Using a Back Exoskeleton During Industrial and Functional Tasks-Effects on Muscle Activity, Posture, Performance, Usability, and Wearer Discomfort in a Laboratory Trial

Tessy Luger, Mona Bär, Robert Seibt, Monika A Rieger, Benjamin Steinhilber, Tessy Luger, Mona Bär, Robert Seibt, Monika A Rieger, Benjamin Steinhilber

Abstract

Objective: To investigate the effect of using a passive back-support exoskeleton (Laevo V2.56) on muscle activity, posture, heart rate, performance, usability, and wearer comfort during a course of three industrial tasks (COU; exoskeleton worn, turned-on), stair climbing test (SCT; exoskeleton worn, turned-off), timed-up-and-go test (TUG; exoskeleton worn, turned-off) compared to no exoskeleton.

Background: Back-support exoskeletons have the potential to reduce work-related physical demands.

Methods: Thirty-six men participated. Activity of erector spinae (ES), biceps femoris (BF), rectus abdominis (RA), vastus lateralis (VL), gastrocnemius medialis (GM), trapezius descendens (TD) was recorded by electromyography; posture by trunk, hip, knee flexion angles; heart rate by electrocardiography; performance by time-to-task accomplishment (s) and perceived task difficulty (100-mm visual analogue scale; VAS); usability by the System Usability Scale (SUS) and all items belonging to domains skepticism and user-friendliness of the Technology Usage Inventory; wearer comfort by the 100-mm VAS.

Results: During parts of COU, using the exoskeleton decreased ES and BF activity and trunk flexion, and increased RA, GM, and TD activity, knee and hip flexion. Wearing the exoskeleton increased time-to-task accomplishment of SCT, TUG, and COU and perceived difficulty of SCT and TUG. Average SUS was 75.4, skepticism 11.5/28.0, user-friendliness 18.0/21.0, wearer comfort 31.1 mm.

Conclusion: Using the exoskeleton modified muscle activity and posture depending on the task applied, slightly impaired performance, and was evaluated mildly uncomfortable.

Application: These outcomes require investigating the effects of this passive back-supporting exoskeleton in longitudinal studies with longer operating times, providing better insights for guiding their application in real work settings.

Keywords: assistive device; electromyography; ergonomics; kinematics; passive exoskeleton.

Figures

Figure 1
Figure 1
The three tasks as simulated during the course (COU) while using the Laevo. Pallet box lifting (upper left corner): the first set of four boxes was grabbed and lifted from 66 cm height; the second set of four boxes from 40 cm height. In the next round, the eight boxes were lifted back to the starting pallet. Fastening (lower left corner): the working height of and distance to the set-up were individually adjusted to ensure a trunk flexion angle of ~40°. The height of the metal bar was adjusted to be halfway between elbow height and shoulder height of the subject in the bent posture. Lattice box lifting (upper right corner): the subject stood 45 cm in front of the lattice box, and the table was positioned directly at their left-hand side. The first set of two boxes was lifted from the lattice box to the table (i.e., 80 cm); the second set of two boxes was lifted from the lattice box on top of the two boxes on the table (i.e., 114 cm). After placing the four boxes on the table, the subject placed them back into the lattice box. The COU is schematically displayed including walking pathways (lower right corner).
Figure 2
Figure 2
The Laevo V2.56 (Laevo B.V., Delft, The Netherlands; https://laevo-exoskeletons.com/manuals).

