Effects of Daily Consumption of an Aqueous Dispersion of Free-Phytosterols Nanoparticles on Individuals with Metabolic Syndrome: A Randomised, Double-Blind, Placebo-Controlled Clinical Trial

Yasna K Palmeiro-Silva, Raúl I Aravena, Lisette Ossio, Javiera Parro Fluxa, Yasna K Palmeiro-Silva, Raúl I Aravena, Lisette Ossio, Javiera Parro Fluxa

Abstract

Metabolic syndrome (MS) affects up to 40% of the population and is associated with heart failure, stroke and diabetes. Phytosterols (PS) could help to manage one or more MS criteria. The purpose of this study was to evaluate the therapeutic effect of daily supplementation of an aqueous dispersion of 2 g of free-phytosterols nanoparticles in individuals with MS over six months of intervention, compared with placebo. This double-blind study included 202 participants with MS randomly assigned into phytosterol (n = 102) and placebo (n = 100) groups. Participants were assessed at baseline, 4, 12 and 24 weeks. General health questions, anthropometric measurements and blood parameters were analysed. At week 24, the proportion of participants with high triglycerides (≥150 mg/dL) in the phytosterol group was 15.65% lower than in the placebo group (p-value = 0.023). Similarly, half of the participants in the phytosterol group decreased their waist circumference up to 4 cm compared with 0 cm in the placebo group (p-value = 0.0001). We reported no adverse effects (diarrhoea or vitamin D reduction); nonetheless, almost 70% of participants in the phytosterol group self-reported an improvement in bowel habits. Daily intake of free-PS nanoparticles improved some MS criteria; therefore, it might be a promising adjuvant therapy for individuals with MS (NCT02969720).

Keywords: constipation; lipoprotein; metabolic syndrome; phytosterols; triglycerides; waist circumference.

Conflict of interest statement

YKPS, LO and JPF declare no conflict of interest. RIA was an employee of Nutrartis S.A. from 2014 to 2018. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
General diagram of the study.
Figure 2
Figure 2
Flow chart of the study.
Figure 3
Figure 3
Distribution of participants (%) with ‘abnormal’ levels of waist circumference, triglycerides, high-density lipoprotein cholesterol (HDL-c), systolic/diastolic blood pressure and fasting glycaemia at V4 by the group. ns = non-significant; * statistically significant (p < 0.05).
Figure 4
Figure 4
Relative difference (%) between V2 and V1, V3 and V1 and V4 and V1 for (a) total cholesterol; (b) very-low-density lipoprotein cholesterol (VLDL-c); (c) triglycerides; (d) waist circumference by the group. * Statistically significant (p < 0.05). Black lines represent the placebo group, and red lines the phytosterol group. Horizontal lines represent the interquartile range and the median. Black points (•) represent the mean for the placebo group, and red triangles (▲) represent the mean for the phytosterol group.
Figure 5
Figure 5
Number of LDL-p (a) and VLDL-p (b) by subclass (small, medium and large) at V4 by the group. Black lines represent the placebo group, and red lines the phytosterol group. Horizontal lines represent the interquartile range and the median. Black points (•) represent the mean for the placebo group, and red triangles (▲) represent the mean for the phytosterol group. M and L particles are measured with the right y-axis.

References

    1. Moore J.X., Chaudhary N., Akinyemiju T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2018;14:160287. doi: 10.5888/pcd14.160287.
    1. Cameron A.J., Magliano D.J., Zimmet P.Z., Welborn T., Shaw J.E. The Metabolic Syndrome in Australia: Prevalence using four definitions. Diabetes Res. Clin. Pract. 2007;77:471–478. doi: 10.1016/j.diabres.2007.02.002.
    1. Li Y., Zhao L., Yu D., Wang Z., Ding G. Metabolic syndrome prevalence and its risk factors among adults in China: A nationally representative cross-sectional study. PLoS ONE. 2018;13:e0199293. doi: 10.1371/journal.pone.0199293.
