Therapeutic Roles of Tendon Stem/Progenitor Cells in Tendinopathy

Xin Zhang, Yu-Cheng Lin, Yun-Feng Rui, Hong-Liang Xu, Hui Chen, Chen Wang, Gao-Jun Teng, Xin Zhang, Yu-Cheng Lin, Yun-Feng Rui, Hong-Liang Xu, Hui Chen, Chen Wang, Gao-Jun Teng

Abstract

Tendinopathy is a tendon disorder characterized by activity-related pain, local edema, focal tenderness to palpation, and decreased strength in the affected area. Tendinopathy is prevalent in both athletes and the general population, highlighting the need to elucidate the pathogenesis of this disorder. Current treatments of tendinopathy are both conservative and symptomatic. The discovery of tendon stem/progenitor cells (TSPCs) and erroneous differentiation of TSPCs have provided new insights into the pathogenesis of tendinopathy. In this review, we firstly present the histopathological characteristics of tendinopathy and explore the cellular and molecular cues in the pathogenesis of tendinopathy. Current evidence of the depletion of the stem cell pool and altered TSPCs fate in the pathogenesis of tendinopathy has been presented. The potential regulatory factors for either tenogenic or nontenogenic differentiation of TSPCs are also summarized. The regulation of endogenous TSPCs or supplementation with exogenous TSPCs as therapeutic targets for the treatment of tendinopathy is proposed. Therefore, inhibiting the erroneous differentiation of TSPCs and regulating the differentiation of TSPCs into tendon cells might be important areas of future research and could provide new clinical treatments for tendinopathy. The current evidence suggests that TSPCs are promising therapeutic targets for the management of tendinopathy.

Figures

Figure 1
Figure 1
Hypothetical model of altered fate of tendon stem/progenitor cells (TSPCs) in tendinopathy and aging.
Figure 2
Figure 2
Potential regulations of endogenous TSPCs.

