. Halmos E.P. When the low FODMAP diet does not work. J. Gastroenterol. Hepatol. 2017;32:69–72. doi: 10.1111/jgh.13701.
    1. Hill P., Muir J.G., Gibson P.R. Controversies and Recent Developments of the Low-FODMAP Diet. Gastroenterol. Hepatol. 2017;13:36.
    1. Zar S., Mincher L., Benson M.J., Kumar D. Food-specific IgG4 antibody-guided exclusion diet improves symptoms and rectal compliance in irritable bowel syndrome. Scand. J. Gastroenterol. 2005;40:800–807. doi: 10.1080/00365520510015593.
    1. Drisko J., Bischoff B., Hall M., McCallum R. Treating irritable bowel syndrome with a food elimination diet followed by food challenge and probiotics. J. Am. Coll. Nutr. 2006;25:514–522. doi: 10.1080/07315724.2006.10719567.
    1. Monsbakken K., Vandvik P., Farup P. Perceived food intolerance in subjects with irritable bowel syndrome–etiology, prevalence and consequences. Eur. J. Clin. Nutr. 2006;60:667–672. doi: 10.1038/sj.ejcn.1602367.
    1. Böhn L., Störsrud S., Törnblom H., Bengtsson U., Simrén M. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am. J. Gastroenterol. 2013;108:634–641.
    1. Fritscher-Ravens A., Schuppan D., Ellrichmann M., Schoch S., Röcken C., Brasch J., Bethge J., Böttner M., Klose J., Milla P.J. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2014;147:1012–1020.e1014. doi: 10.1053/j.gastro.2014.07.046.
    1. American Psychiatric Association (APA) Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Publishing; Arlington, VA, USA: 2013.
    1. Hossain M.I., Nahar B., Hamadani J.D., Ahmed T., Roy A.K., Brown K.H. Intestinal mucosal permeability of severely underweight and nonmalnourished Bangladeshi children and effects of nutritional rehabilitation. J. Pediatr. Gastroenterol. Nutr. 2010;51:638–644. doi: 10.1097/MPG.0b013e3181eb3128.
    1. Gummesson A., Carlsson L.M., Storlien L.H., Backhed F., Lundin P., Lofgren L., Stenlof K., Lam Y.Y., Fagerberg B., Carlsson B. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity. 2011;19:2280–2282. doi: 10.1038/oby.2011.251.
    1. Genton L., Cani P.D., Schrenzel J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 2015;34:341–349. doi: 10.1016/j.clnu.2014.10.003.
    1. Karakula-Juchnowicz H., Pankowicz H., Juchnowicz D., Valverde Piedra J.L., Malecka-Massalska T. Intestinal microbiota—A key to understanding the pathophysiology of anorexia nervosa? Psychiatr. Pol. 2017;51:859–870. doi: 10.12740/PP/65308.
    1. Seganfredo F.B., Blume C.A., Moehlecke M., Giongo A., Casagrande D.S., Spolidoro J.V.N., Padoin A.V., Schaan B.D., Mottin C.C. Weight-loss interventions and gut microbiota changes in overweight and obese patients: A systematic review. Obes. Rev. 2017;18:832–851. doi: 10.1111/obr.12541.
    1. Alpay K., Ertaş M., Orhan E.K., Üstay D.K., Lieners C., Baykan B. Diet restriction in migraine, based on IgG against foods: A clinical double-blind, randomised, cross-over trial. Cephalalgia. 2010;30:829–837. doi: 10.1177/0333102410361404.
    1. Zeng Q., Dong S.Y., Wu L.X., Li H., Sun Z.J., Li J.B., Jiang H.X., Chen Z.H., Wang Q.B., Chen W.W. Variable food-specific IgG antibody levels in healthy and symptomatic Chinese adults. PLoS ONE. 2013;8:e53612. doi: 10.1371/journal.pone.0053612.
    1. Lacouture Y., Cousineau D. How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutor. Quant. Methods Psychol. 2008;4:35–45. doi: 10.20982/tqmp.04.1.p035.