References

    1. Abdoli-Eramaki M., Agnew M. J., Stevenson J. M. (2006). An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks. Clinical Biomechanics, 21, 456–465.10.1016/j.clinbiomech.2005.12.021
    1. Abdoli-Eramaki M., Stevenson J. M. (2008). The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting. Clinical Biomechanics, 23, 372–380.10.1016/j.clinbiomech.2007.10.012
    1. Agnew M. J. (2008) Kinetic and kinematic adaptations to use of a personal lift assist device. Kingston, Ontario, Canada: Queen’s University
    1. Alemi M. M., Geissinger J., Simon A. A., Chang S. E., Asbeck A. T. (2019). A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting. Journal of Electromyography and Kinesiology, 47, 25–34.10.1016/j.jelekin.2019.05.003
    1. Alemi M. M., Madinei S., Kim S., Srinivasan D., Nussbaum M. A. (2020). Effects of two passive back-support exoskeletons on muscle activity, energy expenditure, and subjective assessments during repetitive lifting. Human Factors, 62, 458–474.10.1177/0018720819897669
    1. Andriacchi T. P., Koo S., Scanlan S. F. (2009). Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. Journal of Bone and Joint Surgery, 91, 95–101.10.2106/JBJS.H.01408
    1. Baltrusch S. J., van Dieën J. H., Bruijn S. M., Koopman A. S., van Bennekom C. A. M., Houdijk H. (2019). The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Ergonomics, 62, 903–916.10.1080/00140139.2019.1602288
    1. Baltrusch S. J., van Dieën J. H., Koopman A. S., Näf M. B., Rodriguez-Guerrero C., Babič J., Houdijk H. (2020). SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting. European Journal of Applied Physiology, 120, 401–412.10.1007/s00421-019-04284-6
    1. Baltrusch S. J., van Dieën J. H., van Bennekom C. A. M., Houdijk H. (2018). The effect of a passive trunk exoskeleton on functional performance in healthy individuals. Applied Ergonomics, 72, 94–106.10.1016/j.apergo.2018.04.007
    1. Bangor A., Kortum P., Miller J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4, 114–123.
    1. Bate S. T., Jones B. (2006). The construction of nearly balanced and nearly strongly balanced uniform cross-over designs. Journal of Statistical Planning and Inference, 136, 3248–3267.10.1016/j.jspi.2004.11.012
    1. Bennell K., Dobson F., Hinman R. (2011). Measures of physical performance assessments: Self-paced walk test (SPWT), stair climb test (SCT), six-minute walk test (6MWT), chair stand test (CST), timed up & go (TUG), sock test, lift and carry test (LCT), and car task. Arthritis Care & Research, 63, S350–S370.10.1002/acr.20538
    1. Biering-Sørensen F. (1984). Physical measurements as risk indicators for low-back trouble over a one-year period. Spine, 9, 106–119.10.1097/00007632-198403000-00002
    1. Bosch T., van Eck J., Knitel K., de Looze M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics, 54, 212–217.10.1016/j.apergo.2015.12.003
    1. Brooke J. (1996). SUS - A quick and dirty usability scale. In Jordan P. W., Thomas B., Weerdmeester B. A., McClelland A. L. (Eds.), Usability evaluation in industry. Taylor & Francis.
    1. Coenen P., Gouttebarge V., van der Burght A. S. A. M., van Dieën J. H., Frings-Dresen M. H. W., van der Beek A. J., Burdorf A. (2014). The effect of lifting during work on low back pain: A health impact assessment based on a meta-analysis. Occupational and Environmental Medicine, 71, 871–877.10.1136/oemed-2014-102346
    1. Cohen J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Earlbaum Associates.
    1. Criswell E. (2010). Cram’s introduction to surface electromyography (2nd ed.). Jones & Bartlett Learning Publishers.
    1. de Looze M. P., Bosch T., Krause F., Stadler K. S., O’Sullivan L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59, 671–681.10.1080/00140139.2015.1081988
    1. Dobson F., Hinman R. S., Roos E. M., Abbott J. H., Stratford P., Davis A. M., Buchbinder R., Snyder-Mackler L., Henrotin Y., Thumboo J., Hansen P., Bennell K. L. (2013). OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthritis and Cartilage, 21, 1042–1052.10.1016/j.joca.2013.05.002
    1. Dueñas M., Ojeda B., Salazar A., Mico J. A., Failde I. (2016). A review of chronic pain impact on patients, their social environment and the health care system. Journal of Pain Research, 9, 457–467.10.2147/JPR.S105892