References

    1. Maffulli N., Wong J., Almekinders L. C. Types and epidemiology of tendinopathy. Clinics in Sports Medicine. 2003;22(4):675–692. doi: 10.1016/S0278-5919(03)00004-8.
    1. Paavola M., Kannus P., Järvinen T. A. H., Khan K., Józsa L., Järvinen M. Achilles tendinopathy. Journal of Bone and Joint Surgery A. 2002;84(11):2062–2076.
    1. Lian Ø. B., Engebretsen L., Bahr R. Prevalence of jumper's knee among elite athletes from different sports: a cross-sectional study. The American Journal of Sports Medicine. 2005;33(4):561–567. doi: 10.1177/0363546504270454.
    1. Rui Y. F., Lui P. P. Y., Wong Y. M., Tan Q., Chan K. M. Altered fate of tendon-derived stem cells isolated from a failed tendon-healing animal model of tendinopathy. Stem Cells and Development. 2013;22(7):1076–1085. doi: 10.1089/scd.2012.0555.
    1. Skjong C. C., Meininger A. K., Ho S. S. W. Tendinopathy treatment: where is the evidence? Clinics in Sports Medicine. 2012;31(2):329–350. doi: 10.1016/j.csm.2011.11.003.
    1. Rui Y. F., Lui P. P. Y., Rolf C. G., Wong Y. M., Lee Y. W., Chan K. M. Expression of chondro-osteogenic BMPs in clinical samples of patellar tendinopathy. Knee Surgery, Sports Traumatology, Arthroscopy. 2012;20(7):1409–1417. doi: 10.1007/s00167-011-1685-8.
    1. Scott A., Lian Ø., Bahr R., Hart D. A., Duronio V., Khan K. M. Increased mast cell numbers in human patellar tendinosis: correlation with symptom duration and vascular hyperplasia. British Journal of Sports Medicine. 2008;42(9):753–757. doi: 10.1136/bjsm.2007.040212.
    1. Yee Lui P. P., Wong Y. M., Rui Y. F., Lee Y. W., Chan L. S., Chan K. M. Expression of chondro-osteogenic BMPs in ossified failed tendon healing model of tendinopathy. Journal of Orthopaedic Research. 2011;29(6):816–821. doi: 10.1002/jor.21313.
    1. Riley G. P. Gene expression and matrix turnover in overused and damaged tendons. Scandinavian Journal of Medicine and Science in Sports. 2005;15(4):241–251. doi: 10.1111/j.1600-0838.2005.00456.x.
    1. Bi Y., Ehirchiou D., Kilts T. M., et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine. 2007;13(10):1219–1227. doi: 10.1038/nm1630.
    1. Rui Y.-F., Lui P. P. Y., Li G., Fu S. C., Lee Y. W., Chan K. M. Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Engineering Part A. 2010;16(5):1549–1558. doi: 10.1089/ten.tea.2009.0529.
    1. Tan Q., Lui P. P. Y., Lee Y. W. In vivo identity of tendon stem cells and the roles of stem cells in tendon healing. Stem Cells and Development. 2013;22(23):3128–3140. doi: 10.1089/scd.2013.0073.
    1. Minguell J. J., Erices A., Conget P. Mesenchymal stem cells. Experimental Biology and Medicine. 2001;226(6):507–520.
    1. De Bari C., Dell'Accio F., Tylzanowski P., Luyten F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism. 2001;44(8):1928–1942. doi: 10.1002/1529-0131(200108)44:8<1928::AID-ART331>;2-P.
    1. Cao B., Zheng B., Jankowski R. J., et al. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nature Cell Biology. 2003;5(7):640–646. doi: 10.1038/ncb1008.
    1. Zuk P. A., Zhu M., Ashjian P., et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.E02-02-0105.
    1. Barbero A., Ploegert S., Heberer M., Martin I. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis and Rheumatism. 2003;48(5):1315–1325. doi: 10.1002/art.10950.
    1. Tan Q., Lui P. P. Y., Rui Y. F., Wong Y. M. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Engineering Part A. 2012;18(7-8):840–851. doi: 10.1089/ten.tea.2011.0362.
    1. Yin Z., Chen X., Chen J. L., et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31(8):2163–2175. doi: 10.1016/j.biomaterials.2009.11.083.
    1. Zhang J., Wang J. H.-C. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskeletal Disorders. 2010;11, article 10 doi: 10.1186/1471-2474-11-10.
    1. Zhou Z., Akinbiyi T., Xu L., et al. Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate. Aging Cell. 2010;9(5):911–915. doi: 10.1111/j.1474-9726.2010.00598.x.
    1. Smith R. K. W., Birch H. L., Goodman S., Heinegård D., Goodship A. E. The influence of ageing and exercise on tendon growth and degeneration—hypotheses for the initiation and prevention of strain-induced tendinopathies. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2002;133(4):1039–1050. doi: 10.1016/s1095-6433(02)00148-4.
    1. Inomata K., Aoto T., Binh N. T., et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137(6):1088–1099. doi: 10.1016/j.cell.2009.03.037.
    1. Kohler J., Popov C., Klotz B., et al. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell. 2013;12(6):988–999. doi: 10.1111/acel.12124.