    1. Field A., Hole G. How to Design and Report Experiments. Sage; Newcastle, UK: 2002.
    1. Zuo X., Li Y., Li W., Guo Y., Lu X., Li J., Desmond P. Alterations of food antigen-specific serum immunoglobulins G and E antibodies in patients with irritable bowel syndrome and functional dyspepsia. Clin. Exp. Allergy. 2007;37:823–830. doi: 10.1111/j.1365-2222.2007.02727.x.
    1. Isolauri E., Rautava S., Kalliomäki M. Food allergy in irritable bowel syndrome: New facts and old fallacies. Gut. 2004;53:1391–1393. doi: 10.1136/gut.2004.044990.
    1. Whorwell P., Lea R. Dietary treatment of the irritable bowel syndrome. Curr. Treat. Opt. Gastroenterol. 2004;7:307–316. doi: 10.1007/s11938-004-0017-1.
    1. Anthoni S., Savilahti E., Rautelin H., Kolho K.-L. Milk protein IgG and IgA: The association with milk-induced gastrointestinal symptoms in adults. World J. Gastroenterol. WJG. 2009;15:4915. doi: 10.3748/wjg.15.4915.
    1. Aydinlar E.I., Dikmen P.Y., Tiftikci A., Saruc M., Aksu M., Gunsoy H.G., Tozun N. IgG-based elimination diet in migraine plus irritable bowel syndrome. Headache J. Head Face Pain. 2013;53:514–525. doi: 10.1111/j.1526-4610.2012.02296.x.
    1. Guo H., Jiang T., Wang J., Chang Y., Guo H., Zhang W. The value of eliminating foods according to food-specific immunoglobulin G antibodies in irritable bowel syndrome with diarrhoea. J. Int. Med. Res. 2012;40:204–210. doi: 10.1177/147323001204000121.
    1. Vazquez-Roque M.I., Camilleri M., Smyrk T., Murray J.A., Marietta E., O’Neill J., Carlson P., Lamsam J., Janzow D., Eckert D. A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: Effects on bowel frequency and intestinal function. Gastroenterology. 2013;144:903–911.e903. doi: 10.1053/j.gastro.2013.01.049.
    1. Mansueto P., D’Alcamo A., Seidita A., Carroccio A. Food allergy in irritable bowel syndrome: The case of non-celiac wheat sensitivity. World J. Gastroenterol. WJG. 2015;21:7089. doi: 10.3748/wjg.v21.i23.7089.
    1. Li H., Sun J., Du J., Wang F., Fang R., Yu C., Xiong J., Chen W., Lu Z., Liu J. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol. Motil. 2017 doi: 10.1111/nmo.13260.
    1. Stevens B.R., Goel R., Seungbum K., Richards E.M., Holbert R.C., Pepine C.J., Raizada M.K. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut. 2017 doi: 10.1136/gutjnl-2017-314759. gutjnl-2017-314759.
    1. Katzenberger R.J., Ganetzky B., Wassarman D.A. The gut reaction to traumatic brain injury. Fly. 2015;9:68–74. doi: 10.1080/19336934.2015.1085623.
    1. Ma E.L., Smith A.D., Desai N., Cheung L., Hanscom M., Stoica B.A., Loane D.J., Shea-Donohue T., Faden A.I. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav. Immun. 2017;66:56–69. doi: 10.1016/j.bbi.2017.06.018.
    1. Torres-Platas S.G., Cruceanu C., Chen G.G., Turecki G., Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun. 2014;42:50–59. doi: 10.1016/j.bbi.2014.05.007.
    1. Setiawan E., Wilson A.A., Mizrahi R., Rusjan P.M., Miler L., Rajkowska G., Suridjan I., Kennedy J.L., Rekkas P.V., Houle S. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268–275. doi: 10.1001/jamapsychiatry.2014.2427.