    1. Field A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE Publishing Ltd.
    1. Frost D. M., Abdoli-E M., Stevenson J. M. (2009). PLAD (personal lift assistive device) stiffness affects the lumbar flexion/extension moment and the posterior chain EMG during symmetrical lifting tasks. Journal of Electromyography and Kinesiology, 19, e403–e412.10.1016/j.jelekin.2008.12.002
    1. Godwin A. A., Stevenson J. M., Agnew M. J., Twiddy A. L., Abdoli-Eramaki M., Lotz C. A. (2009). Testing the efficacy of an ergonomic lifting aid at diminishing muscular fatigue in women over a prolonged period of lifting. International Journal of Industrial Ergonomics, 39, 121–126.10.1016/j.ergon.2008.05.008
    1. Graham R. B., Agnew M. J., Stevenson J. M. (2009). Effectiveness of an on-body lifting aid at reducing low back physical demands during an automotive assembly task: Assessment of EMG response and user acceptability. Applied Ergonomics, 40, 936–942.10.1016/j.apergo.2009.01.006
    1. Hensel R., Keil M. (2019). Subjective evaluation of a passive industrial exoskeleton for lower-back support: A field study in the automotive sector. IISE Transactions on Occupational Ergonomics and Human Factors, 7, 213–221.10.1080/24725838.2019.1573770
    1. Hermens H. J., Freriks B., Disselhorst-Klug C., Rau G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10, 361–374.10.1016/S1050-6411(00)00027-4
    1. Huysamen K., de Looze M., Bosch T., Ortiz J., Toxiri S., O’Sullivan L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics, 68, 125–131.10.1016/j.apergo.2017.11.004
    1. Kim H.-Y. (2012). Statistical notes for clinical researchers: Assessing normal distribution (1). Restorative Dentistry & Endodontics, 37, 245–248.10.5395/rde.2012.37.4.245
    1. Kim H.-Y. (2013). Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 38, 52–54.10.5395/rde.2013.38.1.52
    1. Koopman A. S., Kingma I., de Looze M. P., van Dieën J. H. (2020). Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. Journal of Biomechanics, 102, 109486.10.1016/j.jbiomech.2019.109486
    1. Koopman A. S., Kingma I., Faber G. S., de Looze M. P., van Dieën J. H. (2019). Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. Journal of Biomechanics, 83, 97–103.10.1016/j.jbiomech.2018.11.033
    1. Koopman A. S., Näf M., Baltrusch S. J., Kingma I., Rodriguez-Guerrero C., Babič J., de Looze M. P., van Dieën J. H. (2020). Biomechanical evaluation of a new passive back support exoskeleton. Journal of Biomechanics, 105, 109795.10.1016/j.jbiomech.2020.109795
    1. Kothgassner O., Felnhofer A., Hauk N., Kastenhofer E., Gomm J., Kryspin-Exner I. (2013). TUI Technology Usage iIventory - Manual. ICARUS.
    1. Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.10.3389/fpsyg.2013.00863
    1. Leadley R. M., Armstrong N., Lee Y. C., Allen A., Kleijnen J. (2012). Chronic diseases in the European union: The prevalence and health cost implications of chronic pain. Journal of Pain & Palliative Care Pharmacotherapy, 26, 310–325.10.3109/15360288.2012.736933
    1. Leider P. C., Boschman J. S., Frings-Dresen M. H. W., van der Molen H. F. (2015). Effects of job rotation on musculoskeletal complaints and related work exposures: A systematic literature review. Ergonomics, 58, 18–32.10.1080/00140139.2014.961566
    1. Lotz C. A., Agnew M. J., Godwin A. A., Stevenson J. M. (2009). The effect of an on-body personal lift assist device (PLAD) on fatigue during a repetitive lifting task. Journal of Electromyography and Kinesiology, 19, 331–340.10.1016/j.jelekin.2007.08.006
    1. Luger T., Seibt R., Rieger M. A., Steinhilber B. (2019). The role of motor learning on measures of physical requirements and motor variability during repetitive screwing. International Journal of Environmental Research and Public Health, 16, 1231.10.3390/ijerph16071231
    1. Madinei S., Alemi M. M., Kim S., Srinivasan D., Nussbaum M. A. (2020. a). Biomechanical assessment of two back-support exoskeletons in symmetric and asymmetric repetitive lifting with moderate postural demands. Applied Ergonomics, 88, 103156.10.1016/j.apergo.2020.103156
    1. Madinei S., Alemi M. M., Kim S., Srinivasan D., Nussbaum M. A. (2020. b). Biomechanical evaluation of passive back-support exoskeletons in a precision manual assembly task: "Expected" effects on trunk muscle activity, perceived exertion, and task performance. Human Factors, 62, 441–457.10.1177/0018720819890966