    1. Zhang J., Wang J. H.-C. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. Journal of Orthopaedic Research. 2010;28(5):639–643. doi: 10.1002/jor.21046.
    1. Rui Y. F., Lui P. P. Y., Ni M., Chan L. S., Lee Y. W., Chan K. M. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. Journal of Orthopaedic Research. 2011;29(3):390–396. doi: 10.1002/jor.21218.
    1. Zhang J., Wang J. H., Roeder R. K. The effects of mechanical loading on tendons—an in vivo and in vitro model study. PLoS ONE. 2013;8(8) doi: 10.1371/journal.pone.0071740.e71740
    1. Xu Y., Dong S., Zhou Q., et al. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials. 2014;35(9):2760–2772. doi: 10.1016/j.biomaterials.2013.12.042.
    1. Liu X., Chen W., Zhou Y., Tang K., Zhang J. Mechanical tension promotes the osteogenic differentiation of rat tendon-derived stem cells through the Wnt5a/Wnt5b/JNK signaling pathway. Cellular Physiology and Biochemistry. 2015;36(2):517–530. doi: 10.1159/000430117.
    1. Zhang J., Wang J. H.-C. Moderate exercise mitigates the detrimental effects of aging on tendon stem cells. PLoS ONE. 2015;10(6) doi: 10.1371/journal.pone.0130454.e0130454
    1. Zhang J., Li B., Wang J. H.-C. The role of engineered tendon matrix in the stemness of tendon stem cells in vitro and the promotion of tendon-like tissue formation in vivo. Biomaterials. 2011;32(29):6972–6981. doi: 10.1016/j.biomaterials.2011.05.088.
    1. Zhang J., Wang J. H.-C. BMP-2 mediates PGE2-induced reduction of proliferation and osteogenic differentiation of human tendon stem cells. Journal of Orthopaedic Research. 2012;30(1):47–52. doi: 10.1002/jor.21485.
    1. Zhang J., Wang J. H.-C. Prostaglandin E2 (PGE2) exerts biphasic effects on human tendon stem cells. PLoS ONE. 2014;9(2) doi: 10.1371/journal.pone.0087706.e87706
    1. Liu J., Chen L., Zhou Y., Liu X., Tang K. Insulin-like growth factor-1 and bone morphogenetic protein-2 jointly mediate prostaglandin E2-induced adipogenic differentiation of rat tendon stem cells. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0085469.e85469
    1. Rui Y. F., Lui P. P. Y., Wong Y. M., Tan Q., Chan K. M. BMP-2 stimulated non-tenogenic differentiation and promoted proteoglycan deposition of tendon-derived stem cells (TDSCs) in vitro. Journal of Orthopaedic Research. 2013;31(5):746–753. doi: 10.1002/jor.22290.
    1. Rui Y., Guo Y., Lin Y., et al. Experiment of bone morphogenetic protein 2 induced chondrogenic differentiation of human Achilles tendon-derived stem cells in vitro. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013;27(12):1492–1498.
    1. Zhang J., Keenan C., Wang J. H.-C. The effects of dexamethasone on human patellar tendon stem cells: implications for dexamethasone treatment of tendon injury. Journal of Orthopaedic Research. 2013;31(1):105–110. doi: 10.1002/jor.22193.
    1. Chen W., Tang H., Zhou M., Hu C., Zhang J., Tang K. Dexamethasone inhibits the differentiation of rat tendon stem cells into tenocytes by targeting the scleraxis gene. Journal of Steroid Biochemistry and Molecular Biology. 2015;152:16–24. doi: 10.1016/j.jsbmb.2015.04.010.
    1. Holladay C., Abbah S.-A., O'Dowd C., Pandit A., Zeugolis D. I. Preferential tendon stem cell response to growth factor supplementation. Journal of Tissue Engineering and Regenerative Medicine. 2014 doi: 10.1002/term.1852.
    1. Ni M., Rui Y. F., Tan Q., et al. Engineered scaffold-free tendon tissue produced by tendon-derived stem cells. Biomaterials. 2013;34(8):2024–2037. doi: 10.1016/j.biomaterials.2012.11.046.
    1. Lee C. H., Lee F. Y., Tarafder S., et al. Harnessing endogenous stem/progenitor cells for tendon regeneration. The Journal of Clinical Investigation. 2015;125(7):2690–2701. doi: 10.1172/jci81589.
    1. Lee W. Y. W., Lui P. P. Y., Rui Y. F. Hypoxia-mediated efficient expansion of human tendon-derived stem cells in vitro. Tissue Engineering Part A. 2012;18(5-6):484–498. doi: 10.1089/ten.tea.2011.0130.
    1. Zhang J., Wang J. H.-C. Human tendon stem cells better maintain their stemness in hypoxic culture conditions. PLoS ONE. 2013;8(4) doi: 10.1371/journal.pone.0061424.e61424
    1. Chen L., Dong S.-W., Tao X., Liu J.-P., Tang K.-L., Xu J.-Z. Autologous platelet-rich clot releasate stimulates proliferation and inhibits differentiation of adult rat tendon stem cells towards nontenocyte lineages. Journal of International Medical Research. 2012;40(4):1399–1409. doi: 10.1177/147323001204000418.