    1. Hart G.R. Food-specific IgG guided elimination diet; a role in mental health? BAOJ Nutr. 2017;3:045.
    1. Okusaga O., Fuchs D., Reeves G., Giegling I., Hartmann A.M., Konte B., Friedl M., Groer M., Cook T.B., Stearns-Yoder K.A. Kynurenine and Tryptophan Levels in Patients With Schizophrenia and Elevated Antigliadin Immunoglobulin G Antibodies. Psychosom. Med. 2016;78:931–939. doi: 10.1097/PSY.0000000000000352.
    1. Severance E.G., Gressitt K.L., Yang S., Stallings C.R., Origoni A.E., Vaughan C., Khushalani S., Alaedini A., Dickerson F.B., Yolken R.H. Seroreactive marker for inflammatory bowel disease and associations with antibodies to dietary proteins in bipolar disorder. Bipolar Disord. 2014;16:230–240. doi: 10.1111/bdi.12159.
    1. Rudzki L., Pawlak D., Pawlak K., Waszkiewicz N., Małus A., Konarzewska B., Gałęcka M., Bartnicka A., Ostrowska L., Szulc A. Immune suppression of IgG response against dairy proteins in major depression. BMC Psychiatry. 2017;17:268. doi: 10.1186/s12888-017-1431-y.
    1. Köhler C., Freitas T., Maes M., Andrade N., Liu C., Fernandes B., Stubbs B., Solmi M., Veronese N., Herrmann N. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017;135:373–387. doi: 10.1111/acps.12698.
    1. Coutinho A.E., Chapman K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011;335:2–13. doi: 10.1016/j.mce.2010.04.005.
    1. Zunszain P.A., Anacker C., Cattaneo A., Carvalho L.A., Pariante C.M. Glucocorticoids, cytokines and brain abnormalities in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2011;35:722–729. doi: 10.1016/j.pnpbp.2010.04.011.
    1. Pariante C.M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 2017;27:554–559. doi: 10.1016/j.euroneuro.2017.04.001.
    1. Lamers F., Vogelzangs N., Merikangas K., De Jonge P., Beekman A., Penninx B. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol. Psychiatry. 2013;18:692–699. doi: 10.1038/mp.2012.144.
    1. Cai C., Shen J., Zhao D., Qiao Y., Xu A., Jin S., Ran Z., Zheng Q. Serological investigation of food specific immunoglobulin G antibodies in patients with inflammatory bowel diseases. PLoS ONE. 2014;9:e112154. doi: 10.1371/journal.pone.0112154.
    1. Lee H.S., Lee K.J. Alterations of Food-specific Serum IgG4 Titers to Common Food Antigens in Patients With Irritable Bowel Syndrome. J. Neurogastroenterol. Motil. 2017;23:578. doi: 10.5056/jnm17054.
    1. Ikechi R., Fischer B.D., DeSipio J., Phadtare S. Irritable Bowel Syndrome: Clinical Manifestations, Dietary Influences, and Management. Healthcare, Multidisciplinary Digital Publishing Institute; Basel, Switzerland: 2017. p. 21.
    1. Hayes P., Corish C., Vny E., Quigley E.M.M. A dietary survey of patients with irritable bowel syndrome. J. Hum. Nutr. Dietet. 2014;27:36–47. doi: 10.1111/jhn.12114.
    1. Ligaarden S.C., Lydersen S., Farup P.G. IgG and IgG4 antibodies in subjects with irritable bowel syndrome: A case control study in the general population. BMC Gastroenterol. 2012;12:166. doi: 10.1186/1471-230X-12-166.
    1. Rees T., Watson D., Lipscombe S., Speight H., Cousins P., Hardman G., Dowson A.J. A prospective audit of food intolerance among migraine patients in primary care clinical practice. Headache Care. 2005;2:105–110.
    1. Wilders-Truschnig M., Mangge H., Lieners C., Gruber H.-J., Mayer C., März W. IgG antibodies against food antigens are correlated with inflammation and intima media thickness in obese juveniles. Exp. Clin. Endocrinol. Diabet. 2008;116:241–245. doi: 10.1055/s-2007-993165.