    1. Sigit F.S., Tahapary D.L., Trompet S., Sartono E., Willems Van Dijk K., Rosendaal F.R., De Mutsert R. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: A cross-sectional analysis of two population-based studies. Diabetol. Metab. Syndr. 2020;12:2. doi: 10.1186/s13098-019-0503-1.
    1. Van Vliet-Ostaptchouk J.V., Nuotio M.L., Slagter S.N., Doiron D., Fischer K., Foco L., Gaye A., Gögele M., Heier M., Hiekkalinna T., et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large cohort studies. BMC Endocr. Disord. 2014;14 doi: 10.1186/1472-6823-14-9.
    1. Alberti K.G.M.M., Zimmet P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med. 1998;15:539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>;2-S.
    1. Cleeman J.I., Grundy S.M., Becker D., Clark L. Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) JAMA. 2001;285:2486–2497.
    1. International Diabetes Federation . The IDF Consensus Worldwide Definition of the Metabolic Syndrome. IDF Communications; Brussels, Belgium: 2006.
    1. Balkau B., Charles M.A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR) Diabet. Med. 1999;16:442–443.
    1. National Cholesterol Education Program Coordinating Committee Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421. doi: 10.1161/circ.106.25.3143.
    1. Einhorn D., Reaven G.M., Cobin R.H., Ford E., Ganda O.P., Handelsman Y., Hellman R., Jellinger P.S., Kendall D., Krauss R.M., et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr. Pract. 2003;9:237–252.
    1. Grundy S.M., Cleeman J.I., Daniels S.R., Donato K.A., Eckel R.H., Franklin B.A., Gordon D.J., Krauss R.M., Savage P.J., Smith S.C., et al. Diagnosis and Management of the Metabolic Syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–2752. doi: 10.1161/CIRCULATIONAHA.105.169404.
    1. Alberti K.G.M.M., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P.T., Loria C.M., Smith S.C., et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644.
    1. Myers J., Kokkinos P., Nyelin E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients. 2019;11:1652. doi: 10.3390/nu11071652.
    1. Grundy S.M. Metabolic syndrome update. Trends Cardiovasc. Med. 2016;26:364–373. doi: 10.1016/j.tcm.2015.10.004.
    1. Tune J.D., Goodwill A.G., Sassoon D.J., Mather K.J. Cardiovascular consequences of metabolic syndrome. Transl. Res. 2017;183:57–70. doi: 10.1016/j.trsl.2017.01.001.
    1. Berwick Z.C., Dick G.M., Tune J.D. Heart of the matter: Coronary dysfunction in metabolic syndrome. J. Mol. Cell. Cardiol. 2012;52:848–856. doi: 10.1016/j.yjmcc.2011.06.025.
    1. Bozkurt B., Aguilar D., Deswal A., Dunbar S.B., Francis G.S., Horwich T., Jessup M., Kosiborod M., Pritchett A.M., Ramasubbu K., et al. Contributory Risk and Management of Comorbidities of Hypertension, Obesity, Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: A Scientific Statement from the American Heart Association. Circulation. 2016;134:e535–e578. doi: 10.1161/CIR.0000000000000450.
    1. Grandl G., Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol. 2018;40:215–224. doi: 10.1007/s00281-017-0666-5.
    1. Stanaway J.D., Afshin A., Gakidou E., Lim S.S., Abate D., Hassen Abate K., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease S. Lancet. 2018;392:1923–1994. doi: 10.1016/S0140-6736(18)32225-6.
    1. Johnson C.O., Nguyen M., Roth G.A., Nichols E., Alam T., Abate D., Abd-Allah F., Abdelalim A., Abraha H.N., Abu-Rmeileh N.M., et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–458. doi: 10.1016/S1474-4422(19)30034-1.
    1. Conrad N., Judge A., Tran J., Mohseni H., Hedgecott D., Crespillo A.P., Allison M., Hemingway H., Cleland J.G., McMurray J.J.V., et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet. 2018;391:572–580. doi: 10.1016/S0140-6736(17)32520-5.
