Tolerability and Safety of a Nutritional Supplement with Potential as Adjuvant in Colorectal Cancer Therapy: A Randomized Trial in Healthy Volunteers

Marta Gómez de Cedrón, José Moises Laparra, Viviana Loria-Kohen, Susana Molina, Juan Moreno-Rubio, Juan Jose Montoya, Carlos Torres, Enrique Casado, Guillermo Reglero, Ana Ramírez de Molina, Marta Gómez de Cedrón, José Moises Laparra, Viviana Loria-Kohen, Susana Molina, Juan Moreno-Rubio, Juan Jose Montoya, Carlos Torres, Enrique Casado, Guillermo Reglero, Ana Ramírez de Molina

Abstract

Bioactive supplements display relevant therapeutic properties when properly applied according to validated molecular effects. Our previous research efforts established the basis to develop a dietary supplement based on a Rosmarinus officinalis supercritical extract. This was enriched in phenolic diterpenes (RE) with proven properties against signaling pathways involved in colon tumorigenesis, and shark liver oil rich in alkylglycerols (AKG) as a bioactive lipid vehicle to improve RE bioavailability and synergize with the potential therapeutic action of the extract. Herein, we have investigated the tolerability and safety of the supplement and the biological and molecular effects from an immuno-nutritional perspective. Sixty healthy volunteers participated in a six week, double-blind, randomized parallel pilot study with two study arms: RE-AKG capsules (CR) and control capsules (CC). Mean age (±SD) of volunteers was 28.32 (±11.39) and 27.5 (±9.04) for the control and the study groups, respectively. Safety of the CR product consumption was confirmed by analyzing liver profile, vital constants, and oxidation markers (LDLox in blood and isoprostanes and thromboxanes in urine). The following were monitored: (1) the phenotyping of plasmatic leukocytes and the ex vivo response of lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs); (2) expression of genes associated with immune-modulation, inflammation, oxidative stress, lipid metabolism, and tumorigenesis; and (3) the correlation of selected genetic variants (SNPs) with the differential responses among individuals. The lack of adverse effects on liver profile and oxidation markers, together with adequate tolerability and safe immunological adaptations, provide high-quality information for the potential use of CR as co-adjuvant of therapeutic strategies against colorectal cancer.

Keywords: Rosmarinus officinalis L.; alkylglycerols; colon cancer; immuno-nutrition.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) Diagram of the study. (B) Study flowchart, objectives, and analyzed parameters. Abbreviations: CC, control capsules; CR, intervention capsules; BMI, body mass index; PBMC, peripheral blood mononuclear cell; SNPs, single nucleotide polymorphisms.
Figure 2
Figure 2
Combined CD analysis to identify leukocyte subpopulations. The phenotyping of leukocyte subpopulations, by combined analysis of CD markers, allows to differentiate among monocytes (CD56+ CD14+ CD16+ lowCD8+), macrophages (CD56− CD4+ CD14+), NK cells (CD56+ CD4−), T helper (Th) lymphocytes (CD4+ CD3+), and cytotoxic T lymphocytes (Tcit) (CD8+ CD3+).
Figure 3
Figure 3
Paired comparisons of the relative variation of each cytokine as a function of the treatment applied. The analysis revealed an increased cellular capacity in response to the LPS stimulation regardless of IFNγ (4-fold, p = 0.027) and IL-6 (1.9-fold, p = 0.011), while decreased IL-8 (6.6-fold, p = 0.001) levels of the CR group compared to control group.
Figure 4
Figure 4
Modulation of the expression of genes related to immunomodulation, inflammation, oxidative stress, and cancer. (A) Genes whose expression were statistically different between groups (CC or CR), regardless of evolution between visits, are shown. JAK1, NFE2L2, and BMP2 were significantly decreased in the study group (CR) compared to control (CC) (p = 0.02, p = 0.031, and p = 0.008, respectively). CHKA was diminished in the study group (CR) between visits, although not significantly (p = 0.083). (B) In vitro validation of the effect of rosemary extract in downregulating the expression of JAK1, NE2L2, BMP2, and CHKA in SW-620 colon cancer cells after treatment with three different doses corresponding to 0.5 × IC50, 1 × IC50, and 2 × IC50 for 4, being the IC50 value in this cell line of 36.46 ± 7.23 mg/mL, as previously described [14]. *, **, *** = p-value < 0.05, 0.01 and 0.005 respectively.
Figure 5
Figure 5
Associations between genetic variants (SNPs) and responses to the nutritional intervention. (A) IL-5 levels by genotype and treatment for INFγ rs2069727; (B) IL-5 levels by genotype and treatment for ALOX5 rs7913948, (C) Absolute CD45+ counts by genotype and treatment for FABP2 rs1799883, (D) Absolute CD14+ counts by genotype and treatment for ESR1 rs2234693.
Figure 6
Figure 6
Proposed model of potential main biological benefits of RE-AKG based formula found in this study that encourages its usefulness as co-adjuvant in colon cancer therapy.

