Computed tomography assessment of exogenous surfactant-induced lung reaeration in patients with acute lung injury

Qin Lu, Mao Zhang, Cassio Girardi, Belaïd Bouhemad, Jozef Kesecioglu, Jean-Jacques Rouby, Qin Lu, Mao Zhang, Cassio Girardi, Belaïd Bouhemad, Jozef Kesecioglu, Jean-Jacques Rouby

Abstract

Introduction: Previous randomized trials failed to demonstrate a decrease in mortality of patients with acute lung injury treated by exogenous surfactant. The aim of this prospective randomized study was to evaluate the effects of exogenous porcine-derived surfactant on pulmonary reaeration and lung tissue in patients with acute lung injury and acute respiratory distress syndrome (ALI/ARDS).

Methods: Twenty patients with ALI/ARDS were studied (10 treated by surfactant and 10 controls) in whom a spiral thoracic computed tomography scan was acquired before (baseline), 39 hours and 7 days after the first surfactant administration. In the surfactant group, 3 doses of porcine-derived lung surfactant (200 mg/kg/dose) were instilled in both lungs at 0, 12 and 36 hours. Each instillation was followed by recruitment maneuvers. Gas and tissue volumes were measured separately in poorly/nonaerated and normally aerated lung areas before and seven days after the first surfactant administration. Surfactant-induced lung reaeration was defined as an increase in gas volume in poorly/non-aerated lung areas between day seven and baseline compared to the control group.

Results: At day seven, surfactant induced a significant increase in volume of gas in poorly/non-aerated lung areas (320 ± 125 ml versus 135 ± 161 ml in controls, P = 0.01) and a significant increase in volume of tissue in normally aerated lung areas (189 ± 179 ml versus -15 ± 105 ml in controls, P < 0.01). PaO2/FiO2 ratio was not different between the surfactant treated group and control group after surfactant replacement.

Conclusions: Intratracheal surfactant replacement induces a significant and prolonged lung reaeration. It also induces a significant increase in lung tissue in normally aerated lung areas, whose mechanisms remain to be elucidated.

Trial registration: NCT00742482.

Figures

Figure 1
Figure 1
Representative CT sections of upper and lower lobes obtained at baseline and day 7 in a patient with acute respiratory distress syndrome. Computed tomography (CT) sections at baseline and day 7 are at the same lung region as attested by the anatomical landmarks present on the rough images at baseline and day 7 (aortic arch and vascular divisions for upper lobe CT sections and vascular divisions for the lower lobe CT sections). As previously described [18], poorly and nonaerated lung areas of right and left upper and lower lobes are manually delineated (dashed line) at baseline (before HL-10 administration) with the aid of the software Lungview) that identifies poorly and nonaerated lung areas in light gray and red, respectively. Delineation performed at baseline is manually 'transposed' to the CT section corresponding to the same anatomical level obtained at day 7. Surfactant-induced lung reaeration is defined as the increase in gas volume within the delineated zone between day 7 and baseline. The same process is repeated on each CT section in order to assess overall surfactant-induced lung reaeration.
Figure 2
Figure 2
PaO2/FiO2 ratio at baseline, 39 hours after baseline (H39) and day 7 in control (open circles) and surfactant groups (closed circles) of patients with acute lung injury/acute respiratory distress syndrome. FiO2, fraction of inspired oxygen; PaO2, partial pressure of arterial oxygen.
Figure 3
Figure 3
Volumes of gas and tissue at baseline before HL-10 instillation (upper part of the figure) and changes in volume of gas and tissue between H39 (within three hours following the third bolus of HL-10) and baseline (lower part of the figure). Results shown in right upper and middle lobes (RUL), left upper lobe (LUL), right lower lobe (RLL) and left lower lobe (LLL) in patients with acute lung injury/acute respiratory distress syndrome instilled with 200 mg/kg of HL-10. Comparisons were performed by Friedman repeated measures analysis of variance on ranks followed by a Tukey test. P values above the horizontal brackets indicate significant difference between RUL, LUL, RLL and LLL using Friedman repeated measures analysis of variance.* P < 0.05 versus RUL, § P < 0.05 versus LUL.
Figure 4
Figure 4
Computerized tomography assessment of total gas and tissue volumes at baseline, 39 hours after baseline (H39) and day 7, in control (open circles) and surfactant groups of patients (closed circles).
Figure 5
Figure 5
Individual and mean changes in volume of gas and tissue in poorly/nonaerated lung regions (upper part of the figure) and normally aerated lung regions (lower part of the figure). Volume changes were measured on computed tomography scans acquired at baseline and seven days in patients who received either usual care (control, open circles) or usual care plus intratracheal porcine-derived surfactant (HL-10, closed circles). In the surfactant group, each patient is identified by a specific symbol.