    1. Marino M. (2019). Impacts of using passive back assist and shoulder assist exoskeletons in a wholesale and retail trade sector environment. IISE Transactions on Occupational Ergonomics and Human Factors, 7, 281–290.10.1080/24725838.2019.1645057
    1. Mathiassen S. E., Winkel J., Hägg G. M. (1995). Normalization of surface EMG amplitude from the upper trapezius muscle in ergonomic studies - A review. Journal of Electromyography and Kinesiology, 5, 197–226.10.1016/1050-6411(94)00014-X
    1. Moyon A., Petiot J. F., Poirson E. (2019). Investigating the effects of passive exoskeletons and familiarization protocols on arms-elevated tasks [Conference session]. Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2019 Annual Conference, Nantes, France.
    1. Näf M. B., Koopman A. S., Baltrusch S., Rodriguez-Guerrero C., Vanderborght B., Lefeber D. (2018). Passive back support exoskeleton improves range of motion using flexible beams. Frontiers in Robotics and AI, 5, 72.10.3389/frobt.2018.00072
    1. Norman R., Wells R., Neumann P., Frank J., Shannon H., Kerr M., Group O. (1998). A comparison of peak vs cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry. Clinical Biomechanics, 13, 561–573.10.1016/S0268-0033(98)00020-5
    1. Op de Beeck R., Hermans V. (2000). Research on work-related low back disorders. European Agency for Safety and Health at Work.
    1. Padula R. S., Comper M. L. C., Sparer E. H., Dennerlein J. T. (2017). Job rotation designed to prevent musculoskeletal disorders and control risk in manufacturing industries: A systematic review. Applied Ergonomics, 58, 386–397.10.1016/j.apergo.2016.07.018
    1. Paoli P., Merllié D. (Eds.). (2001). Third European survey on working conditions 2000. European Foundation for the Improvement of Living and Working Conditions.
    1. Rashedi E., Nussbaum M. A. (2015). A review of occupationally-relevant models of localised muscle fatigue. International Journal of Human Factors Modelling and Simulation, 5, 61–80.10.1504/IJHFMS.2015.068119
    1. Steinhilber B., Rieger M. A. (2013). Arbeitsmedizinisch ausgerichtete Normalisierungsverfahren der Oberflächen-Elektromyographie—Ergebnisse einer standardisierten Literaturübersicht. Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie, 63, 254–259.10.1007/BF03350862
    1. Stewart W. F., Ricci J. A., Chee E., Morganstein D., Lipton R. (2003). Lost productive time and cost due to common pain conditions in the US workforce. JAMA, 290, 2443–2454.10.1001/jama.290.18.2443
    1. Ulrey B. L., Fathallah F. A. (2013). Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture. Journal of Electromyography and Kinesiology, 23, 195–205.10.1016/j.jelekin.2012.08.014
    1. User manual . (2018). Instructions for use Laevo V2.56 - Wearable back support for repetitive bending and bended posture. Laevo B.V. .
    1. Vandevoorde K., Orban de Xivry J.-J. (2019). Why is the explicit component of motor adaptation limited in elderly adults? bioRxiv.10.1101/753160
    1. Verbeek J. H, Martimo K.-P, Karppinen J, Kuijer P. P. F. M, Viikari-Juntura E, Takala E.-P, Cochrane Back and Neck Group . (2011). Manual material handling advice and assistive devices for preventing and treating back pain in workers. Cochrane Database of Systematic Reviews, 25, CD005958.10.1002/14651858.CD005958.pub3
    1. von Glinski A., Yilmaz E., Mrotzek S., Marek E., Jettkant B., Brinkemper A., Fisahn C., Schildhauer T. A., Geßmann J. (2019). Effectiveness of an on-body lifting aid (HAL® for care support) to reduce lower back muscle activity during repetitive lifting tasks. Journal of Clinical Neuroscience, 63, 249–255.10.1016/j.jocn.2019.01.038
    1. Walker M. P., Brakefield T., Seidman J., Morgan A., Hobson J. A., Stickgold R. (2003). Sleep and the time course of motor skill learning. Learning & Memory, 10, 275–284.10.1101/lm.58503
    1. Yang H., Haldeman S., Lu M.-L., Baker D. (2016). Low back pain prevalence and related workplace psychosocial risk factors: A study using data from the 2010 National Health Interview Survey. Journal of Manipulative and Physiological Therapeutics, 39, 459–472.10.1016/j.jmpt.2016.07.004

Source: PubMed

3
Sottoscrivi