References

    1. Suchner U., Kuhn K.S., Furst P. The scientific basis of immunonutrition. Proc. Nutr. Soc. 2000;59:553–563. doi: 10.1017/S0029665100000793.
    1. Senatore F.J., Murali S., Dasanu A.C. Accelerated Premalignant Polyposis and Second Colon Cancers: Incriminating Immunosuppression, Radiotherapy, and Systemic Chemotherapy Agents. J. Gastrointest. Cancer. 2016;47:152–156. doi: 10.1007/s12029-016-9813-9.
    1. Watt S.K., Hasselbalch H.C., Skov V., Kjær L., Thomassen M., Kruse T.A., Burton M., Gögenur I. Whole Blood Gene Expression Profiling in patients undergoing colon cancer surgery identifies differential expression of genes involved in immune surveillance, inflammation and carcinogenesis. Surg. Oncol. 2018;27:208–215. doi: 10.1016/j.suronc.2018.03.002.
    1. Andrews F.J., Griffiths R.D. Glutamine: Essential for immune nutrition in the critically ill. Br. J. Nutr. 2002;87(Suppl. S1):S3–S8. doi: 10.1079/BJN2001451.
    1. Grimble G.K., Westwood O.M. Nucleotides as immunomodulators in clinical nutrition. Curr. Opin. Clin. Nutr. Metab. Care. 2001;4:57–64. doi: 10.1097/00075197-200101000-00011.
    1. Weiss G., Meyer F., Matthies B., Pross M., Koenig W., Lippert H. Immunomodulation by perioperative administration of n-3 fatty acids. Br. J. Nutr. 2002;87(Suppl. S1):S89–S94. doi: 10.1079/BJN2001461.
    1. Arends J., Bachmann P., Baracos V., Barthelemy N., Bertz H., Bozzetti F., Fearon K., Hütterer E., Isenring E., Kaasa S., et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017;36:11–48. doi: 10.1016/j.clnu.2016.07.015.
    1. August D.A., Huhmann M.B.A.S.P.E.N. clinical guidelines: Nutrition support therapy during adult anticancer treatment and in hematopoietic cell transplantation. JPEN J. Parenter. Enter. Nutr. 2009;33:472–500. doi: 10.1177/0148607109341804.
    1. Song G.M., Tian X., Liang H., Yi L.J., Zhou J.G., Zeng Z., Shuai T., Ou Y.X., Zhang L., Wang Y. Role of Enteral Immunonutrition in Patients Undergoing Surgery for Gastric Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine (Baltim.) 2015;94:e1311. doi: 10.1097/MD.0000000000001311.
    1. Jain A., Pasare C. Innate Control. of Adaptive Immunity: Beyond the Three-Signal Paradigm. J. Immunol. 2017;198:3791–3800. doi: 10.4049/jimmunol.1602000.
    1. Gaudino S.J., Kumar P. Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front. Immunol. 2019;6:360. doi: 10.3389/fimmu.2019.00360.
    1. Corzo-Martínez M., Vázquez L., Arranz-Martínez P., Menéndez N., Reglero G., Torres C.F. Production of a bioactive lipid-based delivery system from radish liver oil by enzymatic glycerolysis. Food Bioprod. Process. 2017;100:311–322. doi: 10.1016/j.fbp.2016.08.003.
    1. Gonzalez-Vallinas M., Reglero G., de Molina A.R. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy. Nutr. Cancer. 2015;67:1221–1229.