    1. Grundy S.M. Metabolic Syndrome: A Multiplex Cardiovascular Risk Factor. J. Clin. Endocrinol. Metab. 2007;92:399–404. doi: 10.1210/jc.2006-0513.
    1. Grundy S.M. Drug therapy of the metabolic syndrome: Minimizing the emerging crisis in polypharmacy. Nat. Rev. Drug Discov. 2006;5:295–309. doi: 10.1038/nrd2005.
    1. Poli A., Visioli F. Pharmacology of nutraceuticals with lipid lowering properties. High Blood Press. Cardiovasc. Prev. 2019;26:113–118. doi: 10.1007/s40292-019-00311-x.
    1. Rivellese A.A., Ciciola P., Costabile G., Vetrani C., Vitale M. The Possible Role of Nutraceuticals in the Prevention of Cardiovascular Disease. High Blood Press. Cardiovasc. Prev. 2019;26:101–111. doi: 10.1007/s40292-019-00309-5.
    1. Pollak J. Reduction of Blood Cholesterol in Man. Circulation. 1953;7:702–706. doi: 10.1161/01.CIR.7.5.702.
    1. Reaver A., Hewlings S., Westerman K., Blander G., Schmeller T., Heer M., Rein D. A randomized, placebo-controlled, double-blind crossover study to assess a unique phytosterol ester formulation in lowering LDL cholesterol utilizing a novel virtual tracking tool. Nutrients. 2019;11:2108. doi: 10.3390/nu11092108.
    1. Ostlund R.E. Phytosterols in Human Nutrition. Annu. Rev. Nutr. 2002;22:533–549. doi: 10.1146/annurev.nutr.22.020702.075220.
    1. Ras R.T., Geleijnse J.M., Trautwein E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr. 2014;112:214–219. doi: 10.1017/S0007114514000750.
    1. Plat J., Brufau G., Dallinga-Thie G.M., Dasselaar M., Mensink R.P. A Plant Stanol Yogurt Drink Alone or Combined with a Low-Dose Statin Lowers Serum Triacylglycerol and Non-HDL Cholesterol in Metabolic Syndrome Patients. J. Nutr. 2009;139:1143–1149. doi: 10.3945/jn.108.103481.
    1. Sialvera T.E., Pounis G.D., Koutelidakis A.E., Richter D.J., Yfanti G., Kapsokefalou M., Goumas G., Chiotinis N., Diamantopoulos E., Zampelas A. Phytosterols supplementation decreases plasma small and dense LDL levels in metabolic syndrome patients on a westernized type diet. Nutr. Metab. Cardiovasc. Dis. 2012;22:843–848. doi: 10.1016/j.numecd.2010.12.004.
    1. Hernández-Mijares A., Bañuls C., Jover A., Solá E., Bellod L., Martínez-Triguero M.L., Lagarda M.J., Víctor V.M., Rocha M. Low intestinal cholesterol absorption is associated with a reduced efficacy of phytosterol esters as hypolipemic agents in patients with metabolic syndrome. Clin. Nutr. 2011;30:604–609. doi: 10.1016/j.clnu.2011.03.005.
    1. Chen D.L., Huang P.H., Chiang C.H., Leu H.B., Chen J.W., Lin S.J. Phytosterols increase circulating endothelial progenitor cells and insulin-like growth factor-1 levels in patients with nonalcoholic fatty liver disease: A randomized crossover study. J. Funct. Foods. 2015;13:148–157. doi: 10.1016/j.jff.2014.12.025.
    1. Ghaedi E., Foshati S., Ziaei R., Beigrezaei S., Kord-Varkaneh H., Ghavami A., Miraghajani M. Effects of phytosterols supplementation on blood pressure: A systematic review and meta-analysis. Clin. Nutr. 2020 doi: 10.1016/j.clnu.2019.12.020.
    1. Trautwein E., Vermeer M., Hiemstra H., Ras R. LDL-Cholesterol Lowering of Plant Sterols and Stanols—Which Factors Influence Their Efficacy? Nutrients. 2018;10:1262. doi: 10.3390/nu10091262.