References

    1. Hallman M, Spragg R, Harrell JH, Moser KM, Gluck L. Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. J Clin Invest. 1982;70:673–683. doi: 10.1172/JCI110662.
    1. Nakamura T, Malloy J, McCaig L, Yao LJ, Joseph M, Lewis J, Veldhuizen R. Mechanical ventilation of isolated septic rat lungs: effects on surfactant and inflammatory cytokines. J Appl Physiol. 2001;91:811–820.
    1. Malloy JL, Veldhuizen RA, Lewis JF. Effects of ventilation on the surfactant system in sepsis-induced lung injury. J Appl Physiol. 2000;88:401–408.
    1. Suresh GK, Soll RF. Overview of surfactant replacement trials. J Perinatol. 2005;25(Suppl 2):S40–44. doi: 10.1038/sj.jp.7211320.
    1. Willson DF, Thomas NJ, Markovitz BP, Bauman LA, DiCarlo JV, Pon S, Jacobs BR, Jefferson LS, Conaway MR, Egan EA. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA. 2005;293:470–476. doi: 10.1001/jama.293.4.470.
    1. Spragg RG, Lewis JF, Wurst W, Hafner D, Baughman RP, Wewers MD, Marsh JJ. Treatment of acute respiratory distress syndrome with recombinant surfactant protein C surfactant. Am J Respir Crit Care Med. 2003;167:1562–1566. doi: 10.1164/rccm.200207-782OC.
    1. Anzueto A, Baughman RP, Guntupalli KK, Weg JG, Wiedemann HP, Raventos AA, Lemaire F, Long W, Zaccardelli DS, Pattishall EN. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. N Engl J Med. 1996;334:1417–1421. doi: 10.1056/NEJM199605303342201.
    1. Spragg RG, Lewis JF, Walmrath HD, Johannigman J, Bellingan G, Laterre PF, Witte MC, Richards GA, Rippin G, Rathgeb F, Hafner D, Taut FJ, Seeger W. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med. 2004;351:884–892. doi: 10.1056/NEJMoa033181.
    1. Schmidt R, Markart P, Ruppert C, Wygrecka M, Kuchenbuch T, Walmrath D, Seeger W, Guenther A. Time-dependent changes in pulmonary surfactant function and composition in acute respiratory distress syndrome due to pneumonia or aspiration. Respir Res. 2007;8:55. doi: 10.1186/1465-9921-8-55.
    1. Markart P, Ruppert C, Wygrecka M, Colaris T, Dahal B, Walmrath D, Harbach H, Wilhelm J, Seeger W, Schmidt R, Guenther A. Patients with ARDS show improvement but not normalisation of alveolar surface activity with surfactant treatment: putative role of neutral lipids. Thorax. 2007;62:588–594. doi: 10.1136/thx.2006.062398.
    1. Ainsworth SB, Beresford MW, Milligan DW, Shaw NJ, Matthews JN, Fenton AC, Ward Platt MP. Pumactant and poractant alfa for treatment of respiratory distress syndrome in neonates born at 25-29 weeks' gestation: a randomised trial. Lancet. 2000;355:1387–1392. doi: 10.1016/S0140-6736(00)02136-X.
    1. Kesecioglu J, Beale R, Stewart TE, Findlay GP, Rouby JJ, Holzapfel L, Bruins P, Steenken EJ, Jeppesen OK, Lachmann B. Exogenous natural surfactant for treatment of acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2009;180:989–994. doi: 10.1164/rccm.200812-1955OC.
    1. Rouby JJ, Constantin JM, Roberto De AGC, Zhang M, Lu Q. Mechanical ventilation in patients with acute respiratory distress syndrome. Anesthesiology. 2004;101:228–234. doi: 10.1097/00000542-200407000-00033.
    1. Malbouisson LM, Busch CJ, Puybasset L, Lu Q, Cluzel P, Rouby JJ. Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. CT Scan ARDS Study Group. Am J Respir Crit Care Med. 2000;161:2005–2012.
    1. Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med. 2000;26:857–869. doi: 10.1007/s001340051274.
    1. Nieszkowska A, Lu Q, Vieira S, Elman M, Fetita C, Rouby JJ. Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit Care Med. 2004;32:1496–1503. doi: 10.1097/01.CCM.0000130170.88512.07.
    1. Vieira SR, Puybasset L, Richecoeur J, Lu Q, Cluzel P, Gusman PB, Coriat P, Rouby JJ. A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med. 1998;158:1571–1577.