    1. Gonzalez-Vallinas M., Molina S., Vicente G., de la Cueva A., Vargas T., Santoyo S., García-Risco M.R., Fornari T., Reglero G., Ramírez de Molina A. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharm. Res. 2013;72:61–68. doi: 10.1016/j.phrs.2013.03.010.
    1. Gonzalez-Vallinas M., González-Castejón M., Rodríguez-Casado A., Ramírez de Molina A. Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutr. Rev. 2013;71:585–599. doi: 10.1111/nure.12051.
    1. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.
    1. Ahmad R., Kumar B., Chen Z., Chen X., Müller D., Lele S.M., Washington M.K., Batra S.K., Dhawan P., Singh A.B. Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/beta-catenin signaling. Oncogene. 2017;36:6592–6604. doi: 10.1038/onc.2017.259.
    1. Chen J., Ivashkiv L.B. IFN-gamma abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proc. Natl. Acad. Sci. USA. 2010;107:19438–19443. doi: 10.1073/pnas.1007816107.
    1. Pugliese P.T., Jordan K., Cederberg H., Brohult J. Some biological actions of alkylglycerols from shark liver oil. J. Altern. Complement. Med. 1998;4:87–99. doi: 10.1089/acm.1998.4.1-87.
    1. Lewkowicz P., Banasik M., Głowacka E., Lewkowicz N., Tchórzewski H. Effect of high doses of shark liver oil supplementation on T cell polarization and peripheral blood polymorphonuclear cell function. Pol. Merkur. Lek. 2005;18:686–692.
    1. Deniau A.L., Mosset P., Pédrono F., Mitre R., Le Bot D., Legrand A.B. Multiple beneficial health effects of natural alkylglycerols from shark liver oil. Mar. Drugs. 2010;8:2175–2184. doi: 10.3390/md8072175.
    1. Deniau A.L., Mosset P., Le Bot D., Legrand A.B. Which alkylglycerols from shark liver oil have anti-tumour activities? Biochimie. 2011;93:1–3. doi: 10.1016/j.biochi.2009.12.010.
    1. Molina S., Moran-Valero M.I., Martin D., Vázquez L., Vargas T., Torres C.F., Ramirez de Molina A., Reglero G. Antiproliferative effect of alkylglycerols as vehicles of butyric acid on colon cancer cells. Chem. Phys. Lipids. 2013;175–176:50–56. doi: 10.1016/j.chemphyslip.2013.07.011.
    1. Iannitti T., Palmieri B. An update on the therapeutic role of alkylglycerols. Mar. Drugs. 2010;8:2267–2300. doi: 10.3390/md8082267.
    1. Park M.Y., Mun S.T. Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes. Nutr. Res. Pract. 2014;8:516–520. doi: 10.4162/nrp.2014.8.5.516.
    1. Yoshida S., Shime H., Funami K., Takaki H., Matsumoto M., Kasahara M., Seya T. The Anti-Oxidant Ergothioneine Augments the Immunomodulatory Function of TLR Agonists by Direct Action on Macrophages. PLoS ONE. 2017;12:e0169360. doi: 10.1371/journal.pone.0169360.
    1. Yamamoto N., St Claire D.A., Jr., Homma S., Ngwenya B.Z. Activation of mouse macrophages by alkylglycerols, inflammation products of cancerous tissues. Cancer Res. 1988;48:6044–6049.
    1. Vitorino D.C., Buzzachera C.F., Curi R., Fernandes L.C. Effect of chronic supplementation with shark liver oil on immune responses of exercise-trained rats. Eur. J. Appl. Physiol. 2010;108:1225–1232. doi: 10.1007/s00421-009-1267-3.