    1. Ferguson J.J.A., Stojanovski E., MacDonald-Wicks L., Garg M.L. Fat type in phytosterol products influence their cholesterol-lowering potential: A systematic review and meta-analysis of RCTs. Prog. Lipid Res. 2016;64:16–29. doi: 10.1016/j.plipres.2016.08.002.
    1. AbuMweis S.S., Barake R., Jones P.J.H. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized controlled trials. Food Nutr. Res. 2008;52 doi: 10.3402/fnr.v52i0.1811.
    1. Jones P.J.H., Shamloo M., MacKay D.S., Rideout T.C., Myrie S.B., Plat J., Roullet J.-B., Baer D.J., Calkins K.L., Davis H.R., et al. Progress and prospective of plant sterol and plant stanol research. Nutr. Rev. 2018;76:725–746. doi: 10.1093/nutrit/nuy032.
    1. Amir Shaghaghi M., Harding S.V., Jones P.J.H. Water dispersible plant sterol formulation shows improved effect on lipid profile compared to plant sterol esters. J. Funct. Foods. 2014;6:280–289. doi: 10.1016/j.jff.2013.10.017.
    1. Gurka M.J., Lilly C.L., Oliver M.N., DeBoer M.D. An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: A confirmatory factor analysis and a resulting continuous severity score. Metabolism. 2014;63:218–225. doi: 10.1016/j.metabol.2013.10.006.
    1. Deboer M.D., Gurka M.J. Clinical utility of metabolic syndrome severity scores: Considerations for practitioners. Diabetes Metab. Syndr. Obes. Targets Ther. 2017;10:65–72. doi: 10.2147/DMSO.S101624.
    1. Baumgartner S., Ras R.T., Trautwein E.A., Mensink R.P., Plat J. Plasma fat-soluble vitamin and carotenoid concentrations after plant sterol and plant stanol consumption: A meta-analysis of randomized controlled trials. Eur. J. Nutr. 2017;56:909–923. doi: 10.1007/s00394-016-1289-7.
    1. Nordestgaard B.G., Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–635. doi: 10.1016/S0140-6736(14)61177-6.
    1. Ye X., Kong W., Zafar M.I., Chen L.L. Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Cardiovasc. Diabetol. 2019;18:48. doi: 10.1186/s12933-019-0851-z.
    1. Castelli W.P. Epidemiology of triglycerides: A view from Framingham. Am. J. Cardiol. 1992;70:H3. doi: 10.1016/0002-9149(92)91083-G.
    1. Assmann G., Schulte H., Von Eckardstein A. Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men. Am. J. Cardiol. 1996;77:1179–1184. doi: 10.1016/S0002-9149(96)00159-2.
    1. Visscher T.L.S., Seidell J.C., Molarius A., van der Kuip D., Hofman A., Witteman J.C.M. A comparison of body mass index, waist-hip ratio and waist circumference as predictors of all-cause mortality among the elderly: The Rotterdam study. Int. J. Obes. 2001;25:1730–1735. doi: 10.1038/sj.ijo.0801787.
    1. Dobbelsteyn C.J., Joffres M.R., MacLean D.R., Flowerdew G., Balram C., Blair L., Butler-Jones D., Cameron R., Collins-Nakai R., Connelly P.W., et al. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian heart health surveys. Int. J. Obes. 2001;25:652–661. doi: 10.1038/sj.ijo.0801582.
    1. German C.A., Laughey B., Bertoni A.G., Yeboah J. Associations between BMI, waist circumference, central obesity and outcomes in type II diabetes mellitus: The ACCORD Trial. J. Diabetes Complicat. 2020;34:107499. doi: 10.1016/j.jdiacomp.2019.107499.
    1. Mulligan A.A., Lentjes M.A.H., Luben R.N., Wareham N.J., Khaw K.T. Changes in waist circumference and risk of all-cause and CVD mortality: Results from the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) cohort study. BMC Cardiovasc. Disord. 2019;19:1–15. doi: 10.1186/s12872-019-1223-z.