    1. Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163:1444–1450.
    1. Reske AW, Busse H, Amato MB, Jaekel M, Kahn T, Schwarzkopf P, Schreiter D, Gottschaldt U, Seiwerts M. Image reconstruction affects computer tomographic assessment of lung hyperinflation. Intensive Care Med. 2008;34:2044–2053. doi: 10.1007/s00134-008-1175-8.
    1. Malbouisson LM, Preteux F, Puybasset L, Grenier P, Coriat P, Rouby JJ. Validation of a software designed for computed tomographic (CT) measurement of lung water. Intensive Care Med. 2001;27:602–608. doi: 10.1007/s001340100860.
    1. Lewis JF, McCaig L. Aerosolized versus instilled exogenous surfactant in a nonuniform pattern of lung injury. Am Rev Respir Dis. 1993;148:1187–1193.
    1. Henry MD, Rebello CM, Ikegami M, Jobe AH, Langenback EG, Davis JM. Ultrasonic nebulized in comparison with instilled surfactant treatment of preterm lambs. Am J Respir Crit Care Med. 1996;154:366–375.
    1. Davidson WJ, Dorscheid D, Spragg R, Schulzer M, Mak E, Ayas NT. Exogenous pulmonary surfactant for the treatment of adult patients with acute respiratory distress syndrome: results of a meta-analysis. Crit Care. 2006;10:R41. doi: 10.1186/cc4851.
    1. Torresin M, Zimmermann LJ, Cogo PE, Cavicchioli P, Badon T, Giordano G, Zacchello F, Sauer PJ, Carnielli VP. Exogenous surfactant kinetics in infant respiratory distress syndrome: A novel method with stable isotopes. Am J Respir Crit Care Med. 2000;161:1584–1589.
    1. Grotberg JB, Halpern D, Jensen OE. Interaction of exogenous and endogenous surfactant: spreading-rate effects. J Appl Physiol. 1995;78:750–756.
    1. Sandiford P, Province MA, Schuster DP. Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151:737–742.
    1. Hafner D, Germann PG. A rat model of acute respiratory distress syndrome (ARDS) Part 2, influence of lavage volume, lavage repetition, and therapeutic treatment with rSP-C surfactant. J Pharmacol Toxicol Methods. 1999;41:97–106. doi: 10.1016/S1056-8719(99)00025-8.
    1. Stamme C, Brasch F, von Bethmann A, Uhlig S. Effect of surfactant on ventilation-induced mediator release in isolated perfused mouse lungs. Pulm Pharmacol Ther. 2002;15:455–461. doi: 10.1006/pupt.2002.0383.
    1. Strohmaier W, Trupka A, Pfeiler C, Thurnher M, Khakpour Z, Gippner-Steppert C, Jochum M, Redl H. Bilateral lavage with diluted surfactant improves lung function after unilateral lung contusion in pigs. Crit Care Med. 2005;33:2286–2293. doi: 10.1097/01.CCM.0000182819.11807.16.
    1. van Putte BP, Cobelens PM, van der Kaaij N, Lachmann B, Kavelaars A, Heijnen CJ, Kesecioglu J. Exogenous surfactant attenuation of ischemia-reperfusion injury in the lung through alteration of inflammatory and apoptotic factors. J Thorac Cardiovasc Surg. 2009;137:824–828. doi: 10.1016/j.jtcvs.2008.08.046.
    1. Wemhoner A, Rudiger M, Gortner L. Inflammatory cytokine mRNA in monocytes is modified by a recombinant (SP-C)-based surfactant and porcine surfactant. Methods Find Exp Clin Pharmacol. 2009;31:317–323. doi: 10.1358/mf.2009.31.5.1386592.
    1. Erpenbeck VJ, Fischer I, Wiese K, Schaumann F, Schmiedl A, Nassenstein C, Krug N, Hohlfeld JM. Therapeutic surfactants modulate the viability of eosinophils and induce inflammatory mediator release. Int Arch Allergy Immunol. 2009;149:333–342. doi: 10.1159/000205579.
    1. Kesecioglu J, Schultz MJ, Maas JJ, De Wilde RB, Steenken EI, Lachmann B. Treatment of acute lung injury and ARDS with surfactant is safe [abstract] Am J Respir Crit Care Med. 2004;169:A349.
    1. Gregory TJ, Steinberg KP, Spragg R, Gadek JE, Hyers TM, Longmore WJ, Moxley MA, Cai GZ, Hite RD, Smith RM, Hudson LD, Crim C, Newton P, Mitchell BR, Gold AJ. Bovine surfactant therapy for patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1997;155:1309–1315.

Source: PubMed

3
Sottoscrivi