    1. Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–686. doi: 10.1016/j.it.2004.09.015.
    1. Ucer U., Scheurich P., Bartsch H., Berkovic D., Ertel C., Pfizenmaier K. Specific membrane receptors for human interferon-gamma (IFN-gamma) Behring Inst. Mitt. 1987;81:88–97.
    1. Cassetta L., Pollard J.W. Cancer immunosurveillance: Role of patrolling monocytes. Cell Res. 2016;26:3–4. doi: 10.1038/cr.2015.144.
    1. Stuart E., Scheurich P., Bartsch H., Berkovic D., Ertel C., Pfizenmaier K. Therapeutic inhibition of Jak activity inhibits progression of gastrointestinal tumors in mice. Mol. Cancer. 2014;13:468–474. doi: 10.1158/1535-7163.MCT-13-0583-T.
    1. An H.J., Choi E.K., Kim J.S., Hong S.W., Moon J.H., Shin J.S., Ha S.H., Kim K.P., Hong Y.S., Lee J.L., et al. INCB018424 induces apoptotic cell death through the suppression of pJAK1 in human colon cancer cells. Neoplasma. 2014;61:56–62. doi: 10.4149/neo_2014_009.
    1. DeNicola G.M., Karreth F.A., Humpton T.J., Gopinathan A., Wei C., Frese K., Mangal D., Yu K.H., Yeo C.J., Calhoun E.S., et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–109. doi: 10.1038/nature10189.
    1. Kim B.R., Oh S.C., Lee D.H., Kim J.L., Lee S.Y., Kang M.H., Lee S.I., Kang S., Joung S.Y., Min B.W. BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumour Biol. 2015;36:9475–9486. doi: 10.1007/s13277-015-3681-y.
    1. Ramirez de Molina A., Penalva V., Lucas L., Lacal J.C. Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K. Oncogene. 2002;21:937–946. doi: 10.1038/sj.onc.1205144.
    1. Ramirez de Molina A., Sarmentero-Estrada J., Belda-Iniesta C., Tarón M., Ramírez de Molina V., Cejas P., Skrzypski M., Gallego-Ortega D., de Castro J., Casado E., et al. Expression of choline kinase alpha to predict outcome in patients with early-stage non-small-cell lung cancer: A retrospective study. Lancet Oncol. 2007;8:889–897. doi: 10.1016/S1470-2045(07)70279-6.
    1. Janardhan S., Srivani P., Sastry G.N. Choline kinase: An important target for cancer. Curr. Med. Chem. 2006;13:1169–1186. doi: 10.2174/092986706776360923.
    1. Ramirez de Molina A., Gallego-Ortega D., Sarmentero-Estrada J., Lagares D., Gómez Del Pulgar T., Bandrés E., García-Foncillas J., Lacal J.C. Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: Implications in cancer therapy. Int. J. Biochem. Cell Biol. 2008;40:1753–1763. doi: 10.1016/j.biocel.2008.01.013.
    1. Jackaman C., Tomay F., Duong L., Abdol Razak N.B., Pixley F.J., Metharom P., Nelson D.J. Aging and cancer: The role of macrophages and neutrophils. Ageing Res. Rev. 2017;36:105–116. doi: 10.1016/j.arr.2017.03.008.
    1. Calvo-Rodríguez M., de la Fuente C., García-Durillo M., García-Rodríguez C., Villalobos C., Núñez L. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. J. Neuroinflamm. 2017;14:24. doi: 10.1186/s12974-017-0802-0.

Source: PubMed

3
Sottoscrivi