    1. Wei M., Gaskill S.P., Haffner S.M., Stern M.P. Waist Circumference as the Best Predictor of Noninsulin Dependent Diabetes Mellitus (NIDDM) Compared to Body Mass Index, Waist/hip Ratio and Other Anthropometric Measurements in Mexican Americans-A 7-Year Prospective Study. Obes. Res. 1997;5:16–23. doi: 10.1002/j.1550-8528.1997.tb00278.x.
    1. Chen H.-Y., Su J., Liu H. A study of the correlation of waist circumference with metabolic risks among non-obese populations. Eur. Rev. Medican Pharmacol. Sci. 2019;23:4391–4397.
    1. Naumann E., Plat J., Kester A.D.M., Mensink R.P. The Baseline Serum Lipoprotein Profile Is Related to Plant Stanol Induced Changes in Serum Lipoprotein Cholesterol and Triacylglycerol Concentrations. J. Am. Coll. Nutr. 2008;27:117–126. doi: 10.1080/07315724.2008.10719683.
    1. Demonty I., Ras R.T., Van Der Knaap H.C.M., Meijer L., Zock P.L., Geleijnse J.M., Trautwein E.A. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: A pooled analysis of 12 randomised controlled trials. Eur. J. Nutr. 2013;52:153–160. doi: 10.1007/s00394-011-0297-x.
    1. Rideout T.C., Marinangeli C.P.F., Harding S. V Triglyceride-Lowering Response to Plant Sterol and Stanol Consumption. J. AOAC Int. 2015;98:707. doi: 10.5740/jaoacint.SGERideout.
    1. Plat J., Mensink R.P. Plant stanol esters lower serum triacylglycerol concentrations via a reduced hepatic VLDL-1 production. Lipids. 2009;44:1149–1153. doi: 10.1007/s11745-009-3361-z.
    1. Smet E.D., Mensink R.P., Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present. Mol. Nutr. Food Res. 2012;56:1058–1072. doi: 10.1002/mnfr.201100722.
    1. Trautwein E.A., Duchateau G.S.M.J.E., Lin Y., Mel’nikov S.M., Molhuizen H.O.F., Ntanios F.Y. Proposed mechanisms of cholesterol-lowering action of plant sterols. Eur. J. Lipid Sci. Technol. 2003;105:171–185. doi: 10.1002/ejlt.200390033.
    1. Amato M.C., Giordano C., Galia M., Criscimanna A., Vitabile S., Midiri M., Galluzzo A. Visceral adiposity index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33:920–922. doi: 10.2337/dc09-1825.
    1. Wu J., Gong L., Li Q., Hu J., Zhang S., Wang Y., Zhou H., Yang S., Wang Z. A Novel Visceral Adiposity Index for Prediction of Type 2 Diabetes and Pre-diabetes in Chinese adults: A 5-year prospective study. Sci. Rep. 2017;7:1–9. doi: 10.1038/s41598-017-14251-w.
    1. Oh S.-K., Cho A.-R., Kwon Y.-J., Lee H.-S., Lee J.-W. Derivation and validation of a new visceral adiposity index for predicting visceral obesity and cardiometabolic risk in a Korean population. PLoS ONE. 2018;13:e0203787. doi: 10.1371/journal.pone.0203787.
    1. Robinson C., Tamborlane W.V., Maggs D.G., Enoksson S., Sherwin R.S., Silver D., Shulman G.I., Caprio S. Effect of insulin on glycerol production in obese adolescents. Am. J. Physiol. Endocrinol. Metab. 1998;274:E737–E743. doi: 10.1152/ajpendo.1998.274.4.E737.
    1. Spalding K.L., Bernard S., Näslund E., Salehpour M., Possnert G., Appelsved L., Fu K.Y., Alkass K., Druid H., Thorell A., et al. Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nat. Commun. 2017;8:1–9. doi: 10.1038/ncomms15253.
