Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)

Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang, Wan Yang, Jeffrey Shaman, Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang, Wan Yang, Jeffrey Shaman

Abstract

Estimation of the prevalence and contagiousness of undocumented novel coronavirus [severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)] infections is critical for understanding the overall prevalence and pandemic potential of this disease. Here, we use observations of reported infection within China, in conjunction with mobility data, a networked dynamic metapopulation model, and Bayesian inference, to infer critical epidemiological characteristics associated with SARS-CoV-2, including the fraction of undocumented infections and their contagiousness. We estimate that 86% of all infections were undocumented [95% credible interval (CI): 82-90%] before the 23 January 2020 travel restrictions. The transmission rate of undocumented infections per person was 55% the transmission rate of documented infections (95% CI: 46-62%), yet, because of their greater numbers, undocumented infections were the source of 79% of the documented cases. These findings explain the rapid geographic spread of SARS-CoV-2 and indicate that containment of this virus will be particularly challenging.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Figures

Fig. 1. Best-fit model and sensitivity analysis.
Fig. 1. Best-fit model and sensitivity analysis.
Simulation of daily reported cases in all cities (A), Wuhan city (B), and Hubei province (C). The blue box and whiskers show the median, interquartile range, and 95% CIs derived from 300 simulations using the best-fit model (Table 1). The red x’s are daily reported cases. (D) The distribution of estimated Re. (E) The impact of varying α and μ on Re with all other parameters held constant at Table 1 mean values. The black solid line indicates parameter combinations of (α,μ) yielding Re = 2.38. The estimated parameter combination α = 0.14 and μ = 0.55 is indicated by the red x; the dashed box indicates the 95% credible interval of that estimate. (F) Log likelihood for simulations with combinations of (α,μ) and all other parameters held constant at Table 1 mean values. For each parameter combination, 300 simulations were performed. The best-fit estimated parameter combination α = 0.14 and μ = 0.55 is indicated by the red x (the x is plotted at the lower-left corner of its respective heat map pixel, i.e., the pixel with the highest log likelihood); the dashed box indicates the 95% CI of that estimate.
Fig. 2. Impact of undocumented infections on…
Fig. 2. Impact of undocumented infections on the transmission of SARS-CoV-2.
Simulations generated using the parameters reported in Table 1 with μ = 0.55 (red) and μ = 0 (blue) showing daily documented cases in all cities (A), daily documented cases in Wuhan city (B), and the number of cities with ≥10 cumulative documented cases (C). The box and whiskers show the median, interquartile range, and 95% CIs derived from 300 simulations.