    1. Bentz S., Hausmann M., Piberger H., Kellermeier S., Paul S., Held L., Falk W., Obermeier F., Fried M., Schölmerich J. Clinical relevance of IgG antibodies against food antigens in Crohn’s disease: A double-blind cross-over diet intervention study. Digestion. 2010;81:252–264. doi: 10.1159/000264649.
    1. Piche T. Tight junctions and IBS-the link between epithelial permeability, low-grade inflammation, and symptom generation? Neurogastroenterol. Motil. 2014;26:296–302. doi: 10.1111/nmo.12315.
    1. Sentsova T., Vorozhko I., Isakov V., Morozov S., Shakhovskaia A. Immune status estimation algorithm in irritable bowel syndrome patients with food intolerance. Exp. Clin. Gastroenterol. 2014;7:13–17.
    1. Stapel S.O., Asero R., Ballmer-Weber B., Knol E., Strobel S., Vieths S., Kleine-Tebbe J. Testing for IgG4 against foods is not recommended as a diagnostic tool: EAACI Task Force Report. Allergy. 2008;63:793–796. doi: 10.1111/j.1398-9995.2008.01705.x.
    1. Carr S., Chan E., Lavine E., Moote W. CSACI Position statement on the testing of food-specific IgG. Allergy Asthma Clin. Immunol. 2012;8:12. doi: 10.1186/1710-1492-8-12.
    1. Sicherer S.H., Allen K., Lack G., Taylor S.L., Donovan S.M., Oria M. Critical Issues in Food Allergy: A National Academies Consensus Report. Pediatrics. 2017;140:e20170194. doi: 10.1542/peds.2017-0194.
    1. Chabane H., Doyen V., Bienvenu F., Adel-Patient K., Vitte J., Mariotte D., Bienvenu J. Les dosages d’IgG anti-aliments: Méthodes et pertinence clinique des résultats. Position du groupe de travail de biologie de la Société française d’allergologie. [(accessed on 11 April 2018)];Revue Française d’Allergologie. 2018 doi: 10.1016/j.reval.2018.01.007. Available online: .
    1. Engelhart S., Glynn R.J., Schur P.H. Disease associations with isolated elevations of each of the four IgG subclasses. Semin. Arthritis and Rheum. 2017;47:276–280. doi: 10.1016/j.semarthrit.2017.03.021.
    1. Aljada A., Mohanty P., Ghanim H., Abdo T., Tripathy D., Chaudhuri A., Dandona P. Increase in intranuclear nuclear factor κB and decrease in inhibitor κB in mononuclear cells after a mixed meal: Evidence for a proinflammatory effect. Am. J. Clin. Nutr. 2004;79:682–690. doi: 10.1093/ajcn/79.4.682.
    1. Abautret-Daly Á., Dempsey E., Parra-Blanco A., Medina C., Harkin A. Gut-brain actions underlying comorbid anxiety and depression associated with inflammatory bowel disease. Acta Neuropsychiatr. 2017:1–22. doi: 10.1017/neu.2017.3.
    1. Powell N., Walker M.M., Talley N.J. The mucosal immune system: Master regulator of bidirectional gut-brain communications. Nat. Rev. Gastroenterol. Hepatol. 2017;14:143–159. doi: 10.1038/nrgastro.2016.191.
    1. Delaney S., Hornig M. Environmental Exposures and Neuropsychiatric Disorders: What Role Does the Gut–Immune–Brain Axis Play? Curr. Environ. Health Rep. 2018;5:158–169. doi: 10.1007/s40572-018-0186-z.
    1. Rios-Covian D., Ruas-Madiedo P., Margolles A., Gueimonde M., de Los Reyes-Gavilan C.G., Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016;7:185. doi: 10.3389/fmicb.2016.00185.
    1. Quigley E.M.M. The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS) J. Clin. Med. 2018;7:6. doi: 10.3390/jcm7010006.

Source: PubMed

3
Sottoscrivi