    1. Choi S.H., Ginsberg H.N. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol. Metab. 2011;22:353–363. doi: 10.1016/j.tem.2011.04.007.
    1. Adiels M., Olofsson S.-O., Taskinen M.-R., Borén J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2008;28:1225–1236. doi: 10.1161/ATVBAHA.107.160192.
    1. Ebbert J., Jensen M. Fat Depots, Free Fatty Acids, and Dyslipidemia. Nutrients. 2013;5:498–508. doi: 10.3390/nu5020498.
    1. Saponaro C., Gaggini M., Carli F., Gastaldelli A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients. 2015;7:9453–9474. doi: 10.3390/nu7115475.
    1. Nielsen S., Guo Z.K., Johnson C.M., Hensrud D.D., Jensen M.D. Splanchnic lipolysis in human obesity. J. Clin. Investig. 2004;113:1582–1588. doi: 10.1172/JCI21047.
    1. Riches F.M., Watts G.F., Hua J., Stewart G.R., Naoumova R.P., Barrett P.H.R. Reduction in Visceral Adipose Tissue Is Associated with Improvement in Apolipoprotein B-100 Metabolism in Obese Men. J. Clin. Endocrinol. Metab. 1999;84:2854–2861. doi: 10.1210/jc.84.8.2854.
    1. Nielsen S., Karpe F. Determinants of VLDL-triglycerides production. Curr. Opin. Lipidol. 2012;23:321–326. doi: 10.1097/MOL.0b013e3283544956.
    1. Miettinen T.A., Puska P., Gylling H., Vanhanen H., Vartiainen E. Reduction of Serum Cholesterol with Sitostanol-Ester Margarine in a Mildly Hypercholesterolemic Population. N. Engl. J. Med. 1995;333:1308–1312. doi: 10.1056/NEJM199511163332002.
    1. Hendriks H.F.J., Brink E.J., Meijer G.W., Princen H.M.G., Ntanios F.Y. Safety of long-term consumption of plant sterol esters-enriched spread. Eur. J. Clin. Nutr. 2003;57:681–692. doi: 10.1038/sj.ejcn.1601598.
    1. Gylling H., Hallikainen M., Raitakari O.T., Laakso M., Vartiainen E., Salo P., Korpelainen V., Sundvall J., Miettinen T.A. Long-term consumption of plant stanol and sterol esters, vascular function and genetic regulation. Br. J. Nutr. 2009;101:1688–1695. doi: 10.1017/S0007114508116300.
    1. Ooi E.M.M., Ng T.W.K., Chan D.C., Watts G.F. Plasma markers of cholesterol homeostasis in metabolic syndrome subjects with or without type-2 diabetes. Diabetes Res. Clin. Pract. 2009;85:310–316. doi: 10.1016/j.diabres.2009.06.003.
    1. De Graaf J., de Sauvage Nolting P.R.W., van Dam M., Belsey E.M., Kastelein J.J.P., Haydn Pritchard P., Stalenhoef A.F.H. Consumption of tall oil-derived phytosterols in a chocolate matrix significantly decreases plasma total and low-density lipoprotein-cholesterol levels. Br. J. Nutr. 2002;88:479–488. doi: 10.1079/BJN2002690.
    1. Lin X., Racette S.B., Lefevre M., Spearie C.A., Most M., Ma L., Ostlund R.E. The effects of phytosterols present in natural food matrices on cholesterol metabolism and LDL-cholesterol: A controlled feeding trial. Eur. J. Clin. Nutr. 2010;64:1481–1487. doi: 10.1038/ejcn.2010.180.
    1. Kathiresan S., Otvos J.D., Sullivan L.M., Keyes M.J., Schaefer E.J., Wilson P.W.F., D’Agostino R.B., Vasan R.S., Robins S.J. Increased small low-density lipoprotein particle number: A prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation. 2006;113:20–29. doi: 10.1161/CIRCULATIONAHA.105.567107.

Source: PubMed

3
Sottoscrivi