References

    1. National Health Commission of the People’s Republic of China, Update on the novel coronavirus pneumonia outbreak; .
    1. World Health Organization, Coronavirus disease (COVID-2019) situation reports; .
    1. Chan J. F., Yuan S., Kok K. H., To K. K., Chu H., Yang J., Xing F., Liu J., Yip C. C., Poon R. W., Tsoi H. W., Lo S. K., Chan K. H., Poon V. K., Chan W. M., Ip J. D., Cai J. P., Cheng V. C., Chen H., Hui C. K., Yuen K. Y., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 395, 514–523 (2020). 10.1016/S0140-6736(20)30154-9
    1. Wu P., Hao X., Lau E. H. Y., Wong J. Y., Leung K. S. M., Wu J. T., Cowling B. J., Leung G. M., Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro Surveill. 25, 2000044 (2020). 10.2807/1560-7917.ES.2020.25.3.2000044
    1. Munster V. J., Koopmans M., van Doremalen N., van Riel D., de Wit E., A novel coronavirus emerging in China—Key questions for impact assessment. N. Engl. J. Med. 382, 692–694 (2020). 10.1056/NEJMp2000929
    1. Du Z., Wang L., Cauchemez S., Xu X., Wang X., Cowling B. J., Meyers L. A., Risk for transportation of 2019 novel coronavirus disease from Wuhan to other cities in China. Emerg. Infect. Dis. 26, (2020). 10.3201/eid2605.200146
    1. X. Qiao, “2018 Chunyun ended, 74.8% surveyed travelers felt satisfied” [in Chinese], People’s Daily, 15 March 2018; .
    1. Ionides E. L., Bretó C., King A. A., Inference for nonlinear dynamical systems. Proc. Natl. Acad. Sci. U.S.A. 103, 18438–18443 (2006). 10.1073/pnas.0603181103
    1. King A. A., Ionides E. L., Pascual M., Bouma M. J., Inapparent infections and cholera dynamics. Nature 454, 877–880 (2008). 10.1038/nature07084
    1. Pei S., Morone F., Liljeros F., Makse H., Shaman J. L., Inference and control of the nosocomial transmission of methicillin-resistant Staphylococcus aureus. eLife 7, e40977 (2018). 10.7554/eLife.40977
    1. Health Commission of Hubei Province, The 8th Press Conference on the Prevention and Control of COVID-19; .
    1. Health Commission of Hubei Province, The 9th Press Conference on the Prevention and Control of COVID-19; .
    1. Wu J. T., Leung K., Leung G. M., Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395, 689–697 (2020). 10.1016/S0140-6736(20)30260-9
    1. Riou J., Althaus C. L., Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 25, 2000058 (2020). 10.2807/1560-7917.ES.2020.25.4.2000058
    1. N. Imai, I. Dorigatti, A. Cori, C. Donnelly, S. Riley, N. M. Ferguson, Report 2: Estimating the potential total number of novel Coronavirus cases in Wuhan City, China (Imperial College London, 2020); .
    1. Baidu Migration; .
    1. M. Kramer, D. Pigott, B. Xu, S. Hill, B. Gutierrez, O. Pybus, Epidemiological data from the nCoV-2019 Outbreak: Early Descriptions from Publicly Available Data; .
    1. Fraser C., Riley S., Anderson R. M., Ferguson N. M., Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. U.S.A. 101, 6146–6151 (2004). 10.1073/pnas.0307506101
    1. S. Pei, SenPei-CU/COVID-19: COVID-19, Version 1, Zenodo (2020); 10.5281/zenodo.3699624.
    1. Pei S., Kandula S., Yang W., Shaman J., Forecasting the spatial transmission of influenza in the United States. Proc. Natl. Acad. Sci. U.S.A. 115, 2752–2757 (2018). 10.1073/pnas.1708856115
    1. A. Rambaut, Phylodynamic Analysis | 129 genomes | 24 Feb 2020; .
    1. China National Health Commission, Policy and regulatory documents; .
    1. SenPei-CU/COVID-19, Data and code posting; .
    1. Field Briefing, Diamond Princess COVID-19 Cases, 20 Feb Update; .
    1. Tencent Big Data Platform; .
    1. Zhu D., Huang Z., Shi L., Wu L., Liu Y., Inferring spatial interaction patterns from sequential snapshots of spatial distributions. Int. J. Geogr. Inf. Sci. 32, 783–805 (2018). 10.1080/13658816.2017.1413192
    1. He D., Ionides E. L., King A. A., Plug-and-play inference for disease dynamics: Measles in large and small populations as a case study. J. R. Soc. Interface 7, 271–283 (2010). 10.1098/rsif.2009.0151
    1. Arulampalam M. S., Maskell S., Gordon N., Clapp T., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002). 10.1109/78.978374
    1. Anderson J. L., An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129, 2884–2903 (2001). 10.1175/1520-0493(2001)129<2884:AEAKFF>;2
    1. Snyder C., Bengtsson T., Bickel P., Anderson J., Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136, 4629–4640 (2008). 10.1175/2008MWR2529.1
    1. Yang W., Karspeck A., Shaman J., Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLOS Comput. Biol. 10, e1003583 (2014). 10.1371/journal.pcbi.1003583
    1. Shaman J., Yang W., Kandula S., Inference and forecast of the current West African ebola outbreak in Guinea, sierra leone and liberia. PLOS Curr. 6, 10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6 (2014).
    1. DeFelice N. B., Little E., Campbell S. R., Shaman J., Ensemble forecast of human West Nile virus cases and mosquito infection rates. Nat. Commun. 8, 14592 (2017). 10.1038/ncomms14592
    1. Reis J., Shaman J., Retrospective parameter estimation and forecast of respiratory syncytial virus in the United States. PLOS Comput. Biol. 12, e1005133 (2016). 10.1371/journal.pcbi.1005133
    1. Diekmann O., Heesterbeek J. A. P., Metz J. A., On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990). 10.1007/BF00178324
    1. Diekmann O., Heesterbeek J. A. P., Roberts M. G., The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010). 10.1098/rsif.2009.0386
    1. S. Lai, I. Bogoch, N. Ruktanonchai, A. Watts, Y. Li, J. Yu, X. Lv, W. Yang, H. Yu, K. Khan, Z. Li, Assessing spread risk of Wuhan novel coronavirus within and beyond China, January-April 2020: a travel network-based modelling study. medRxiv 2020.02.04.20020479 [Preprint]. 5 February 2020. 10.1101/2020.02.04.20020479.

Source: PubMed

3
Sottoscrivi