    1. Zhang J., Wang J. H.-C. Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. The American Journal of Sports Medicine. 2010;38(12):2477–2486. doi: 10.1177/0363546510376750.
    1. Chen L., Liu J.-P., Tang K.-L., et al. Tendon derived stem cells promote platelet-rich plasma healing in collagenase-induced rat achilles tendinopathy. Cellular Physiology and Biochemistry. 2014;34(6):2153–2168. doi: 10.1159/000369659.
    1. Zhang J., Wang J. H.-C. PRP treatment effects on degenerative tendinopathy—an in vitro model study. Muscles, Ligaments and Tendons Journal. 2014;4(1):10–17.
    1. Shen W., Chen J., Yin Z., et al. Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair. Cell Transplantation. 2012;21(5):943–958. doi: 10.3727/096368911x627453.
    1. Jiang D., Xu B., Yang M., Zhao Z., Zhang Y., Li Z. Efficacy of tendon stem cells in fibroblast-derived matrix for tendon tissue engineering. Cytotherapy. 2014;16(5):662–673. doi: 10.1016/j.jcyt.2013.07.014.
    1. Jelinsky S. A., Archambault J., Li L., Seeherman H. Tendon-selective genes identified from rat and human musculoskeletal tissues. Journal of Orthopaedic Research. 2010;28(3):289–297. doi: 10.1002/jor.20999.
    1. Zhang J., Wang J. H.-C. Production of PGE2 increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. Journal of Orthopaedic Research. 2010;28(2):198–203. doi: 10.1002/jor.20962.
    1. Chen X., Song X.-H., Yin Z., et al. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. STEM CELLS. 2009;27(6):1276–1287. doi: 10.1002/stem.61.
    1. Gardner K., Arnoczky S. P., Caballero O., Lavagnino M. The effect of stress-deprivation and cyclic loading on the TIMP/MMP ratio in tendon cells: an in vitro experimental study. Disability and Rehabilitation. 2008;30(20–22):1523–1529. doi: 10.1080/09638280701785395.
    1. Fu S. C., Chan K. M., Rolf C. G. Increased deposition of sulfated glycosaminoglycans in human patellar tendinopathy. Clinical Journal of Sport Medicine. 2007;17(2):129–134. doi: 10.1097/jsm.0b013e318037998f.
    1. Ristimäki A. Cyclooxygenase 2: from inflammation to carcinogenesis. Novartis Foundation Symposium. 2004;256:215–226. doi: 10.1002/0470856734.ch16.
    1. Harizi H., Corcuff J.-B., Gualde N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends in Molecular Medicine. 2008;14(10):461–469. doi: 10.1016/j.molmed.2008.08.005.
    1. Liu J., Chen L., Tao X., Tang K. Phosphoinositide 3-kinase/Akt signaling is essential for prostaglandin E2-induced osteogenic differentiation of rat tendon stem cells. Biochemical and Biophysical Research Communications. 2013;435(4):514–519. doi: 10.1016/j.bbrc.2012.11.083.
    1. Mazerbourg S., Hsueh A. J. W. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Human Reproduction Update. 2006;12(4):373–383. doi: 10.1093/humupd/dml014.
    1. Von Bubnoff A., Cho K. W. Y. Intracellular BMP signaling regulation in vertebrates: pathway or network? Developmental Biology. 2001;239(1):1–14. doi: 10.1006/dbio.2001.0388.
    1. Rodeo S. A., Suzuki K., Deng X.-H., Wozney J., Warren R. F. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. The American Journal of Sports Medicine. 1999;27(4):476–488.
    1. Kang Q., Song W. X., Luo Q., et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells and Development. 2009;18(4):545–558. doi: 10.1089/scd.2008.0130.
    1. Hannallah D., Peng H., Young B., Usas A., Gearhart B., Huard J. Retroviral delivery of noggin inhibits the formation of heterotopic ossification induced by BMP-4, demineralized bone matrix, and trauma in an animal model. The Journal of Bone & Joint Surgery—American Volume. 2004;86(1):80–91.
    1. Yu P. B., Deng D. Y., Lai C. S., et al. BMP type I receptor inhibition reduces heterotopic ossification. Nature Medicine. 2008;14(12):1363–1369. doi: 10.1038/nm.1888.
    1. Wolfman N. M., Hattersley G., Cox K., et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. The Journal of Clinical Investigation. 1997;100(2):321–330. doi: 10.1172/jci119537.
    1. Mikic B. Multiple effects of GDF-5 deficiency on skeletal tissues: implications for therapeutic bioengineering. Annals of Biomedical Engineering. 2004;32(3):466–476. doi: 10.1023/b:abme.0000017549.57126.51.
    1. Mikic B., Rossmeier K., Bierwert L. Identification of a tendon phenotype in GDF6 deficient mice. Anatomical Record. 2009;292(3):396–400. doi: 10.1002/ar.20852.
    1. Rickert M., Wang H., Wieloch P., et al. Adenovirus-mediated gene transfer of growth and differentiation factor-5 into tenocytes and the healing rat achilles tendon. Connective Tissue Research. 2005;46(4-5):175–183. doi: 10.1080/03008200500237120.
    1. Bolt P., Clerk A. N., Luu H. H., et al. BMP-14 gene therapy increases tendon tensile strength in a rat model of achilles tendon injury. Journal of Bone and Joint Surgery A. 2007;89(6):1315–1320. doi: 10.2106/jbjs.f.00257.
    1. Farng E., Urdaneta A. R., Barba D., Esmende S., McAllister D. R. The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture. Clinical Orthopaedics and Related Research. 2008;466(8):1930–1937. doi: 10.1007/s11999-008-0300-x.
    1. Koch H., Jadlowiec J. A., Fu F. H., et al. The effect of growth/differentiation factor-5 (GDF-5) on genotype and phenotype in human adult mesenchymal stem cells. Zeitschrift für Orthopädie und ihre Grenzgebiete. 2004;142(2):248–253. doi: 10.1055/s-2004-822612.
    1. Chai W., Ni M., Rui Y.-F., et al. Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells. Chinese Medical Journal. 2013;126(8):1509–1516. doi: 10.3760/cma.j.issn.0366-6999.20123351.
    1. Haddad-Weber M., Prager P., Kunz M., et al. BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells. Cytotherapy. 2010;12(4):505–513. doi: 10.3109/14653241003709652.
    1. Lee J. Y., Zhou Z., Taub P. J., et al. BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS ONE. 2011;6(3) doi: 10.1371/journal.pone.0017531.e17531
    1. Violini S., Ramelli P., Pisani L. F., Gorni C., Mariani P. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biology. 2009;10, article 29 doi: 10.1186/1471-2121-10-29.
    1. Ivkovic S., Yoon B. S., Popoff S. N., et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003;130(12):2779–2791. doi: 10.1242/dev.00505.
    1. Chen C. H., Cao Y., Wu Y. F., Bais A. J., Gao J. S., Tang J. B. Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. Journal of Hand Surgery. 2008;33(10):1834–1842. doi: 10.1016/j.jhsa.2008.07.003.
    1. Würgler-Hauri C. C., Dourte L. M., Baradet T. C., Williams G. R., Soslowsky L. J. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. Journal of Shoulder and Elbow Surgery. 2007;16(supplement 5):S198–S203. doi: 10.1016/j.jse.2007.04.003.
    1. Lee C. H., Shah B., Moioli E. K., Mao J. J. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. Journal of Clinical Investigation. 2010;120(9):3340–3349. doi: 10.1172/JCI43230.
    1. Dos Santos F., Andrade P. Z., Boura J. S., Abecasis M. M., Da Silva C. L., Cabral J. M. S. Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. Journal of Cellular Physiology. 2010;223(1):27–35. doi: 10.1002/jcp.21987.
    1. Zhang Y., Wang B., Zhang W. J., Zhou G., Cao Y., Liu W. Enhanced proliferation capacity of porcine tenocytes in low O2 tension culture. Biotechnology Letters. 2010;32(2):181–187. doi: 10.1007/s10529-009-0137-8.
    1. Ricco S., Renzi S., Del Bue M., et al. Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse. International Journal of Immunopathology and Pharmacology. 2013;26(supplement 1):61–68.
    1. Pek Y. S., Wan A. C. A., Ying J. Y. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials. 2010;31(3):385–391. doi: 10.1016/j.biomaterials.2009.09.057.
    1. Chen X., Yin Z., Chen J.-L., et al. Scleraxis-overexpressed human embryonic stem cell–derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Tissue Engineering Part A. 2014;20(11-12):1583–1592. doi: 10.1089/ten.TEA.2012.0656.
    1. Teh T. K. H., Toh S.-L., Goh J. C. H. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells. Tissue Engineering—Part A. 2013;19(11-12):1360–1372. doi: 10.1089/ten.tea.2012.0279.
    1. Lui P. P. Y., Wong Y. M. Higher BMP/Smad sensitivity of tendon-derived stem cells (TDSCs) isolated from the collagenase-induced tendon injury model: possible mechanism for their altered fate in vitro. BMC Musculoskeletal Disorders. 2013;14(1, article 248) doi: 10.1186/1471-2474-14-248.
    1. Tasso R., Augello A., Carida' M., et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis. 2009;30(1):150–157. doi: 10.1093/carcin/bgn234.
    1. Harris M. T., Butler D. L., Boivin G. P., Florer J. B., Schantz E. J., Wenstrup R. J. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. Journal of Orthopaedic Research. 2004;22(5):998–1003. doi: 10.1016/j.orthres.2004.02.012.
    1. Ni M., Lui P. P. Y., Rui Y. F., et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. Journal of Orthopaedic Research. 2012;30(4):613–619. doi: 10.1002/jor.21559.
    1. Alberton P., Popov C., Prägert M., et al. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells and Development. 2012;21(6):846–858. doi: 10.1089/scd.2011.0150.

Source: PubMed

3
Sottoscrivi